基于中压电力线载波的通信技术研究
- 格式:pdf
- 大小:12.33 MB
- 文档页数:71
摘要本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题(wèntí)进行了讨论。
关键词电力线载波(zàibō) 通信发展应用0 引言电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。
近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。
并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为(chéngwéi)一门电力通信领域乃至关系到千家万户的热门专业。
在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。
1 电力线载波通信的发展(fāzhǎn)及现状1.1 我国电力线载波通信(zǎi bō tōnɡ xìn)的现状电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。
目前,它更是电网调度自动化、网络运营市场化和管理现代化的基础;是确保电网安全、稳定、经济运行的重要手段;是电力系统的重要基础设施。
由于电力通信网对通信的可靠性、保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此,世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。
长期以来,电力线载波通信网一直是电力通信网的基础网络,目前在长达670000km的35kV以上电压等级的输电线路上多数已开通电力线载波通道[1],形成了庞大的电力线载波通信网。
电力线通信全称是电力线载波(Power Line Carrier – PLC)通信,是指利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。
高压电力线载波技术已经突破了仅限于单片机应用的限制,已经进入了数字化时代。
并且随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。
电力线通信(Power Line Communication,英文简称PLC)技术是指利用电力线传输数据和媒体信号的一种通信方式该技术是把载有信息的高频加载于电流然后用电线传输接受信息的适配器再把高频从电流中分离出来并传送到计算机或电话以实现信息传递。
该技术最大的优势是不需要重新布线在现有电线上实现数据语音和视频等多业务的承载实现四网合一终端用户只需要插上电源插头就可以实现因特网接入电视频道接收节目打电话或者是可视电话。
越来越多的电子数字设备专为家庭或客厅设计,而且消费者喜欢将音视频节目从电脑复制到家庭数字娱乐系统中。
这些习惯的改变,加速了电脑与电视的整合。
在中国,三网已经开始进行融合,这对电力线通讯(Power Line Communication--PLC)需求也就越来越强烈。
电力猫的出现,则是PLC技术的最新发展。
什么是电力猫?即“电力线通讯调制解调器”,是通过电力线进行宽带上网的Modem的俗称。
使用家庭或办公室现有电力线和插座组建成网络,来连接PC,ADSL modem,机顶盒,音频设备,监控设备以及其他的智能电气设备,来传输数据,语音和视频。
它具有即插即用的特点,能通过普通家庭电力线传输网络IP数字信号。
ZINWELL兆赫ZPL-210电力猫[1]电力通信网是为了保证电力系统的安全稳定运行而应运而生的。
它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。
采集系统无信号问题的研究摘要:按照国家智能电网建设的总体规划要求,为确保国家智能电网建设规范有序地推进,从而逐步实现电力用户用电信息采集系统建设“全覆盖、全采集、全预付费”的总体目标,国网公司制定了《电力用户用电信息采集系统系列标准》,要求在国家电网范围内,对所有接入电力用户全面实行用电信息采集,实现用电信息的自动采集、计量异常告警、电能质量监测、用电分析和管理等功能。
电力用户用电信息采集是对电力用户的所有用电信息进行采集、处理和实时监控的系统是目前国家电网提高管理水平的重要技术手段。
1 山区无信号问题1.1 中压载波简介目前集中器的上行通信信道基本都是采用GPRS通信,随着用电信息采集覆盖率的提升,部分偏远地区由于没有GPRS信号导致无法采集数据。
为解决这部分地区的数据采集,需采取其它更为有效的上行通信方式。
考虑到中压电力载波通信使用现有的、完善的配电线作为传输通道,是唯一不需要线路投资的有线专网通信方式,具有投资少、设备简单、施工容易、维护管理方便、与电网建设同步、随新建工程开通快、覆盖面与电力系统一致等优点。
因此考虑采用中压电力载波通信实现主站系统与集中器间的通信。
1.2.1 电力线载波数字通讯机电力线载波数字通讯机(以下简称载波机)是实现中压电力线载波通信的关键设备,它带有数字信号接口和载波信号接口,其数字信号接口可以与终端或载波通讯管理机相连,其载波信号接口可以与耦合设备相连,再通过耦合设备将载波信号耦合到10kV配电线。
载波机分为主载波机(TXZRM3-DXM)和从载波机(TXZRS3-DXM)。
图1.2 载波机载波机与终端或管理机相连,当终端或管理机有数据需要向外发送时,载波机先从数字信号接口接收终端或管理机的数字信号,然后对数字信号进行处理变成载波信号,再通过耦合装置将载波信号发送到配电线上进行传输;当配电线上有载波信号到来时,载波机先通过耦合装置从配电线上获取载波信号,然后对载波信号进行处理变成数字信号,并通过数字信号接口传送给终端或管理机。
电力载波技术在配网通信工程的应用发表时间:2018-12-17T11:46:44.520Z 来源:《基层建设》2018年第29期作者:庄乐禹[导读] 摘要:10kV电力载波技术是配网工程通信系统的重要组成部分,相比起造价高昂的通讯光纤,载波通信系统具备更加灵活的组网能力和网络管理功能,有效解决了配网自动化建设的瓶颈问题。
广东电网有限责任公司汕头供电局广东省汕头市 515000摘要:10kV电力载波技术是配网工程通信系统的重要组成部分,相比起造价高昂的通讯光纤,载波通信系统具备更加灵活的组网能力和网络管理功能,有效解决了配网自动化建设的瓶颈问题。
本文结合汕头市濠江区配电自动化改造项目,就载波通信技术在配网工程的应用进行探讨分析,并与传统光纤通信进行对比,最后对电力载波技术的需求进行展望。
关键词:载波通信;耦合器;施工方案 1 前言配电自动化通信系统,是配电网的神经系统,负责配电设备与远程控制管理中心的双向数据传送,是配电自动化实现的基础,通信系统的传输速率、可靠性等,直接影响到配电自动化的应用效果。
目前配电自动化通信系统以光纤通信为主,但光纤通信在建设实施的过程中存在光纤敷设的各种问题,导致光纤通信建设受阻,或者付出昂贵的“过路费”,极大的影响了配电自动化的建设进度和计划。
而中压载波技术的日趋成熟,缓解了这一矛盾。
电力载波通信是利用10kV配电线路作为信号的传输载体,通过将宽带信号耦合在中压电力线上进行传输,从而将中压配电网转换为一个高带宽的通信网络的技术。
该技术在物理层是利用电力线作为传输介质,而在MAC层和网络层都遵循标准的以太网协议,可以与光纤网络实现无缝连接。
2 工程概况 110kV河浦变电站10kV河滨线馈线自动化工程线未配置具有配电自动化功能的开关和配电自动化终端,无法实现故障的迅速准确定位和迅速隔离故障区段,快速恢复非故障区域供电的功能目标。
本工程对10kV河滨线进行自动化改造,配置安装可实现自动化功能的环网柜,并配置配电自动化终端,实现线路馈线自动化功能。
断器或自动开关,用以切除二次回路的短路故障。
自动调节励磁装置及强行励磁用的电压互感器的二次侧不得装设熔断器,因为熔断器熔断会使她们拒动或误动。
2.若电压互感器二次回路发生故障,由于延迟切断故障时间可能使保护装置和自动装置发生误动作或拒动,因此应装设监视电压回路完好的装置。
此时宜采用自动开关作为短路保护,并利用其辅助触点发出信号。
3.在正常运行时,电压互感器二次开口三角辅助绕组两端无电压,不能监视熔断器是否断开;且熔丝熔断时,若系统发生接地,保护会拒绝动作,因此开口三角绕组出口不应装设熔断器。
4.接至仪表及变送器的电压互感器二次电压分支回路应装设熔断器。
5.电压互感器中性点引出线上,一般不装设熔断器或自动开关。
采用B相接地时,其熔断器或自动开关应装设在电压互感器B相的二次绕组引出端与接地点之间。
三、电压互感器二次回路熔断器的选择1.熔断器的熔件必须保证在二次电压回路内发生短路时,其熔断的时间小于保护装置的动作时间。
2.熔断器的容量应满足在最大负荷时不熔断,即:(1)熔件的额定电流应大于最大负荷电流(在双母线情况下,应考虑一组母线运行时所有电压回路的负荷全部切换至一组电压互感器上)。
(2)当电压互感器二次侧短路时,不致引起保护的动作,此数值最好由试验确定。
一般对屋内配电装置的电压互感器,熔断器选用R1-10/4A、250V的。
对屋外配电装置的电压互感器,熔断器选用RM10型250V、15/6A的。
为确保电压互感器使用的安全及电压互感器与电气仪表、继电保护、自动装置很好的配合,电压互感器二次回路熔断器应严格按照以上原则配置和选择。
一、引言电力线载波通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。
35kV以上电压等级的高压电力线载波通信主要用于地、市级或以下供电部门构成面向终端变电站及大用户的调度通信、远动及综合自动化;中低压电力线载波的应用目前主要在10kV电力线作为配电网自动化系统的数据传输通道和在380/220V用户电网作为集中远方自动抄表系统的数据传输通道,还有正在开发并取得阶段性成果的电力线上网高速MODEM的应用。
在低压电力用户用电信息采集系统中,主要采用电力线载波和短距离(微功率)无线通信方式,并以低压电力线窄带载波通信方式为主。
然而受低压配电网信道环境中传输衰减、噪声干扰和阻抗变化等因素的影响,电力线载波通信的可靠性难以得到保证,严重影响系统的稳定运行。
也就是说,电力线载波通信设备的通信性能将直接影响到用电信息采集系统的整体性能。
目前,载波通信技术有多种实现方案,载波信号调制方式、中心频点、路由协议和信号祸合方式等各不相同。
尽管每种技术都有其独特的优越性,但也有其不利因素。
就国内产品而言,已进入多元化时代,主要应用的就有鼎信、东软、晓程、力合微、瑞斯康、盛吉高科和弥亚微等厂家。
各厂家的载波通信模块的性能均有所差异,厂家提供的抄表产品性能指标通常都符合标准。
但由于测试装备有限,测试手段有一定局限性,无法对载波通信产品的通信功能进行合理验证,致使产品性能的检验与应用需求脱节,所以有必要进行相关的测试和评估,为选用合适的载波设备提供技术支持和依据。
鉴于以上原因,国内外相关机构正在从测试方法、测试设备、测试平台以及评价机制等方面对载波设备的通信性能测试进行积极地研究和探索。
本文介绍了一种信道参数可控的载波通信测试设备,并就进一步的性能测试应用中存在的问题进行一些探讨。
一、一种载波通信性能测试设备的研制1、总体研制思路电力线载波通信性能测试设备的研制,主要考虑3个方面的因素作为设计指导原则。
一是实验室环境下模拟低压配电网电力线传输信道特点;二是参考电力行业以及国家相关标准要求的测试项目;三是以测试主机为交互中心,以传输信道参数可程控调节为手段,建立自动化的载波通信性能测试装置。
近年来,针对电能采集标准相关的政策法规相继出台,并在测试项目和可操作性方面不断完善。
诸如DL/T698-2010《电能信息采集与管理系统标准》、Q/GDW1373-2013《电力用户用电信息采集系统功能规范》、Q/GDW1374-2013《电力用户用电信息采集系统技术规范》和Q/GDW1379-2013《电力用户用电信息采集系统检验技术规范》等。
摘要电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。
电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。
本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。
以及我们对噪声的滤波耦合等。
并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。
课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。
文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。
实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。
PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。
这样一个系统阶完成了接收与发送信号,形成了一个通信系统。
关键字:电力线载波通信系统SSC1641 调制解调1、绪论1.1设计任务及要求电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。
根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。
系统至少具备以下特性:1)开关量输入和输出各5路; 2)系统24V供电;3)具有通信状态指示功能; 4)有232、485或USB有线通信接口;5)断电继续工作能力; 6)其他自己发挥的功能。
低压电力线多载波通信中信道模型的研究和分析的开题报告一、研究背景及意义低压电力线通信是一种利用已有的低压电力线实现数据传输和信息交换的技术手段。
近年来,由于其低成本、高带宽、低建设难度等优势,逐渐受到人们的关注和应用。
其中载波通信技术是低压电力线传输中常用的一种方式,其基本原理是将数字信号调制到电力线上进行传输。
而在载波通信中,信道是影响通信质量的关键因素之一,因此对低压电力线中的信道模型进行研究和分析,有助于提高载波通信的通信质量和可靠性,推进低压电力线通信技术的应用。
二、目标与内容本论文的目标是对低压电力线中载波通信的信道模型进行详细研究和分析,包括信噪比衰减、多径效应、噪声干扰等因素的影响和处理方法。
具体内容包括以下几个方面:1. 低压电力线中载波通信的基本原理和技术特点;2. 低压电力线中信道模型的建立与分析;3. 信道模型中的信噪比衰减、多径效应和噪声干扰的影响及处理方法研究;4. 通过实验验证研究结果的正确性。
三、论文结构本论文主要包括以下几个部分:1. 绪论:介绍论文的研究背景、意义、目标与内容;2. 相关技术与原理:介绍低压电力线通信的基本原理和技术特点,以及信道模型的建立和分析方法;3. 低压电力线中信道模型的影响因素与处理方法:详细分析低压电力线中信噪比衰减、多径效应和噪声干扰等因素对通信质量的影响及处理方法;4. 实验验证:通过实验验证研究结果的正确性;5. 结论与展望:总结全文,对未来低压电力线通信技术的发展前景进行展望。
四、研究方法本论文主要采用文献研究和仿真实验相结合的研究方法:1. 对国内外文献进行调研和分析,对现有的低压电力线通信技术及其在实际应用中的问题进行深入研究,探索信道模型的建立与分析方法;2. 基于MATLAB等仿真软件,对低压电力线中的载波通信进行仿真实验,验证理论分析结果的正确性。
五、预期成果通过本论文的研究,预期实现对低压电力线中载波通信的信道模型进行详细研究和分析,深入探讨信道模型中的影响因素及处理方法,以及实验验证结果的正确性。
PDZ-100中压电力线载波机一、产品概述PDZ-100中压电力线载波机是我公司针对配用电网智能化的通信需求,研制的一种新型高速、高可靠的专用电力线载波通信装置。
适用于中压配电自动化、分布式电源接入控制、电动汽车充电控制、用电信息采集上联等配用电智能化系统数据高速可靠传输。
图1 PDZ-100中压电力线载波机二、主要特点电力线载波通信是电力系统特有的一种通信方式,具有无需新布线和通道天然可靠的优势。
该装置采用先进的数字信号处理技术实现高速OFDM调制解调、信道编译码、纠错、自适应组网等功能。
既可以单独组网,也可以作为光纤、无线通信方式的补充和延伸混合组网,具有使用灵活、方便、性价比高的优点。
主要表现在以下几方面:(1)实施方便。
无需额外的线路,一次建设成本低,投资少,见效快,并且运行维护成本低廉;(2)速率高。
采用先进的OFDM技术,在150kHz-12MHz频带内实现最高可达10Mbps高速传输,完全满足配网智能化业务数据传输要求。
(3)稳定性高。
传输频率在150kHz-12MHz范围内,自适应选取最佳的工作频段,提高数据传输的稳定性。
(4)可靠性高。
采用高效的信道编码与纠错技术,提高系统的接收灵敏度和抗干扰的能力,保证数据传输的高可靠性和安全性。
(5)覆盖范围广。
系统通过多跳自动中继技术实现同一变电站范围载波节点的自组网,延长通信距离和覆盖范围。
(6)业务接口丰富。
提供标准通信接口(RS-232、RS-485和以太网口)与配用电业务终端设备连接,具有完全的开放性和兼容性。
三、功能描述PDZ-100中压电力线载波机的工作原理如下图2所示,由耦合电路、模拟板和数字板组成。
模拟板主要功能是模拟前端负责数模信号转换、信号滤波以及信号放大功能。
数字板上DSP/FPGA芯片主要完成信道的编译码、OFDM调制解调等物理层功能;ARM芯片的主要功能是控制物理层数据的收发、多址接入方式的选择、流量控制、快速组网策略等协议处理。
国内外低压电⼒线载波通信应⽤现状分析国内外低压电⼒线载波通信应⽤现状分析1.概述电⼒线载波通信(PLC)是电⼒系统特有的、基本的通信⽅式。
早在20世纪20年代,电⼒载波通信就开始应⽤到10KV配电⽹络线路通信中,并形成了相关的国际标准和国家标准。
对于低压配电⽹来说,许多新兴的数字技术,例如扩频通信技术,数字信号处理技术和计算机控制技术等,⼤⼤提⾼和改善了低压配电⽹电⼒载波通信的可⽤性和可靠性,使得电⼒载波通信技术具有更加诱⼈的应⽤前景。
为此,美国联邦通信委员会FCC规定了电⼒线频带宽度为100~450kHZ;欧洲电⽓标准委员会的EN50065-1规定电⼒载波频带为3~148.5kHZ。
这些标准的建⽴为电⼒载波技术的发展做出了显著的贡献。
利⽤低压电⼒线来传输⽤户⽤电数据,实现及时有效收集和统计,是⽬前国内外公认的⼀个最佳⽅案。
低压电⼒线是最为⼴泛的⼀种通讯媒介⽹络,采⽤合适的技术充分⽤好这⼀现成的媒介,所产⽣的经济效益和⽣产效率是显⽽易见的。
在20世纪90年代,⼀些欧洲公司进⾏涉及电⼒线数据传输的试验,虽然最初实验效果好坏参半,通信技术的不断进步与互联⽹业务的蓬勃发展带动了电⼒线通信的显著增长。
在美国,弗吉尼亚州马纳萨斯市⾸次开始⼤范围部署PLC的服务,提供抄表、上⽹等业务,速率达到了10Mbps,费⽤为30美元/每⽉,在该地区已覆盖3.5万城市居民⽤户。
⽬前,摩托罗拉公司正在进⾏Powerline MU计划,该技术提⾼到⼀个新系统,摩托罗拉的系统只使⽤居民住宅⽅⾯的低压电⼒线传输,以减少天线效应。
摩托罗拉公司邀请美国⽆线电中继联盟参加与这些测试,甚⾄摩托罗拉在其总部安装了系统,初步结果⾮常乐观的展⽰了抗⼲扰特性。
该PLC技术仅⽤于最后电⽹分⽀向室内的⼀段进⾏数据传输,⽽信号通过⽆线电获取传到配电⽹节点,这就限制了从最后这⼀段到室内的信号对周围地区的⼲扰,实现了居民⽤户的电能数据采集。
在埃及,综合项⽬⼯程办公室(EOIP)部署了⼴泛的PLC技术应⽤在亚历⼭德⾥亚、法耶德和坦塔。
电力载波技术简介及工程中的应用一、电力载波技术简介及特点电力载波技术,简称PLC技术,是英文Power line Communication的简称。
电力载波是电力系统特有的通信方式,电力载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术,最大特点是不需要重新架设网络,只要有电线,就能进行数据传递,是利用1.6~30MHz频带范围在电力线路上传输信号。
在发送时,利用GMSK或OFDM调制技术将用户数据进行调制、线路耦合,然后在电力线上进行传输.在接收端,先经过耦合、滤波,将调制信号从电力线路上滤出,再经过解调,还原成原信号。
目前可达到的通信速率依具体设备不同在4.5~45MB/s之间。
PLC设备分局端和调制解调器,局端负责与内部PLC调制解调器的通信和与外部网络的连接。
在通信时,来自终端地址或用户的数据进入调制解调器调制后,通过系统的配电线路传输到局端设备,局端将信号解调出来,再转到控制主机或外部的Internet。
电力载波技术相关特性(一)信道传输特性电力载波通信不同于常规的点对点或点对多点阻抗恒定传输媒介。
由于大多电力线具有分支多、不同分支电缆物理特性不一致及负载阻抗不恒定等特点,其中,中压电力线的阻抗变化稍小,中压电缆线路分支一般不多。
因而电力线信道是一个多径反射以及频率选择性衰落信道。
我们可以通过模拟技术研究不同拓扑结构网络上通信性能的可能性。
通过搭建模型,并基于大量的测试,可以研究和设计出PLC网络。
同时可以对不同的调制技术和编码技术进行比较研究。
(二)信道噪声特性除了因线路衰减和多路传输所造成的信号失真外,噪声是影响电力线数据可靠通信的关键因素。
通过大量理论研究和实际测试表明,电力线信道中的噪声分布和其它常见信道有很大的不同,其噪声并不呈现白高斯噪声(AWGN)特性,在频率从几百kHz到数十MHz之间,主要为窄带干扰和脉冲噪声。
为了克服这些影响,必须考虑采用复杂的信道编码技术。
电力载波通信原理_电力载波通信的优缺点电力线载波通信简介电力线载波通信(powerlinecarriercommunication)以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
载波通信方式(1)电力线载波通信。
这种通信具有高度的可靠性和经济性,且于调度管理的分布基本一致。
但这种方式受可用频谱的限制,并且抗干扰性能稍差。
(2)绝缘架空地线载波通信。
这种通信设备简单、造价低,可扩展电力线载波通信频谱,送电线路检修接地期间可以不中断通信,受系统短路接地故障影响较小,易实现长距离通信。
其缺点是易发生瞬时中断。
电力载波通信的优点只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小!电力线载波通信的缺点1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送;2、三相电力线间有很大信号损失(10dB-30dB)。
通讯距离很近时,不同相间可能会收到信号。
一般电力载波信号只能在单相电力线上传输;3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。
线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用;4、电力线存在本身因有的脉冲干扰。
目前使用的交流电有50HZ和60HZ,则周期为20ms 和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。
有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交。