高二数学充分与必要条件
- 格式:ppt
- 大小:502.50 KB
- 文档页数:16
§1.2.1充分条件与必要条件(第 1课时)[学习目标]: (1).理解充分条件,必要条件和充要条件的意义(2).会判断充分条件,必要条件和充要条件(3).会证明简单的充要条件的命题[重点]: 充分条件,必要条件和充要条件的判断[难点]: 充要条件的理解和充要条件的命题的证明[复习回顾]:判断下列命题真假:(1)若a>b,c 为实数,则ac>bc (2)若A ∩B=B,则B ⊆A(3)若0≥x ,则02≥x (4)若两三角形面积相等,则这两三角形全等 1“⇒”表示“可推出”命题“若p 则q ”为真,记作p ⇒q ;“若p 则q ”为假,记作“p q ”. 例如:a>b ∩B=B ⇒B ⊆A0≥x ⇒02≥x , 两三角形面积相等两三角形全等练习:教材P10:练习1题2、充分与必要条件:如果已知p ⇒q ,则称p 是q 的充分条件,而q 是p 的必要条件.理解:“p ⇒q ”即具有了p 条件,就足以保证q 成立,即当p 成立时就有充分的理由使q 成立。
“q ⇐p ”即“p ⇒q ”,即要使p 成立,q 必须要成立,但q 成立p 不一定成立 比如:0≥x ⇒02≥x例1:下列“若p ,则q ”形式的命题中,那些命题中的p 是q 的充分条件?(1)若x =1,则x 2-4x +3=0; (2)若f(x)=x ,则f(x)为增函数;(3)若x 为无理数,则x 2为无理数.分析:要判断p 是否是q 的充分条件,就要看p 能否推出q例2.下列“若p,则q ”形式的命题中,那些命题中的q 是p 的必要条件?(1)若x =y ,则x 2=y 2;(2)若两个三角形全等,则这两个三角形的面积相等(3)若a >b,则ac >bc .分析:要判断q 是否是p 的必要条件,就要看p 能否推出q .练习:教材P10:练习2,3,4题。
3.充要条件:如果既有p ⇒q ,又有q ⇒p ,即p ⇔q,则称p 是q 的充要条件.(注:“p 是q 的充要条件”也记成:“p 等价于q ”“ p 当且仅当q ”等) 例三:下列各题中,哪些p 是q 的充要条件?1.已知:p 两直线平行,:q 内错角相等2.p:b=0,q:函数f(x)=ax 2+bx+c 是偶函数3.p:x>0,y>0,q:xy>04. p:a>b,q:a+c>b+c5.函数2y ax bx c =++(0)a ≠过原点的充要条件是5.从集合的观点理解充要条件若集合P Q ⊆,则P 是Q 的 __;若P Q ⊆,则P 是Q 的 _____ 若集合P Q ⊇,则P 是Q 的 __;若P Q ⊇,则P 是Q 的 ____ 若集合P Q =,则P 是Q 的 _ .例四::p 32≤-x ,:q 51≤≤-x ,问p 是q 的什么条件练习:P12:练习2.(2)小问,点金训练P6:课前预习2题P9:课内巩固3题。
§1. 2 .2 充分条件和必要条件【学情分析】:上一节课已学习了充分条件、必要条件、充要条件的概念,本一节课要继续通过讨论一些数学命题加深对以上定义的理解.若要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.【教学目标】:(1)知识目标:理解并掌握充分条件、必要条件、充要条件的概念;掌握判断命题的条件的充要性的方法;(2)过程与方法目标:在充要条件的教学中,培养等价转化思想.(3)情感与能力目标:利用命题的等价性,培养他们的分析问题、解决问题的能力和逻辑思维能力。
【教学重点】:理解充要条件的意义,掌握命题条件的充要性判断.【教学难点】:命题条件的充要性探求(较高要求)教学环节教学活动设计意图一、复习回顾①若,但,则是的_____________条件;②若,但,则是的___________条件;③若,且,则是的_________条件;④若,且,则是的______条件⑤若,且,则是的_____________条件复习并巩固充分条件、必要条件、充要条件的概念;二、学生活动1.若,A B都是C的充要条件,D是A的必要条件,B是D的必要条件,则D是C的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知A和B是两个命题,如果A是B的充分条件,那么B是A的条件,A⌝是B⌝的条件3.(1)若:1,:4p x q x>≥,则p是q的条件;(2)若4,2,::4,2,x y xp qxy y+>>⎧⎧⎨⎨>>⎩⎩则q是p的条件;进一步理解并掌握充分条件、必要条件、充要条件的概念;三、典型例题例1、已知p:2x y+≠-;q:x、y不都是1-,p是q的什么条件?分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真假性;从正面很难判断是,我们从它们的逆否命题来判断其真假性“若p则q”的逆否命题是“若x、y都是1-,则2x y+=-”真的“若q则p”的逆否命题是“若2x y+=-,则x、y都是1-”假的故p是q的充分不必要条件练习:已知p:22yx≠;q:yx≠;p是q的什么条件?例2、已知:;:.若是的必要而不充分条件,求实数的取值范围.点拨可以有两个思路:(1)先求出和,然后根据,,求得的取值范围;(2)若原命题为“若,则”,其逆否命题是“若则”,由于它们是等价的,可以把求是的必要而不充分条件等价转换为求是的充分而不必要条件.解法一求出:或,:或.由是的必要而不充分条件,知B A,它等价于同样解得的取值范围是.引导学会逆向思考,引导学生对于正面较为断抽象的命题是否能用逆否命题的正难则反的方法。
充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
《充分条件与必要条件》数学视野
中国古代思想家、哲学家、数学家、逻辑学家、战略家墨子在经上说:“故,小故,有之不必然,无之必不然.体也,若有端.大故,有之(必)无(不)然.若见之成见也”.
译文:原理,小原理,有它不一定产生某种结果,没有它定不会产生某种结果,它是整体的一部分,就好比线上的点.大原理,有它必定产生某种结果,没有它必定不会产生某种结果.好比看到的物体而产生视觉.
所谓“故”,就指“物之所以然”.就事物来说,“故”是形成事物变化发展的原因或者道理.“小故”指小原因或者小道理,是事物发展过程中的一个或者部分原因,也可能是一个或者部分道理.这些小原因或者小道理不能成为决定事物发展过程的决定性因素,它们成立时不一定会有结果,而不成立时肯定不会有结果.众多的小原因或者小道理组成了事物完整的大原因或者大道理.所以“大故”可以说是所有“小故”的总合,这样“大故”是事物发展过程的全部原因或者全部道理.因此,“大故”就是成功率为100%的条件,当然“大故”成立时肯定会有结果.
1/ 1。
高二数学必修四“充要条件”具体概念解析以下是作者为大家整理的关于《高二数学必修四“充要条件”具体概念解析》的文章,供大家学习参考!“充要条件”是数学中极其重要的一个概念。
(1)先看“充分条件和必要条件”当命题“若p则q”为真时,可表示为p => q,则我们称p为q的充分条件,q是p的必要条件。
这里由p => q,得出p为q的充分条件是容易知道的。
但为何说q是p的必要条件呢?事实上,与“p => q”等价的逆否命题是“非q => 非p”。
它的意思是:若q不成立,则p一定不成立。
这就是说,q对于p是必不可少的,因此是必要的。
(2)再看“充要条件”若有p =>q,同时q => p,则p既是q的充分条件,又是必要条件。
简称为p是q的充要条件。
记作pq回想一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也能够推出命题A成立,那么称A等价于B,记作AB。
“充要条件”的含义,实际上与“等价于”的含义完全相同。
也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。
如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
明显,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。
“仅当”表示“必要”。
(4)一样地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
高二数学知识点:判断充分与必要条件的方法一、定义法对于“?圯”,可以简单的记为箭头所指为必要,箭尾所指为充分。
在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义。
例1已知p:-2分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。
解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq。
综上,可知p是q的必要但不充分条件。
点评解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断。
二、集合法如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A?芸B,则x∈A和x∈B互为既不充分也不必要条件。
例2设x,y∈R,则x2+y22是|x|+|y|≤的()条件,是|x|+|y|2的()条件。
A。
充要条件B。
既非充分也非必要条件C。
必要不充分条件?摇D。
充分不必要条件解如右图所示,平面区域P={(x,y)|x2+y22}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|2}表示大正方形内部分(不含边界)。
由于(,0)?埸P,但(,0)∈Q,则P?芸Q。
又P?芫Q,于是x2+y22是|x|+|y|≤的既非充分也非必要条件,故选B。
同理P?芴M,于是x2+y22是|x|+|y|2的充分不必要条件,故选D。
点评由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现。