相变加热炉技术简介
- 格式:ppt
- 大小:6.37 MB
- 文档页数:17
相变储能技术介绍及其展望能动学院能动A02王来升2010201104相变储能技术介绍及其展望摘要:相变储能材料作为一种提高能源利用稳定性以及效率的技术越来越受到人们重视,如何有效的对相变储能技术进行研究越来越受到人们的重视。
关键词:相变材料;应用;展望0引言:能源是人类赖以生存的基础。
随着人类生活以及生产活动的高速发展,我们对能源的需求量越来越大,而化石能源的日益枯竭、能源利用带来的污染问题却越来越严重。
如何提高能源的利用效率、最大限度的利用低品位能源、开发可利用的新能源成为当今社会的研究热点。
自20世纪七十年代石油危机后,热能存储技术在工业节能和新能源利用领域日益受到重视,在我国2000年前后,全面实行分时计度电价政策后,相变储能技术便成为工业和民用的热点,尤其是随着太阳能、风能和海洋能等间歇性绿色能源的发展,相变储能技术越来越受到人们的重视。
1.相变储能技术的发展概况1。
1国外相变储能技术的发展概况20世纪六十年代,美国国家航空航天局就非常重视相变技术在航天领域的应用用。
1980年美国 Birchenall等提出采用合金作为相变材料[1],提出了三种典型状态平衡图和二元合金的熔化熵和熔化潜热的计算方法。
1991年德国Gluck和Hahne等利用/制成高温蓄热砖,并建立太阳能中央收集塔的蓄能装置[2]。
2001年Faird等以-6O作为相变材料采用微胶囊技术封装制备了相变储能地板[3]。
2006年Hammou等设计了一个含有相变材料的混合热储能存储系统[4]。
1。
2国内相变储能技术的发展概况在我国,二十世纪七十年代末、八十年代初,中国科技大学、华中师范大学、中国科学院广州能源研究所等单位就开始了对无机盐、无机水合盐、金属等相变材料的理论和应用作了详细的研究工作.西藏太阳能研究示范中心和华中师范大学共同利用西藏盐湖盛产的芒硝和硼砂等无机水合盐类矿产加入独特的悬浮剂等成功研制出太阳能高密度储热材料[5]。
加热炉无焰富氧燃烧技术介绍
加热炉无焰富氧燃烧技术是一种先进的燃烧技术,它通过提高助燃空气中氧气的含量,实现提高燃烧效率、减少污染排放和能源消耗的目标。
无焰燃烧技术指的是在炉内燃料不完全燃烧的条件下,通过控制助燃空气中的氧含量,使得火焰传播速度较慢,燃烧过程更稳定,以达到高效燃烧和节能减排的效果。
在富氧空气中,由于氧含量较高,燃烧温度得到提高,火焰传播速度加快,燃烧更加稳定,从而提高了燃烧效率。
无焰富氧燃烧技术具有以下优点:
1. 节能:由于富氧燃烧提高了火焰温度和燃烧效率,因此可以减少燃料消耗量,达到节能的目的。
2. 减排:富氧燃烧降低了烟气中氮气和氧气含量,从而减少了温室气体和有害气体的排放。
3. 高效:无焰富氧燃烧技术使得燃料在炉内燃烧更加充分,提高了热效率,缩短了加热时间。
4. 安全:由于燃烧过程更加稳定,降低了火灾和爆炸的风险。
然而,无焰富氧燃烧技术也存在一些挑战和限制。
例如,高纯度氧气制备成本较高,且氧气具有强氧化性,对炉体材料要求较高。
此外,富氧燃烧产生的烟气温度较高,需要采取有效的冷却措施以防止炉体损坏。
目前,无焰富氧燃烧技术已经在航空航天、工业炉窑、玻璃熔炼、石油化工等领域得到了广泛应用。
它能够显著提高能源利用率和减少污染物排放,是实现工业节能减排和绿色发展的重要技术之一。
加热炉汽化冷却的原理引言:加热炉汽化冷却是一种常用的加热方式,通过将加热炉内的液体物质加热至汽化温度,然后利用汽化冷却的原理将其冷却,实现物质的加热和冷却效果。
本文将详细介绍加热炉汽化冷却的原理及其应用。
一、加热炉的工作原理加热炉是一种用于加热物质的设备,其工作原理是通过加热源提供热量,使加热炉内的物质温度升高。
一般来说,加热源可以是燃烧器、电加热器等,加热炉内的物质可以是液体、气体或固体。
二、汽化冷却的原理汽化冷却是一种利用物质的汽化过程带走热量的方法,实现物质的冷却。
当物质的温度达到汽化温度时,物质开始发生相变,由液态变为气态。
在相变过程中,物质吸收了大量的热量,使其温度降低。
三、加热炉汽化冷却的原理加热炉汽化冷却是将加热炉内的液体物质加热至汽化温度,然后利用汽化冷却的原理将其冷却。
具体而言,加热炉内的液体物质通过加热源的作用逐渐升温,当温度达到物质的汽化温度时,物质发生汽化,从液态转变为气态。
在汽化过程中,物质吸收了大量的热量,使其温度降低。
同时,由于气态物质的热容较小,其温度下降速度更加快速。
因此,通过加热炉汽化冷却的方法,可以将加热炉内的液体物质快速降温,实现物质的冷却效果。
四、加热炉汽化冷却的应用加热炉汽化冷却广泛应用于工业生产中的物质加热和冷却过程。
例如,在石油化工行业中,加热炉汽化冷却可用于将液态原油加热至汽化温度,然后通过冷凝器将其冷却,实现油品的提炼和分离。
加热炉汽化冷却还可以应用于金属加工、食品加工等领域。
例如,在金属加工过程中,加热炉汽化冷却可用于将金属材料加热至汽化温度,然后通过冷却装置将其迅速冷却,实现金属的淬火效果。
在食品加工过程中,加热炉汽化冷却可用于将食品液体加热至汽化温度,然后通过冷却设备将其冷却,实现食品的灭菌和保鲜效果。
五、总结加热炉汽化冷却是一种常用的加热和冷却方法,通过将加热炉内的液体物质加热至汽化温度,然后利用汽化冷却的原理将其冷却。
加热炉汽化冷却在工业生产中具有广泛的应用,可用于物质的提炼、分离、淬火、灭菌和保鲜等过程中。
油、气田加热炉培训资料山东骏马石油设备制造集团编制编制;李庆银电邮:sddyjunmalqux163x目录第一章概述 (1)第一节油田加热炉 (1)一、油田和长输管线加热炉的用途 (1)二、油田加热炉的技术装备现状 (2)第二节油田加热炉的炉型及根本结构 (2)一、油田加热炉的炉型 (2)一、热传递的根本概念 (5)二、压力和温度 (6)三、热力学的有关概念 (7)四、管式炉的工作参数 (8)五、水套炉的工作参数 (10)六、相变加热炉的工作参数 (11)第三章燃油、燃气及其燃烧 (11)第一节燃油及其主要特性 (12)一、燃油 (12)二、燃油的化学成分 (13)三、燃油的主要使用特性及油质指标 (14)第二节燃气及其主要特性 (21)一、燃气 (21)二、燃气的组成成分—组分 (21)三、燃气的主要使用特性及质量要求 (24)第三节燃油、燃气的燃烧 (27)一、燃烧所需空气量和生成的烟气量 (27)二、燃油的燃烧方式 (28)三、燃气的燃烧方式 (35)四、双燃料燃烧器 (38)六、燃烧器的点火 (41)第四章油田加热炉根本结构 (43)第一节火筒式加热炉根本结构 (43)一、炉型及分类选用 (43)二、火筒式加热炉设计一般要求 (44)三、火筒式加热炉根本结构形式 (47)第二节管式加热炉根本结构 (49)一、炉型及选用 (49)二、管式加热炉根本结构 (50)三、几种管式加热炉根本结构形式简介: (52)第三节加热炉新炉型及技术特点 (53)一、火筒式加热炉新炉型及技术特点 (53)二、管式加热炉新炉型及技术特点 (57)第五章调参、管理和维护 (64)第一节炉子的燃烧管理 (64)一、炉子的点火和升温 (64)二、油燃烧器的故障及处理 (64)三、气体燃烧器的故障及处理 (66)四、燃烧调节的任务和指标 (67)五、燃烧操作的平安规程 (67)六、燃烧过剩空气量的监控 (68)第二节炉子的操作范围 (72)一、工况调节 (72)二、热效率和操作负荷的关系 (75)三、提高加热炉热效率 (76)第三节管内结焦和烧焦 (78)一、结焦的形态 (78)三、影响结焦的因素及防止措施 (79)四、炉管的烧焦 (81)第四节炉管的损坏 (82)一、炉管报废标准 (82)二、炉管损坏的原因 (82)三、预防炉管损坏的措施 (83)四、由氧化减薄引起的损坏 (84)第六章油田加热炉的平安管理 (85)一、平安附件 (85)二、运行参数控制 (85)三、水套加热炉的操作与管理 (86)四、管式加热炉操作与管理 (88)第一章概述第一节油田加热炉一、油田和长输管线加热炉的用途油田和长输管线加热炉〔以下简称油田加热炉〕系指用火焰加热原油、天然气、水及其混合物等介质的专用设备。
1000KW真空相变加热炉使用说明书型号ZKX1000-Q/16-Q编号L06-53编制:校对:审核:山东骏马石油设备制造集团有限公司2006年7月本说明书是针对我公司生产的ZKX1000-Q/16-Q型真空相变加热炉而编,熟悉本说明书,可以确保加热炉的安全和正常运行。
一、点火前的准备工作1、检查燃料气压力是否符合要求:来气压力为0.08~0.15MPa。
mm范围以内。
2、检查水位计上的水位指示:确保水位处于水位计中心+20-03、检查壳程压力表的指示:若是停炉不久,压力表指示应为负值,本次点炉可不用提取真空;若停炉时间较长,可能有空气进入壳体,压力表指示为0,本次点炉应重新提取真空。
4、检查其它仪表是否指示正常并处于设定的数值。
5、检查各阀门是否处于相应的开关状态,泄压阀保持严密状态。
6、打开烟囱调节门。
二、点火1、确认上述检查符合要求后可以点火。
点火程序按燃烧控制系统安装使用说明书所述进行。
如果一次点火失败,应停炉检查,查明原因,消除故障,并对炉膛进行吹扫,使火筒内天然气排尽后方能重新点火。
2、调整燃烧和功率、温度自动调节器及盘管进液量,直至达到工艺要求。
三、正常运行的监测1、加热炉水位:本加热炉的安全水位为水位计中心线±50mm,不允许水位低于下限。
当水位接近下限时必须及时补水,一次补水至上限。
正常情况下,本加热炉的炉水损耗几乎为零。
若出现异常情况,造成严重缺水将直接威胁到加热炉的安全,因此每次巡回检查时,应把检查水位当作重点。
2、炉水及蒸汽温度与壳程压力两者对应关系:如在壳体内无空气的情况下,-0.08MPa对应93℃、-0.09 MPa对应96℃、0 MPa对应100℃、0.05 MPa对应110℃。
3、监视盘管被加热介质进出口温度的变化。
并查看井产物进出口温度与炉水温度的温差值变化。
当温差变大时(可参照试运时的数据),可能壳体内有空气进入,影响了传热效率。
应排出空气重新提取真空。
油田常用加热炉类型及发展趋势摘要:作为油气集输、处理以及运输等地面工程中各个环节必不可少的设备之一。
加热炉的种类和发展趋势影响着油田的开发和效益。
对于不同种类的加热炉进行系统研究分析,并且根据实际需求进行使用,可以有效地提高油田的生产运行经济型和安全性。
现在各个油田所使用的加热炉主要有管式加热炉、火筒式加热炉、水套加热炉和相变加热炉等等。
本文针对现在油田中所使用的加热炉以及最新被研发出来的新型加热炉进行研究分析,并对加热炉未来发展进行讨论。
关键词:油田加热炉;加热炉类型;发展趋势油田加热炉是油田地面工程中非常重要的一种机械设备,从油井的井口加热至成品油外输等一系列过程都需要油田加热炉进行供热。
在油田的生产过程中,加热炉要科学的进行布置和使用。
可以降低油田地面工程的能源消耗,减少成本的投入。
目前我国主要使用的油田加热炉是管式加热炉和火筒式加热炉,但是加热炉的种类繁多,研究人员还在不断探索新型油田加热炉。
力求找到最适合油田发展的加热炉技术。
一、油田常用加热炉(一)管式加热炉管式加热炉是用过火焰字节对炉管内部的介质进行家人,按照炉管的拍类风湿可以分为螺旋式管式加热炉和直线式管式加热炉。
因为换热过程中存在较大的温差,所以管式加热炉可以快速的加热介质。
单台管式加热炉的功率可以很大,所以可以在较小的换热面进行高效的换热,同时管式加热炉可以承受较高的介质压力。
值得注意的是,当管式加热炉内部介质为易结垢介质时,其管壁会出现介质导致的结垢现象。
这就会严重的影响管式加热炉的使用效果。
如果不能对结垢进行及时有效地清理,就会使结垢部位过热,严重者会出现爆炸的情况发生。
(二)火筒式加热炉火筒式加热炉在使用过程中,其内部燃料通过燃烧会产生热量直接对介质进行加热。
在工作时,被加热的介质通过进液分配管流至加热炉底部,淹没火管和烟管来吸收热量。
实现加热的目的,相比于传统的火筒式加热炉,结垢现象对于加热炉的使用效果影响不大。
在火筒式加热炉的实际使用过程中,因为被加热介质在炉内流动速度比较缓慢,所以在炉壳的避免上容易出现结垢现象。
加热炉设备介绍加热炉是将物料或工件加热的设备。
按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。
应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。
在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。
金属热处理用的加热炉另称为热处理炉。
初轧前加热钢锭或使钢锭内部温度均匀的炉子称为均热炉。
广义而言,加热炉也包括均热炉和热处理炉。
连续加热炉包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉,但习惯上常指推钢式炉。
连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。
主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。
RJ2系列高温井式电阻炉结构简介:RJ2系列高温井式电阻炉结构,外壳由钢板和型钢制成圆柱形炉体,全部采用密封焊接。
炉衬采用超轻质0.6g/cm3节能真空球耐火保温砖砌筑。
炉衬与炉壳夹层置酸铝纤维毡保温,间隙填充膨胀保温粉。
电阻丝采用0Cr27Al7Mo2高电阻合金丝绕成螺旋状安装在炉膛的搁丝砖上。
炉盖采用手动或电动升降。
如用户提出需要气氛保护使工件减少氧化,可在炉盖上安装有不锈钢三头油注器,滴入甲醇或煤油,以产生简易保护气氛,在炉膛下部安装有氮气进气管道,可通入氮气保护或冲散可燃性气体,以防发生爆炸事故。
为保证操作安全在升降机构附近装有限位开关,此开关与高温井式电阻炉控制柜电源联锁,炉盖关闭时通电源。
当炉盖开启时限位开关即切断控制电源,因此加热元件的电源同时切断,以保证安全操作。
高温井式电阻炉出厂时配套自动控温柜,热电偶。
用途:RJ2系列高温井式电阻炉是国家标准节能型周期作业井式电阻炉,最高温度1200℃,工作温度1200℃,主要供合金钢、高速钢、高锰钢、高铬钢、轴类、管材等金属材料和机械零件在一般气氛或简易保护中进行正火、退火、淬火等热处理用。