通信原理抽样定理实验报告
- 格式:doc
- 大小:581.00 KB
- 文档页数:6
通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。
由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。
2、观测并记录平顶抽样前后信号的波形。
此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。
3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。
(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。
在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。
上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。
实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。
示波器的DIV档调节为100微秒。
图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。
一、实验目的1. 熟悉信号采样过程,了解采样定理的基本原理。
2. 通过实验观察采样时信号频谱的混叠现象。
3. 加深对采样前后信号频谱变化的理解,验证采样定理的正确性。
4. 掌握采样频率的选择对信号恢复的影响。
二、实验原理采样定理(Nyquist-Shannon采样定理)指出,一个频率为f的连续时间信号,如果以至少2f的频率进行采样,则采样后的信号可以无失真地恢复原信号。
本实验主要验证这一定理。
三、实验设备1. 信号发生器2. 示波器3. 采样器4. 低通滤波器5. 采样定理验证软件四、实验步骤1. 信号生成:使用信号发生器产生一个频率为f的连续时间信号。
2. 采样:将信号通过采样器进行采样,采样频率分别为f、2f、3f。
3. 频谱分析:使用示波器观察采样信号的时域波形,并使用频谱分析软件观察采样信号的频谱。
4. 信号恢复:对采样信号进行低通滤波,滤波器的截止频率为f/2,观察恢复后的信号。
5. 结果对比:对比不同采样频率下信号恢复的结果,分析采样频率对信号恢复的影响。
五、实验结果与分析1. 采样频率为f时:采样信号的频谱出现混叠现象,无法恢复原信号。
2. 采样频率为2f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
3. 采样频率为3f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
实验结果表明,当采样频率为2f时,采样信号可以无失真地恢复原信号,验证了采样定理的正确性。
同时,实验也表明,采样频率越高,信号恢复的效果越好。
六、实验结论1. 采样定理是信号处理中重要的基本原理,它为信号的数字化提供了理论依据。
2. 采样频率的选择对信号恢复的影响很大,采样频率越高,信号恢复的效果越好。
3. 在实际应用中,应根据信号的频率特性和系统要求选择合适的采样频率。
七、实验心得体会通过本次实验,我对采样定理有了更深入的理解,认识到采样频率选择的重要性。
同时,实验也让我体会到实验在验证理论、提高动手能力方面的作用。
通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
实验报告学生姓名 *** 学 号 *** 专业班级 *** 学 院 *** 完成时间***年*月一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验仪器1、20M 双踪示波器一台。
2、信号与系统实验箱。
三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图11-1,T S 称为抽样周期,其倒数Ss T f 1=称抽样频率。
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()xx sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使B f s 2=,恢复后的信号失真还是难免的。
图11-2画出了当抽样频率B f s 2≥(不混叠时)及当抽样频率B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
通信原理抽样定理实验报告一、实验目的。
本实验旨在通过实际操作验证抽样定理在通信原理中的应用,加深对抽样定理的理解,掌握其实际应用方法。
二、实验原理。
抽样定理是指在一定条件下,对信号进行抽样采集后,可以准确还原原始信号。
在通信原理中,抽样定理是确保数字信号可以通过采样准确地表示模拟信号的重要基础。
三、实验仪器与材料。
1. 示波器。
2. 信号发生器。
3. 电缆。
4. 电脑。
5. 实验电路板。
四、实验步骤。
1. 将信号发生器与示波器连接,调节信号发生器输出频率为50Hz;2. 将示波器触发方式设置为自动触发;3. 调节示波器的水平和垂直灵敏度,使波形在示波器屏幕上居中显示;4. 通过示波器观察信号波形,并记录采样率;5. 逐渐增大信号发生器的频率,观察波形的变化;6. 将实验数据导入电脑,进行数据处理和分析。
五、实验结果与分析。
通过实验操作,我们得到了不同频率下的信号波形,并记录了相应的采样率。
在数据处理和分析过程中,我们发现随着频率的增大,如果采样率不足,将会出现混叠现象,导致信号失真。
这验证了抽样定理的重要性,即采样频率必须大于信号频率的两倍,才能准确还原原始信号。
六、实验总结。
通过本次实验,我们深刻理解了抽样定理在通信原理中的重要性,了解了采样率对信号重建的影响。
在实际应用中,我们需要严格按照抽样定理的要求进行信号采样,以确保数字信号能够准确地表示模拟信号。
七、实验感想。
本次实验使我对抽样定理有了更深入的理解,也增强了我对通信原理的实际操作能力。
通过实验,我意识到理论知识与实际操作相结合的重要性,也更加重视了实验数据的准确性和分析的重要性。
八、参考文献。
[1] 《通信原理》,XXX,XXX出版社,2018年。
[2] 《电子技术基础》,XXX,XXX出版社,2017年。
以上为本次实验的报告内容,希望能对大家的学习和实践有所帮助。
1. 了解电信号的采样方法与过程。
2. 理解信号恢复的方法。
3. 验证抽样定理的正确性。
二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。
三、实验设备与器材1. 信号与系统实验箱TKSS-C型。
2. 双踪示波器。
四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。
2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。
3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。
4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。
5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。
五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。
2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。
1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。
2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。
3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。
七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。
2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。
3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。
通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。
通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。
1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。
抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。
本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。
2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。
该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。
3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。
3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。
然后,将该模拟信号通过电缆连接到示波器上进行观测。
在示波器上观测到的信号即为模拟信号的采样结果。
3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。
这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。
4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。
实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。
4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。
例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。
5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。
一、实验目的1. 理解并验证信号抽样定理的基本原理。
2. 学习信号抽样过程中频谱的变换规律。
3. 掌握信号从抽样信号中恢复的基本方法。
4. 通过实验加深对信号处理理论的理解。
二、实验原理信号抽样定理,也称为奈奎斯特定理,指出如果一个带限信号的最高频率分量小于抽样频率的一半,那么通过适当的方法可以将这个信号从其抽样信号中完全恢复出来。
具体来说,如果一个连续信号 \( x(t) \) 的最高频率分量为 \( f_{max} \),那么为了不失真地恢复原信号,抽样频率 \( f_s \) 必须满足 \( f_s > 2f_{max} \)。
三、实验设备与软件1. 实验设备:信号发生器、示波器、信号源、滤波器等。
2. 实验软件:MATLAB或其他信号处理软件。
四、实验步骤1. 信号生成:使用信号发生器生成一个连续的带限信号,例如正弦波、方波等,并记录其频率和幅度。
2. 信号抽样:使用信号源对生成的带限信号进行抽样,设定抽样频率 \( f_s \),并记录抽样后的信号。
3. 频谱分析:对原始信号和抽样信号分别进行傅里叶变换,分析其频谱,观察抽样频率对信号频谱的影响。
4. 信号恢复:使用滤波器对抽样信号进行低通滤波,去除高频分量,然后对滤波后的信号进行逆傅里叶变换,观察恢复后的信号与原始信号的一致性。
5. 改变抽样频率:重复步骤2-4,分别使用不同的抽样频率进行实验,比较不同抽样频率对信号恢复效果的影响。
五、实验结果与分析1. 频谱分析:通过实验发现,当抽样频率 \( f_s \) 小于 \( 2f_{max} \) 时,抽样信号的频谱会发生混叠,无法恢复出原始信号。
当 \( f_s \) 大于\( 2f_{max} \) 时,抽样信号的频谱不会发生混叠,可以恢复出原始信号。
2. 信号恢复:通过低通滤波器对抽样信号进行滤波,可以有效地去除高频分量,从而恢复出原始信号。
滤波器的截止频率应设置在 \( f_{max} \) 以下。
一、实验目的1. 理解通信原理中抽样定理的基本概念;2. 掌握抽样定理在模拟信号数字化过程中的应用;3. 了解模拟信号抽样后的特性及其对信号传输的影响;4. 熟悉实验仪器和实验方法。
二、实验原理抽样定理(Nyquist-Shannon采样定理)指出,如果一个信号在频域中的最高频率分量为\( f_m \),为了能够无失真地恢复原信号,抽样频率\( f_s \)必须满足以下条件:\[ f_s \geq 2f_m \]其中,\( f_s \)为抽样频率,\( f_m \)为信号最高频率分量。
当抽样频率满足上述条件时,原信号可以通过低通滤波器从抽样信号中无失真地恢复出来。
三、实验仪器与设备1. 信号发生器:用于产生不同频率和幅度的正弦信号;2. 示波器:用于观察和测量信号波形;3. 抽样器:用于对模拟信号进行抽样;4. 低通滤波器:用于从抽样信号中恢复原信号。
四、实验步骤1. 使用信号发生器产生一个频率为\( f_m \)的正弦信号;2. 将正弦信号输入到抽样器中,设置抽样频率\( f_s \)为\( 2f_m \);3. 使用示波器观察抽样后的信号波形;4. 通过低通滤波器从抽样信号中恢复原信号;5. 比较恢复后的信号与原信号,分析恢复效果。
五、实验结果与分析1. 当抽样频率\( f_s = 2f_m \)时,恢复后的信号与原信号基本一致,表明抽样定理在实验中得到了验证;2. 当抽样频率\( f_s < 2f_m \)时,恢复后的信号与原信号存在较大差异,说明抽样频率过低会导致信号失真;3. 当抽样频率\( f_s > 2f_m \)时,恢复后的信号与原信号基本一致,但抽样频率过高会浪费带宽资源。
六、实验总结通过本次实验,我们深入理解了通信原理中抽样定理的基本概念,掌握了抽样定理在模拟信号数字化过程中的应用。
实验结果表明,抽样频率的选择对信号恢复质量具有重要影响。
在实际应用中,应根据信号特性和传输需求选择合适的抽样频率,以实现信号的高效、准确传输。
通信原理实验(五)
实验一抽样定理实验
项目一、抽样信号观测及抽样定理实验
1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。
由分析知,自然抽样后的结果
如图,很明显抽样间隔相同,
且抽样后的波形在其包络严格
被原音乐信号所限制加权,与
被抽样信号完全一致。
2、观测并记录平顶抽样前后信号的波形。
此结果为平顶抽样结果,仔细观
察可发现与上一实验中的自然抽
样有很大差距,即相同之处,其
包络也由原信号所限制加权,但
是在抽样信号的每个频率分量呈
矩形,顶端是平的。
3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。
(1)9.0KHZ
(2)7.7KHZ
(3)7.0KHZ
实验二 PCM 编译码实验
实验项目一 测试W681512的幅频特性
1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。
在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。
上述现象验证了抽样定理,即,在信号
的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混
(1)、4000HZ (2)、
3500HZ
(3)120HZ (4)50HZ
在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。
实验项目二PCM编码规则实验
1、以FS为触发,观测编码输入波形。
示波器的DIV档调节为100微秒。
图中分别为输入被抽样信号和抽样
脉冲,观察可发现正弦波与编码对
应。
2、保持示波器设置不变的情况下,以FS为触发观测PCM量化输出,记录波形。
PCM脉冲编码调制:数字通信的编
码方式之一。
可以观察到,一个抽
样周期对应PCM的八个编码,即一
个抽样值以PCM编码是八位的。
3、以FS为触发,观察并记录PCM编码的A律编码输出波形。
A律是PCM非均匀量化中的一种对
数压扩形式,对抽样值进行八位编
码:
M0:极性码 M1 M2 M3:段落码
M4 M5 M6 M7 :区间码
分析实验结果可知,对于一个码元
信号,经过非均匀量化编码之后发
现包括8个二进制数。
4、对比观测编码输入信号和译码输出信号。
观察实验结果可知,编码输入和译
码输出的结果在幅度上完全一致,
相位上有接近180°的相位差。
思考1:改变基带信号的幅度时,波形是否发生变化?改变时钟信号频率时,波形是否发生变化?
基带信号幅度对波形的影响很小,信号频率f看不出明显的规律。
f的变化对波形没有任何影响。
改变时钟信号频率时,波形会发生变化。
思考2:当编码输入信号的频率大于3400HZ或小于3000HZ时,分析脉冲编码调制和解调波形。
当编码输入信号的频率大于3400Hz或小于300Hz时,脉冲编码调制和解调波形的幅度会急剧减小。
实验项目三PCM编码时序观测
1、示波器观测FS信号编码输出信号,并记录二者对应的波形。
观测分析可知,在发送一串连续周期
码时,其编码输出并没有出现周期现
象,而是时刻都在变化。
思考:为什么实验时观测到的PCM编码信号码型总是在变换?
由于采样频率和输入信号的频率之间并不是有规律的整数倍关系,导致了每一个抽样信号点的时刻是不同的,所以编码输出的信号也不一样,观察的信号就是随时变化的。