电除尘器电源系统选型探讨
- 格式:pdf
- 大小:1015.97 KB
- 文档页数:2
电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。
要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。
1.影响除尘器性能的因素影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。
这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。
1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011Ω·㎝。
比电阻低于104Ω·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011Ω·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。
对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。
2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气中所含水分越大,其比电阻越小。
粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。
击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显著改善。
3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。
关于电除尘器电源系统节能的分析摘要:电除尘器具有除尘效率高、处理烟气量大、运行维护费用低等优点,在我国电力行业中,使用电除尘器的火电装机容量已经占总火电装机容量的90%以上,应用十分广泛。
电除尘器使用的常规高压供电装置,一般都是由控制系统、变压器和整流器装置组成,采用工频(50Hz/60Hz)交流电源。
本文针对常规工频可控硅电源系统存在的一些缺点,结合国内外先进技术,提出工频脉冲、高频开关电源和高频+工频组合三种节能供电方案,并详细阐述各方案的原理、特点及实际应用情况。
关键词:电除尘器;电源系统;节能1电除尘电源应用现状随着环保要求的提高,燃煤电厂电除尘器正面临着新的挑战和机遇。
首先,自2012年1月1日起,GB13223-2011《火电厂大气污染物排放标准》正式实施,新的国家标准对新建火电机组和已建成运行的不同年代的老机组烟尘排放浓度均有了更加严格的规定。
其次,许多火电厂烟气脱硫工艺对烟气中的粉尘浓度有严格要求,电除尘器需要进行提效改造。
第三,电除尘器是重要的环保设备,同时也是火电厂的高能耗设备,电除尘器一般情况下的耗电量约占机组容量的4‰。
电除尘系统的提效节能既可以加强电厂节能环保建设,同时也降低了运行费用。
因此,在提高除尘效率、降低烟尘排放浓度的同时,大幅度降低电除尘器的能耗,是亟待解决的重要课题。
2电除尘器电源系统类型目前,我国火力发电厂使用的电除尘高压电源系统主要有单相工频高压电源和三相高频电源2种类型。
表1是近两年新上电厂电除尘器典型用电负荷,由表中可见,电除尘器的耗电主要由高压硅整流设备和电加热系统两部分组成,其中电除尘器的高压系统耗电约占80%左右,电加热系统采用恒温控制,因此电除尘器的节能控制主要是降低高压硅整流设备的耗电。
3电除尘器电源系统节能方案3.1工频脉冲节能供电方案(方案一)脉冲供电方式主要由基础电压调节电路、脉冲产生电路、保护电路、脉冲幅值调节电路等组成。
3.1.1供电方案技术性比较与传统工频电源工作模式相比,电除尘脉冲供电具有如下优点:(1)提高除尘效率。
电除尘器选型设计探讨作者:赵治夫黄水立来源:《中国高新技术企业》2014年第23期摘要:电除尘器原理是通过施加直流高压电,利用强电场使气体电离,气体中的粉尘荷电,粉尘荷电后在电场力作用下被收尘极捕集,通过振打清灰集中到灰斗完成粉尘收集过程。
文章主要针对火电厂电除尘器进行研究,提出了选型设计主要参数的确定及其注意事项,为电除尘器初步选型设计提供技术参考。
关键词:电除尘器;选型设计;火电厂;污染物;粉尘排放中图分类号:TM621 文献标识码:A 文章编号:1009-2374(2014)34-0015-03除尘器是火电厂控制污染物粉尘排放的重要设备。
火电厂除尘设备主要常用的有电除尘器、袋式除尘器、电袋复合除尘器等,这几种设备具有不同的特点和适用范围。
电除尘器原理是通过施加直流高压电(一般20~80kV),利用强电场使气体电离,气体中的粉尘荷电,粉尘荷电后在电场力作用下被收尘极捕集,通过振打清灰集中到灰斗完成粉尘收集过程。
1 除尘方式选型基本原则火电厂烟气净化的首要任务是使烟气的排放浓度达到国家和合同规定的排放标准,能够保证达到排放标准的可选设备为电除尘器、袋式除尘器和电袋复合除尘器。
在这三类设备中,选用哪种设备必须根据烟尘的物理、化学性质、烟气的化学组成、温度、湿度、烟气量、含尘浓度等条件进行技术经济比较后确定(表1为三种除尘方式简单技术经济性比较)。
除尘方式选型要求及顺序如下:首先,要满足下列两点:(1)保证烟气排放浓度达到国家标准,满足合同要求;(2)设备运行安全、可靠性高,即保证长期、稳定地运行。
其次,可再考虑下列四点:(1)能源消耗低;(2)设备的一次投资少;(3)设备占地面积少;(4)设备运行维护、检修费用少。
2 电除尘器选型设计2.1 除尘器台数及室数配置通常由总包设计部门提供原始设计输入条件、控制指标等要求,由除尘器制造厂进行具体的选型计算。
需提供的原始资料包括锅炉技术参数,锅炉耗煤量,烟气量、烟温,制粉系统情况,空气预热器型式和过剩空气系数,烟尘浓度,除灰除渣方式,引风机型式和型号,设计煤种和校核煤种,煤质分析,灰成分分析、颗粒分析、比电阻、密度和安息角,烟气露点温度和烟气中水蒸汽体积百分比,厂址气象和地理条件等。
电除尘器高压电源各类高压电源的性能对比概述在饱受雾霾之苦的今天。
随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。
这就迫使企业对现有的电除尘器设备进行不断的升级和改造。
在电除尘器改造的过程中,供电系统的选择直接影响着除尘器的性能。
本文通过对电除尘器各类高压电源工作原理的比对来分析什么样的电源更有利于提高除尘器的除尘效率。
一、电除尘器电源发展的三个阶段:第一阶段:工频电源1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率300Hz。
二次电压输出波形:纹波较小的直流(DC)电压波形。
第二阶段:高频电源1、按输出频率可分为:10 kHz、20 kHz、50 kHz。
2、按调压方式可分为:调频高频电源、调幅高频电源。
三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。
输出频率10 kHz、20 kHz、50kHz。
二次电压输出波形:基本上纯直流的(DC)电压波形。
第三阶段:工频基波脉冲电源工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。
基波频率300Hz,脉冲频率100pps,脉冲宽度75μs;第四阶段:高频基波脉冲电源:由多组独立高频电源叠加组成。
基波频率10~50 kHz,双脉冲频率1~10000 pps,脉冲宽度8μs;脉冲电源输入电压: 三相交流380V。
二次电压输出波形:直流(DC)电压波形叠加脉冲(PULSE)电压波形。
即直流叠加脉冲(DC+PULSE)电压波形。
电除尘器电源系统节能方案的研究及对比分析摘要:本文对电除尘器的理论能耗值和实际能耗值进行了分析比较,对电除尘器电源的发展和目前常规电源类型进行了总结。
并论述了电除尘器的工频脉冲、高频开关电源和高频+工频组合三种节能供电方案。
关键词:电除尘器节能工频高频引言:电除尘器供电控制设备在适应运行工况的要求和提高电除尘器整体性能方面起着重要作用,单相工频高压电源和三相高频电源则是目前我国火力发电厂主要的电除尘高压电源系统。
此外,电除尘器的节能控制主要是降低高压硅整流设备的耗电。
一、电除尘器能耗分析1、电除尘器的理论能耗计算根据斯托克斯定律,一个球形尘粒在运动过程中所受到的摩擦阻力为:F=6πηaω。
假设尘粒直径为10μm,向着收尘极板运动所经过距离d为5cm,荷电尘粒的驱进速度ω为30cm/s,介质的运动粘度η为1.8×10-5Pa?s,则使荷电尘粒向着收尘极板运动所经过的距离为d时所消耗的功为:W=Fd=6πηaωd=6π×(1.8×10-5)×(5×10-6)×(30×10-2)×(5×10-2)=2.54×10-11 ;火电厂锅炉产生烟气中灰尘的质量浓度一般为10~40g/m3,假设烟气中的含尘的质量分数C为20g/m3,尘粒的密度ρ为1g/cm3,则单位烟气量中的尘粒数量: =3.82×1010(个/m3) ;因此,使1m3烟气中全部尘粒分离所需的功:W0=WN0=2.54×10-11×3.82×1010=0.970 。
以某电厂350MW燃煤机组设计参数值为例,1台机组锅炉产生的烟气量qv约为1.22×106Nm3/h,从中分离全部尘粒(假设粒径为10μm),所需的功率:Ps= W0qv=0.970×1.22×106/3600=329 (W) ;由上式可知,在理想状态下,分离350MW机组锅炉烟气量的尘粒只需要329W的功率,是一个很小的数值。