切线的性质与判定教案
- 格式:doc
- 大小:68.28 KB
- 文档页数:3
切线的性质和判定教案教案标题:切线的性质和判定教学目标:1. 理解切线的定义和性质。
2. 学会判定给定点与曲线的切线关系。
3. 掌握切线的斜率和方程的计算方法。
教学准备:1. 教师准备:教师课件、黑板、粉笔、切线相关的教学素材和案例。
2. 学生准备:学生课本、笔记本、铅笔、计算器。
教学过程:一、导入(5分钟)1. 引入切线概念:教师通过引发学生对曲线和切线的认知,例如:你们曾经在生活中遇到过什么是曲线吗?切线又是什么?请举例说明。
2. 激发学生兴趣:教师通过展示一些有趣的图形和实际应用案例,引起学生对切线的兴趣。
二、概念讲解(15分钟)1. 定义切线:教师通过示意图和示例,引导学生理解切线的定义,即与曲线相切于一点且切线斜率等于曲线斜率。
2. 切线性质:教师讲解切线与曲线的相对位置关系,以及切线的斜率和曲线的斜率之间的关系。
三、切线的判定(20分钟)1. 几何判定法:教师讲解几何判定法,即切线与曲线相切于一点时,切线与曲线在该点处的切点和切线方向相同。
2. 代数判定法:教师讲解代数判定法,即通过求解曲线方程和切线方程的交点,判断给定点与曲线的切线关系。
四、切线方程的计算(20分钟)1. 切线斜率的计算:教师通过示例演示切线斜率的计算方法,即利用导数的定义求出曲线在给定点的切线斜率。
2. 切线方程的计算:教师通过示例演示切线方程的计算方法,即利用点斜式或截距式求出切线的方程。
五、练习与巩固(15分钟)1. 学生个人练习:学生根据教师提供的练习题,独立完成切线的性质和判定相关的练习。
2. 小组合作讨论:学生分组进行讨论,互相解答疑惑,共同巩固所学知识。
六、拓展与应用(10分钟)1. 实际应用:教师通过展示一些实际问题,如工程设计、物体运动等,引导学生将切线的性质和判定应用到实际问题中。
2. 拓展知识:教师简要介绍其他相关概念,如法线、切点等,拓展学生的知识面。
七、总结与反思(5分钟)1. 总结:教师对本节课的重点内容进行总结,并强调切线的性质和判定方法。
切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。
2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。
3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。
二、教学重点与难点1. 教学重点:切线的判定方法和性质。
2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。
三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。
(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。
2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。
3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。
(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。
(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。
如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。
例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。
(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。
(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。
四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。
同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。
24.2.2 切线的判定和性质教案Ⅰ、教材分析切线的判定和性质的教学在平面几何乃至整个中学数学教学中都占有重要地位和作用,是中考的重要考点之一,除了在证明和计算中有着广泛的应用外,它也是研究三角形内切圆的作法,切线长定理以及正多边形与圆的关系的基础,所以它是《圆》这一章的重要内容,也可以说是本章的核心。
除了要求学生能够较灵活地运用有关知识解题外,还要求学生掌握一些解题技巧,在培养学生的逻辑思维能力和综合运用知识解决问题的能力方面也起了重要作用。
Ⅱ、教学目标(1)知识与技能:使学生掌握圆的切线的判定和性质定理,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力。
(2)过程与方法:培养学生的观察能力、研究问题的能力、数学思维能力以及创新意识,充分领会数学转化思想。
(3)情感、态度与价值观:通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐,养成动手、动脑的习惯,并养成良好的书写习惯。
Ⅲ、教学重点与难点重点:①理解圆的切线的判定和性质;②会运用切线的判定和性质解决简单的数学问题。
难点:利用切线的判定和性质解决几何问题的技巧——辅助线的添加。
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞教学过程:一、回顾与思考(多媒体显示问题)1、直线和圆有哪几种位置关系?判断的标准什么?2、三种位置关系填表.3、什么叫圆的切线?观察表格,怎样判断一条直线是不是圆的切线?通过以上检复,我们发现可以用切线的定义来判断一条直线是不是圆的切线,但有时使用起来很不方便。
反过来,如果一条直线是圆的切线,又能产生哪些作用和效果呢?为此,我们有必要学习切线的判定和性质定理。
(板书课题):切线的判定和性质二、探索和发现1、上节课学习了“圆心到一条直线的距离等于圆的半径,则该直线是圆的切线”这一定义。
下面请同学们按我口述的步骤作图(两名同学板演)。
画出⊙O,在⊙O上任取一点A,连接OA,过点 A作⊙O的切线l(完成后让学生回顾作图过程,并多媒体展示画图过程,观察切线是如何画出来的,它满足哪些条件?)。
切线的判定和性质2数学教案
标题:切线的判定和性质2数学教案
I. 引言(约300字)
- 定义切线的概念
- 解释为什么学习切线的判定和性质是重要的
II. 切线的判定(约450字)
- 介绍并解释切线的定义
- 描述如何通过两点确定一条直线的方法来判定切线
- 给出几个实例,并让同学们自己尝试解决
- 讨论并总结得出结论
III. 切线的性质(约450字)
- 介绍切线的一些基本性质,例如与圆的唯一交点、垂直于半径等
- 使用几何图形和例子来解释这些性质
- 让学生自己推导和证明这些性质
- 讨论并总结得出结论
IV. 切线的应用(约300字)
- 展示在实际生活中切线的应用,例如建筑设计、物理运动轨迹分析等
- 让学生思考并讨论其他可能的应用场景
V. 课堂练习与评估(约150字)
- 设计一些习题让学生进行练习,以检验他们对切线的判定和性质的理解程度 - 对学生的答案进行评估,并提供反馈
VI. 结语(约50字)
- 总结本节课的内容
- 鼓励学生在日常生活中寻找并应用切线的相关知识。
切线的判定和性质数学教案设计第一章:导言1.1 课程背景本节课我们将学习一种特殊的直线——切线。
在初中阶段,我们已经学习了直线、射线、线段等基本概念。
通过学习切线,我们将对函数图像有更深入的了解,并掌握一种新的解决问题的方法。
1.2 教学目标(1)了解切线的定义及其特点;(2)掌握切线的判定方法;(3)能运用切线的性质解决实际问题。
第二章:切线的定义及特点2.1 教学内容本节课我们将学习切线的定义及特点。
我们通过具体例子观察函数图像上的切线,引导学生发现切线的特点。
给出切线的定义,并从几何角度分析切线的性质。
2.2 教学活动(1)展示几个函数图像,引导学生观察并描述切线的外观特点;(2)给出切线的定义,让学生理解切线与函数图像的关系;(3)通过几何图形,引导学生分析切线的性质,如切线与函数图像的交点为切点,切线与函数图像的切点处的导数为切线的斜率等。
第三章:切线的判定方法3.1 教学内容本节课我们将学习切线的判定方法。
我们回顾一下导数的定义,引入切线的判定方法。
通过实例讲解如何运用切线的判定方法。
3.2 教学活动(1)回顾导数的定义,让学生理解导数与切线的关系;(2)给出切线的判定方法,让学生掌握如何判断一条直线是否为切线;第四章:切线的性质4.1 教学内容本节课我们将学习切线的性质。
我们通过几何图形引导学生理解切线的性质。
给出切线的性质定理,并解释其含义。
通过实例讲解如何运用切线的性质。
4.2 教学活动(1)通过几何图形,引导学生理解切线的性质,如切线与函数图像的切点处的导数为切线的斜率,切线与函数图像的交点为切点等;(2)给出切线的性质定理,让学生掌握切线的性质;第五章:运用切线解决实际问题5.1 教学内容本节课我们将学习如何运用切线解决实际问题。
我们通过具体例子引导学生理解切线在实际问题中的应用。
给出运用切线解决实际问题的方法,并解释其原理。
通过实例讲解如何运用切线解决实际问题。
5.2 教学活动(1)展示几个实际问题,引导学生观察并发现其中涉及到的切线;(2)给出运用切线解决实际问题的方法,让学生理解切线在实际问题中的作用;第六章:切线方程的求法6.1 教学内容本节课我们将学习如何求解切线的方程。
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。
通过图形和实例解释圆的切线的性质和特点。
1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。
通过几何证明和实例来加深对圆的切线性质的理解。
第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。
通过图形和实例来展示切线判定定理的应用。
2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。
通过证明过程来加深对切线判定定理的理解和应用。
第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。
通过图形和实例来展示切线方程的应用。
3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。
通过例题和练习来掌握切线方程的求解方法。
第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。
通过图形和实例来展示切线与圆相切的特点和性质。
4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。
通过图形和实例来展示切线与圆相离和相交的特点和性质。
第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。
通过例题和练习来展示切线在几何问题中的应用方法。
5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。
通过实例来展示切线在日常生活中的重要性和作用。
第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。
通过图形和实例来展示切线判定定理的推广应用。
6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。
通过例题和练习来展示切线判定定理与其他数学概念的结合应用。
冀教版数学九年级下册29.3《切线的性质和判定》教学设计一. 教材分析冀教版数学九年级下册29.3《切线的性质和判定》是本册教材中关于直线与圆位置关系的一个重要内容。
本节内容主要让学生掌握切线的性质和判定方法,为后续学习圆的方程和其他圆相关知识打下基础。
教材通过引入切线的概念,引导学生探究切线的性质,并通过实验和证明让学生理解切线的判定方法。
二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本知识,具备一定的观察、实验、推理能力。
但部分学生对抽象的数学概念和证明过程可能存在理解困难,因此,在教学过程中,教师需要关注学生的学习需求,通过具体实例和实际操作,帮助学生理解和掌握切线的性质和判定方法。
三. 教学目标1.理解切线的定义,掌握切线的性质和判定方法。
2.能够运用切线的性质和判定方法解决实际问题。
3.培养学生的观察能力、实验能力和逻辑推理能力。
四. 教学重难点1.切线的定义及其性质。
2.切线的判定方法。
3.运用切线的性质和判定方法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究切线的性质和判定方法。
2.利用实验和几何画板软件,直观展示切线的特点,帮助学生理解切线的概念。
3.通过证明和推理,让学生掌握切线的性质和判定方法。
4.设计具有针对性的练习题,巩固所学知识。
六. 教学准备1.准备相关教学PPT,包括切线的定义、性质、判定方法的讲解和实例展示。
2.准备实验材料,如圆板、直尺、铅笔等。
3.准备几何画板软件,用于展示切线的动态特点。
4.准备练习题和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示实际生活中的切线现象,如剪刀剪纸、圆规画圆等,引导学生思考:这些现象背后是否存在共同的数学规律?从而引出本节课的主题——切线的性质和判定。
2.呈现(10分钟)介绍切线的定义,通过PPT展示切线的图形,让学生直观地理解切线的概念。
接着,讲解切线的性质,如切线与半径垂直、切线长度等于半径等。
切线的判定和性质一、课标要求了解切线的概念:探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线。
会过圆上一点画圆的切线。
二、教学目标1.复习巩固直线与圆相切的位置关系;2.归纳直线与圆相切的性质和判定方法以及切线长定理,并能运用这些知识进行计算和证明;3.能运用直线与圆的位置关系解决实际问题,体验数学与实际生活的密切联系;4.会利用方程思想解决几何问题,体验数形结合思想;5.在计算与证明中培养学生的分析问题、解决问题以及综合运用知识的能力。
三、教学重点运用切线的性质和判定方法进行计算与证明。
四、教学难点灵活运用所学知识解决有关切线问题。
五、教学过程(一)导入课题前面我们已经学习过直线与圆的位置关系,大家想一想,直线与圆有几种位置关系?其中直线与圆相切是本章的重点知识,也是中考中的重要考点之一,这节课我们就对直线与圆相切这部分内容进行了一个全面复习。
(二)归纳运用1.什么叫做直线与圆相切?由这个定义你能得出切线的哪些性质和判定方法?(和圆只有一个公共点的直线是圆的切线,切线和圆只有一个公共点)2.如果直线和圆相切,那么圆心到直线的距离与半径有什么关系?反之,如果圆心到直线的距离等于半径,那么直线和圆是什么位置关系?(和圆心的距离等于半径的直线是圆的切线,切线和圆心的距离等于圆的半径)例:如图1在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点DE 平分∠ADC,∠E平分∠BCD,则以AB为直线的圆与边CD有怎样的位置关系。
并证明你的结论。
练习:(1)(09.广东)已知⊙O的半径为r,圆心O到直线L的距离为d,当d=r时,直线L与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对(2)如图2已知⊙O的半径为3,点O到L的距离OA=5,将直线L向上沿AO 方向平移m个单位时⊙O与直线L相切,则m等于()A.2 B.4 C.8 D.2或83.在2结论的基础上,我们可以得到切线的判定定理和性质定理,它们各是什么内容?要注意些什么?切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
授课教案
学员姓名:授课教师:周老师所授科目:数学
学员年级:上课时间:年月日时分至时分共小时教学标题切线的性质与判定
教学目标切线的性质与判定的运用
教学重难点切线的性质与判定的运用
上次作业检查完成数量:____ % 完成质量____% 存在问题:
一,复习上次课内容:(如是首课请标明)
①圆心角:顶点在圆心的角叫做圆心角
②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
二,梳理知识(本堂课授课内容)
1,.直线和圆的位置关系
设r为圆的半径,d为圆心到直线的距离
?,直线与圆没有交点;
(1)直线和圆相离d r
?,直线与圆有唯一交点;
(2)直线和圆相切d r
?,直线与圆有两个交点。
(3)直线和圆相交d r
2.圆的切线
(1)定义:和圆有唯一公共点的直线叫做圆的切线,唯一公共点叫做切点。
(2)切线的判定定理
经过半径的外端且垂于这条半径的直线是圆的切线。
(3)切线的性质定理及推论
定理:圆的切线垂直于经过切点的半径。
推论:
①经过圆心且垂直于切线的直线必经过切点;
②经过切点且垂直于切线的直线必经过圆心。
相交弦定理、切割线定理、切线长定理
定理 图形
关系式 相交弦定理
22PA PB PC PD R OP ==- 相交弦定理的推论
2222PA PB PC PD R OP ===- 切割线定理
222PA PB PC OP R ==- 切割线定理的推论
22PA PB PC PD OP R ==- 切线长定理
2222PA PB OP R ==-
A O
B
C
D P A B C D P O P C A B A B C D P B A P O
三、典型例题(需有解析题目的详细过程)
.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。
四、课堂练习(可以另附资料)
五、课堂小结(对本次课知识、考点、方法等进行归纳)
切线的判定定理
经过半径的外端且垂于这条半径的直线是圆的切线。
(3)切线的性质定理及推论
定理:圆的切线垂直于经过切点的半径。
推论:
①经过圆心且垂直于切线的直线必经过切点;
②经过切点且垂直于切线的直线必经过圆心。
六、下次课内容(写明章节或知识点)
本次课作业:(指定作业范围或另附页)
课后记本节课教学计划完成情况:照常完成_____ 提前完成_____ 延后完成_____ 学员课堂表现:
签字确认学员教师学管师教案检查教学部审批总监抽查。