2013电磁场与传输理论A-1矢量分析
- 格式:ppt
- 大小:13.90 MB
- 文档页数:115
矢量分析与场论简介矢量分析与场论是研究物理学中的重要分支,广泛应用于电磁学、流体力学、力学等领域。
矢量分析用于描述和分析具有大小和方向的物理量,例如力、速度、加速度等。
场论则将物理量看作空间中的场,并通过场的分布和变化来描述物理现象。
本文将介绍矢量分析的基本概念和常见运算,并探讨场论的基本原理和应用。
矢量分析矢量的定义和表示矢量是具有大小和方向的物理量。
在二维空间中,矢量可以表示为有序对(x, y),其中x和y分别表示矢量在x轴和y轴上的分量。
在三维空间中,矢量可以表示为有序三元组(x, y, z),其中x、y和z分别表示矢量在x轴、y轴和z轴上的分量。
通常将矢量用粗体字母如A表示。
矢量的运算矢量之间可以进行加法、减法和数量乘法等运算。
矢量的加法两个矢量A和B的加法定义为将它们的相应分量相加,即:A +B = (Ax + Bx, Ay + By)两个矢量A和B的减法定义为将B的相应分量取负后与A相加,即:A -B = (Ax - Bx, Ay - By)数量乘法将矢量的每个分量乘以一个实数称为数量乘法,表示为:c A = (cAx, cAy)矢量的模和方向矢量的模表示矢量的大小,矢量的方向表示矢量的指向。
在二维空间中,矢量(x, y)的模可以通过勾股定理求得:||A|| = sqrt(x2 + y2)在三维空间中,矢量(x, y, z)的模可以通过类似的方法求得:||A|| = sqrt(x2 + y2 + z2)矢量的方向可以用一个角度来表示,通常用与x轴的夹角来表示,记为θ。
矢量的点积和叉积矢量的点积和叉积是矢量分析中常用的运算。
两个矢量A和B的点积定义为两个矢量的模相乘再乘以它们夹角的余弦值,表示为A·B:A·B = ||A|| ||B|| cos(θ)点积的结果是一个标量,即一个没有方向的量。
点积还满足交换律和分配律。
矢量的叉积两个矢量A和B的叉积定义为一个新的矢量,其模等于两个矢量模的乘积再乘以它们夹角的正弦值,表示为A×B:A×B = ||A|| ||B|| sin(θ) n其中n是一个垂直于A和B的单位矢量,它的方向由右手法则确定。