风荷载计算公式及符号含义
- 格式:docx
- 大小:36.52 KB
- 文档页数:2
第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。
该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。
层数()i H m z μ z β1()/q z KN m 2()/q z KN m7女儿墙底部 17.50.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000(3)计算各楼层标高处的风荷载z 。
攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。
7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。
4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物受的风荷载。
4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最值确定的风速V0(m/s)按公式确定。
但不得小于0.3kN/m2。
对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,要与高层建筑的自振特性有关,目前还没有实用的标准。
一般当房屋高度大于60米时,采用100年一遇的压。
《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。
2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。
A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。
3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。
一般取决于建筑建筑物的平面形状等。
计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型系或由风洞试验确定。
几种常用结构形式的风载体型系数如下图注:“+”代表压力;“-”代表拉力。
按建筑结构荷载规范(GB50009-2001)计算:w k=βgzμzμs1w0……7.1.1-2[GB50009-2001 2006年版] 上式中:w k:作用在门窗上的风荷载标准值(MPa);Z:计算点标高:61.2m;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m按5m计算):βgz=K(1+2μf)其中K为地面粗糙度调整系数,μf为脉动系数A类场地:βgz=0.92×(1+2μf) 其中:μf=0.387×(Z/10)-0.12 B类场地:βgz=0.89×(1+2μf) 其中:μf=0.5(Z/10)-0.16C类场地:βgz=0.85×(1+2μf) 其中:μf=0.734(Z/10)-0.22D类场地:βgz=0.80×(1+2μf) 其中:μf=1.2248(Z/10)-0.3对于C类地形,61.2m高度处瞬时风压的阵风系数:βgz=0.85×(1+2×(0.734(Z/10)-0.22))=1.6876μz:风压高度变化系数;根据不同场地类型,按以下公式计算:A类场地:μz=1.379×(Z/10)0.24当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地:μz=(Z/10)0.32当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;C类场地:μz=0.616×(Z/10)0.44当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;D类场地:μz=0.318×(Z/10)0.60当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于C类地形,61.2m高度处风压高度变化系数:μz=0.616×(Z/10)0.44=1.3669μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表7.3.1采用;2. 负压区—对墙面,取-1.0—对墙角边,取-1.8二、内表面对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。
风荷载计算第二部分风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:W k z s z w0其中W k为垂直于建筑物单位面积上的风荷载标准值z为z高度上的风振系数,取z 1.00z为z高度处的风压高度变化系数s为风荷载体型系数,取s 1.30W o为攀枝花基本风压,取W。
0.40该多层办公楼建筑物属于C类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度H 19.8m 30m,高宽比 % 19.%44 1.375 1.5,应采用风振系数z来考虑风压脉动的影响。
该建筑物结构平面为矩形,s 1.30,由《建筑结构荷载规范》第3.7查表得s 0.8 (迎风面)s 0.5 (背风面),风压高度变化系数z可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z值,再用线性插值法求得所求各楼层高度的z值。
(3)计算各楼层标高处的风荷载z。
攀枝花基本风压取0 ,取②轴横向框架梁,其负荷宽度为7.2m,由W k z s z w0得沿房屋高度分布风荷载标准值。
q z 7.2 0.4 z s z 2.88 z s z,根据各楼层标高处的高度已,查得z代入上式,可得各楼层标高处的q(z)见表。
其中qdz)为迎风面,q2(z)背风面。
风正压力计算:7. qdz) 2.88 z s z 2.88 1.00 1.30 0.79 0.8 2.370KN / m6. qdz) 2.88 z s z 2.88 1.00 1.30 0.77 0.8 2.306KN / m5. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m4. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m3. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m2. qdz) 2.88 z s z 2.88 1.00 1.30 0.74 0.8 2.216KN / m1. qdz)2.88 z s z 2.88 0.00 1.30 0.74 0.8 0.000KN / m风负压力计算:7. q2⑵288 z s z 2.88 1.00 1.30 0.79 0.5 1.480KN /m6. q2⑵288 z s z 2.88 1.00 1.30 0.77 0.5 1.441KN /m5. q2⑵ 2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m4. q2⑵ 2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m3. q2(z)2.88 z s z 2.88 1.00 1.30 0.74 0.5 1.385KN /m2. q 2(z) 2.88 z s z2.88 1.00 1.30 0.74 0.5 1.385KN/m 1. q 2(z) 2.88 z sz2.88 0.00 1.30 0.74 0.50.000KN /m(4)将分布风荷载转化为节点荷载第六层:即屋面处的集中荷载 F 6要考虑女儿墙的影响05[(2306 2216)2.306]333702306 10 5[八441 1385) 1.441] 331441皿。
4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。
4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。
但不得小于0.3kN/m2。
对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。
一般当房屋高度大于60米时,采用100年一风压。
《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。
2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。
A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。
3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。
一般取决于建筑建筑物的平面形状等。
计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。
几种常用结构形式的风载体型系数如下图注:“+”代表压力;“-”代表拉力。
风荷载的计算垂直于建筑物外表上的风荷载标准值,应按以下公式计算:1、当计算主要承重构造时:Wk=βz·μs·μz·W0 ……………………〔7.1.1-1〕式中:Wk----风荷载标准值〔KN/mm〕βz---高度Z处的风振系数;μs---风荷载体型系数;μz---风压高度变化系数;W0----根本风压〔KN/mm〕2、当计算维护构造时:Wk=βgz·μs·μz·W0 ……………………〔7.1.1-2〕式中:βgz---高度Z处的阵风系数;根本风压应按本标准附录 D.4中附表 D.4给出的50年一遇的风压采用,但不得小于0.3KN/mm。
对于高层建筑、高耸构造以及风荷载比拟敏感的其它构造,根本风压应适当进步,并应由有关的构造设计标准详细规定。
一、风荷载计算1、标高为33.600处风荷载计算(1). 风荷载标准值计算:Wk: 作用在幕墙上的风荷载标准值(kN/m2)βgz: 33.600m高处阵风系数(按B类区计算):μf=0.5×(Z/10)-0.16=0.412βgz=0.89×(1+2μf)=1.623μz: 33.600m高处风压高度变化系数(按B类区计算): (GB50009-2001)μz=(Z/10)0.32=1.474风荷载体型系数μs=1.50Wk=βgz×μz×μs×W0 (GB50009-2001)=1.623×1.474×1.5×0.600=2.153 kN/m2(2). 风荷载设计值:W: 风荷载设计值: kN/m2rw: 风荷载作用效应的分项系数:1.4按?建筑构造荷载标准?GB50009-2001随着现代高尚住宅的开展对铝合金门窗的要求越来越高,铝合金门窗不仅仅是框、扇的简单组合,而且要具备良好的物理性能〔风压强度、空气浸透、雨水渗漏等性能〕。
1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B 类地面粗糙程度作为标准地貌,给出计算公式。
μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。
3。
1。
3 风荷载建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上得风荷载标准值W K,按照公式(3。
1-2)计算:βz—-高度Z处得风振系数,主要就是考虑风作用得不规则性,按照《荷载规范》7、4要求取值。
多层建筑,建筑物高度<30m,风振系数近似取1、(1)风荷载体型系数µS风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规表3、1、10 建筑物体型系数取值表注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A采用、或由风洞试验确定。
注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。
一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2。
0、注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7。
3.3规定,采用局部风压力体型系数、(2)风压高度变化系数µz设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。
对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3。
1。
11中列出了常用风压高度变化系数得取值要求。
表 3.1、11 风压高度变化系数关于地面粗糙程度得分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区; C 类:有密集建筑群得城市市区;D 类:有密集建筑群与且房屋较高得城市市区、(3)基本风压值W 0基本风压值W 0,单位k N/m 2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定得风压值,各地得基本风压可按照《荷载规范》附录D中得全国基本风压分布图查用,表3、1、12为浙江省主要城镇基本风压取值参考表。
欢迎共阅1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值(KN/m2)按下式计算:1.1.1基本风压按当地空旷平坦地面上50年一遇按公式 其中的单位为,kN/m 2。
也可以用公式1.1.2 风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以粗糙度类别场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面(5)未述事项详见相应规范。
23檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于1.1.4米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。
且可忽略扭转的结构在高度处的风振系数○1g为○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:为结构第一阶自振频率(Hz);高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用),B为房屋宽度(m)。
○3对于体型和质量沿高度均匀分布的高层建筑,、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度风高度。
为脉动风荷载水平、竖直方向相关系数,分别按下式计算:B。
风荷载计算公式及符号含义
风荷载计算的公式可以根据不同的情况而有所不同,以下是常见的两个公式及符号含义:
1. 低层建筑风荷载计算公式:
F = 0.613 × C_f × A × V_max^2
其中,
F为风荷载(单位为N/m^2或Pa);
C_f为风压系数;
A为被风作用面积(单位为m^2);
V_max为设计风速(单位为m/s)。
2. 高层建筑风荷载计算公式(按国家标准GB 50009-2012):
F = qz × Ce × Cg × A × V^2
其中,
F为风荷载(单位为N/m^2或Pa);
qz为高度变化系数;
Ce为暴风区基准风压系数;
Cg为结构高度系数;
A为结构投影面积(单位为m^2);
V为设计基本风速(单位为m/s)。
在这些公式中,符号的含义如下:
- C_f或Ce为风压系数,是根据建筑结构和环境条件来确定的参数,用于衡量建筑所受风力的大小;
- A为被风作用面积或结构投影面积,表示建筑物横截面在垂直方向上所受的风力面积;
- V_max或V为设计风速或设计基本风速,是参考当地的气象数据和规范要求确定的;
- qz为高度变化系数,它是表示建筑高度变化对风荷载的影响;- Cg为结构高度系数,是考虑建筑物高度和形状对风力的影响;- F表示风荷载的大小,单位为N/m^2或Pa,表示单位面积上
所受的力量。