高职焊接教学中关于焊接机器人焊缝跟踪的研究
- 格式:pdf
- 大小:691.85 KB
- 文档页数:3
激光焊接机器人焊缝跟踪控制方法陈智龙120160033摘要:当前激光焊接机器人在实际的工业生产中应用的越来越广泛,在汽车制造业以及其他机器制造业激光焊接机器人在生产中的作用也越来越大。
如何提高焊接机器人的焊缝精度问题以及控制焊缝轨迹已成为激光焊接机器人发展的首要难题。
关键词:激光焊接机器人;焊缝轨迹;控制0引言激光作为焊接和切割的新手段应用于工业制造,具有很大发展潜力。
在国际汽车工业领域,激光加工技术已广泛得到了应用,激光切割与焊接逐渐成为标准的汽车车身生产工艺.国内也已积极推广应用,但目前主要还是以引进成套激光加工设备为主,用于激光钎焊、激光渗透焊、激光对接焊、白车身激光三维切割和激光金属零件表面热处理[1]。
由于成本考虑,有些汽车厂家则直接进口国外激光加工的零部件.为提升我国汽车制造的技术能力,我们应依靠国内技术能力,自主创新,在更广范围和更深层次上,加快激光加工在制造业的应用发展.车身在整车制造中占有重要地位,不仅车身成本占整车的40%~50﹪,而且对汽车安全、节能、环保和快速换型有重要影响。
人口老龄化不断逼近,各制造业工厂着手进行技术改造工程设计,采用了许多工业机器人,以提高生产线的柔性程度为基础,为制造厂家提供了生产产品多样化,更新转型的可能性.以上汽大众汽车车身生产车间为例,机器人能独立完成工件的移动搬运、输送、组装夹紧定位,可完成工件的点焊、弧焊、激光焊、打磨、滚边、涂胶等工作.有的工位上把上件、夹具、工具以机器人为中心布置,以便机器人能完成多个工序,实现多品种、不同批量的生产自动化.采用机器人使焊接生产线更具柔性化、自动化,使多种车身成品可在一条车身装焊生产线上制造,实现多车型混线生产.因此,焊接生产线必须很容易地因产品结构、外形的改变而改变,具有较高的柔性程度[2].由于柔性车身焊接生产线可以适应汽车多品种生产及换型的需要,是汽车车身制造自动化的必然趋势,特别是进入上世纪90年代以后,各大汽车厂家都在考虑车身焊接生产线柔性化。
移动式焊接机器人焊缝跟踪控制研究柳长春 郑军 吴峰 潘际銮 (清华大学机械工程系,北京100064)摘要:针对在工业中有广泛应用前景的移动式焊接机器人,建立了机器人的数学模型,并根据工作情况,对其进行了简化处理,在此基础上,设计了控制器,并用李雅普诺夫直接法证明了该控制器的全局一致收敛性。
对于弯曲焊缝跟踪问题,提出采用双线激光视觉传感器检测机器人位置偏差和姿态角偏差,基于姿态角偏差的变化率,在线估计参考角速度的值。
仿真和机器人运动实验验证了该控制方法的有效性。
关键词:移动焊接机器人 焊缝跟踪 李雅普诺夫方法 双线传感器0前言焊接机器人是实现自动焊接的方法之一,已成为焊接自动化一个新的发展方向和研究热点[1]。
移动式机器人具有机构简单、适应性强、能够在非结构环境下进行作业等特点,具有很好的应用前景[2]。
焊缝跟踪效果直接影响着机器人自动焊接的质量。
作为一类典型的非完整系统,移动机器人的路径跟踪近年来引起了科研工作者的重视。
Kanayama 等人采用动态反馈线性化方法获得指数收敛的跟踪控制率,该方法具有阶数高和闭环系统有奇异点的不足[3]。
文献[2, 4]采用backstepping方法,设计了控制器,该控制器具有阶数低的优点,然而,控制器结构复杂,所需反馈量在工程中难以获取。
此外,还有学者研究了模糊控制在机器人路径跟踪中的应用,模糊控制虽然可以实现较大范围的有效跟踪,但模糊控制器性能受人为因素影响很大。
本文对一类新型的,具有四自由度,受非完整约束的焊接机器人,建立其运动模型,设计了焊缝跟踪控制器,并采用李雅普诺夫方法证明了该控制器可以实现跟踪误差的全局收敛,进行了仿真和机器人实验,验证了该方法的有效性。
1 机器人运动学模型机器人结构如图1所示:图 1机器人结构示意图机器人由车体,焊枪,十字滑块组成,焊枪通过十字滑块与车体连接,具有横向自由度,速度为u,图中,t表示焊枪前端,位姿坐标为(,,)Tx y θ,v 表示车体几何中心线速度,w 表示车体角速度。
第25卷第3期湖南科技大学学报(自然科学版)2010年9月Jour na l of H un an U ni ver si t y of Sci ence&T echnol ogy(N at ur al Sci ence E di t i on)V01.25N o.3 Sept.2010弧焊机器人激光焊缝跟踪系统的应用研究刘凌云,钱新恩(湖北汽车工业学院电气与信息工程学院,湖北十堰442002)摘要:焊缝自动跟踪是实现焊接自动化的关键,在传统孤焊机器人系统的基础上设计了一种基于激光传感器的焊缝跟踪子系统,构建了激光传感器的数学模型及机器人手眼标定方法,并针对搭接焊缝的图像特点,提取出焊缝特征点位置坐标.同时设计开发了焊缝跟踪控制算法和机器人焊缝跟踪程序,最后通过对储气罐环形搭接焊缝进行焊接实验,结果证明了该焊缝跟踪系统的有效性和可靠性.关键词:孤焊机器人;激光;视觉传感器;焊缝跟踪中图分类号:TP242.2文献标识码:A文章编号:1672-9102(2010)03-0063—04。
弧焊机器人大多为可编程的示教再现机器人.这种机器人可以在其工作空间内精确地完成示教的操作.在施焊过程中,若焊接条件基本稳定,则机器人能够保证焊接质量.但是,由于各种因素的影响,实际的焊接条件经常发生变化.例如,由于坡口状况、加工误差、夹具装夹精度、表面状态和工件热变形等影响会使焊炬偏离焊缝,从而造成焊接质量下降甚至失败.因此,焊接条件的这种变化要求弧焊机器人能够实时检测出焊缝的偏差,并调整焊接路径和焊接参数,保证焊接质量的可靠性【l J.精确的焊缝跟踪是保证焊接质量的关键,它是实现焊接过程自动化的重要研究方向.目前,用于焊缝跟踪的非接触式传感器主要有电磁传感器、光电传感器、超声波传感器、红外传感器及C C D视觉传感器等.由于视觉传感器所获得的信息量大,结合计算机视觉和图像处理的最新技术成果,能极大的增强弧焊机器人的外部适应能力,因此视觉传感器被认为是最有前途的焊缝跟踪传感器哆针对某公司商用车储气罐的机器人焊接,提出了一套基于激光焊缝跟踪的弧焊机器人系统,并对该系统的数学模型、手眼标定方法、焊缝位置识别算法进行了研究,设计了跟踪控制算法和机器人跟踪应用程序.1系统结构在本课题中采用的技术平台为M ot om an公司的U P6型焊接机器人,该机器人系统包括有M ot om an—U P6工业机器人本体,Y A SN A C—X R C控制柜、M ot ow e l d一$350焊机以及相关的外部设备(机器人供电系统、双轴变位机、送丝机构等).在此基础上,增加了一套激光图像传感子系统,用于实际焊缝位置偏差的监测.其系统结构框如图1所示.斤制磊莩荔莛蓦釜斟接‘;21黪机酬传动与执行臂p焊j巨I广M配各轴转动量r1驱动器r M8”’”“1r7矧五五力;k缝搜索、i机器人运动控制器:蛐登l惭酽高图甓粤野|| }。
内燃机与配件0引言自2010年起我院开设焊接机器人应用与维护专业以来,培养焊工7000多人,焊接机器人操作大约5000多人,目前在校生焊工400多人。
为服务地方经济发展,培养以徐工集团为核心的制造型企业,探索一种高效、快捷、低成本的教学途径,提升学生焊接工艺参数设置能力,提高焊接机器人教学质量,本文研究将Simufact 焊接仿真应用到焊接机器人应用与维护专业教学中,以达到期望效果。
在焊接领域用于仿真模拟工具有许多,由于焊接加工过程是与温度、应力变形和冶金组织状态相互作用和影响、常会发生较为复杂的物理变化。
如果利用仿真模拟再现整个焊接过程对学生来说,不仅焊接工艺参数对焊缝成形影响有直观的感受,且能掌握建立焊接工艺各参数相互影响关系。
因此,在技工院校焊接机器人应用与维护专业教学过程中,运用Simufact welding 仿真软件对焊缝成形过程进行模拟教学有着重要的意义。
1Simufact 焊接有限元建立Simufact 焊接有限元焊接仿真通过导入焊接组件的网格化零件,构建有限元焊件模型;设置合理的环境参数和焊接参数对整个焊接过程进行高度模拟;最后,对Simufact 导出的数据和图像进行分析。
在导入网格化焊接组件时,建议运用多种网格方式,在焊缝周边较细的网格可以准确地获得高梯度温度。
如果出现网格的划分算法不太兼容的现象,建议对焊件进行独立网格划分的处理,这样会避免了不兼容现象的干涉和影响。
通常焊接件对兼容的网格设计既费时又有难度,所以,一般采用不兼容网格划分算法。
运用Solidworks三维软件建模后再Hypermesh 划分网格,最后保存。
建立仿真模型的建立是否合理直接关系到预处理时间,直观的用户界面对模拟过程起到事倍功半的效果。
在建立焊接结构时,可以用三维软件自行绘制焊接组件,如装夹夹具可以预定义组。
在运用有限元软件分析时,需要对焊件定义求解器、焊枪数量、设置跟踪点、加载焊件组件以及边界条件的设置。
焊接智能化与智能化焊接机器人技术研究进展发布时间:2022-07-13T01:47:16.097Z 来源:《科学与技术》2022年第3月第5期作者:俞强[导读] 随着现代制造技术的飞速发展,焊接自动化技术、机械自动化技术、柔性智能技术已经成为未来我国制造技术发展的必然趋势。
俞强江苏振江新能源装备股份有限公司,江苏江阴 214441摘要:随着现代制造技术的飞速发展,焊接自动化技术、机械自动化技术、柔性智能技术已经成为未来我国制造技术发展的必然趋势。
而随着我国现代制造工业中材料应用、信息数字化技术的应用以及自动化控制技术的掌握等多项前沿性学科技术的交叉发展,也推动我国现代焊接技术从传统的手工工艺作业发展为了当今的智能化科学工业。
本文主要针对焊接智能化和智能化焊接机器人技术的研究现状进行了分析,并且就焊接智能机器人技术在工程中的应用实践进行了探讨,希望能够为不断提升我国智能化焊接工艺的发展水平提供参考意见。
关键词:智能化焊接;焊接机器人;技术研究前言:智能焊接技术主要是通过模拟焊工焊接操作过程中的行为进而实现机器人的自动智能化焊接,近年来,机器人智能化焊接技术也成为了制造技术行业关注的关键技术以及研究热点。
在未来,采用智能化的焊接机器人来代替人工操作进行焊接已经不再是遥不可及的梦想,而智能焊接技术的应用也极大地提升了制造行业的工作效率,推动我国制造行业持续向智能化的方向发展。
焊接机器人在应用过程中需要快速的收集焊接动态以及焊接周边条件的数据信息,通过类似于人类的传感器设备感受外部的焊接环境和条件。
然后需要模拟焊工的手部动作以及工作经验,分析并且提取焊接动态运作过程中的肌理特征,从而建立起与焊接过程和质量控制有关的模型。
然后需要设计焊接动态过程的智能控制系统控制机器人代替人工实现焊接全过程,从而达到智能控制以及自主焊接的目标。
一、焊接智能化与智能化焊接机器人技术的发展现状(一)焊接传感技术焊接施工过程中应用到不同类型的传感器技术主要建立在不同的传感原理之上,目前,智能焊接传感器技术主要包括光谱传感器、视觉传感器、温度传感器以及电弧传感器和声学传感器等种类。
机器人工艺焊接技术的研究与应用引言随着科技的不断进步与发展,机器人技术在工业领域的应用越来越广泛。
其中,机器人工艺焊接技术作为其中的一个重要方向,对于提高生产效率、确保产品质量具有重要意义。
本文将深入探讨机器人工艺焊接技术的研究与应用,以及未来的发展趋势。
一、机器人技术在焊接领域的应用1.1 机器人工艺焊接的定义与特点机器人工艺焊接是指利用自动化机器人完成焊接作业的工艺,相对于传统手工焊接,具备以下几个显著特点:首先,机器人工艺焊接可以实现高度的自动化。
通过编程控制,机器人能够在一定的工作区域内完成焊接工作,减少人工操作的需求,提升了生产效率。
其次,机器人工艺焊接具备高精度性。
由于机器人焊接采用先进的传感器和控制技术,能够对焊接过程进行实时监测和调整,从而保证焊接质量的稳定和准确性。
最后,机器人工艺焊接具有良好的可编程性。
通过对机器人进行编程,可以针对不同的焊接任务进行灵活的调整和优化,满足不同产品的要求,提高焊接效率。
1.2 机器人工艺焊接的应用领域机器人工艺焊接技术在多个行业具有广泛的应用。
以汽车制造业为例,机器人工艺焊接被广泛应用于车身焊接、零部件焊接等环节,可以提高生产效率和焊接质量;在航空航天领域,机器人工艺焊接可以应用于飞机的结构焊接和维修焊接,保证飞机的安全性和可靠性;而在家电行业,机器人工艺焊接可以应用于冰箱、空调等产品的焊接,提高工艺稳定性和外观质量。
二、机器人工艺焊接技术的研究进展2.1 焊接机器人与焊接工艺的集成研究一方面,焊接机器人的选择与控制技术对于焊接质量和效率至关重要。
研究者通过对机器人的结构设计和控制系统的优化,以及对焊接工艺的分析和模拟,实现焊接机器人与焊接工艺的高度集成。
另一方面,焊接机器人的传感器技术也得到了广泛的研究。
通过在机器人手臂上配备高精度的传感器,可以实时监测焊接工艺中的温度、气压、电流等参数,并将其反馈给控制系统进行调整,从而提高焊接质量的稳定性和重复性。
焊接机器人轨迹规划算法的研究第一章研究背景随着制造业的发展,对于产品精度、生产效率等要求也越来越高,传统的手工焊接已经不能满足这些要求。
为了解决这一问题,焊接机器人应运而生,并开始在制造业的各个领域得到广泛应用。
在焊接机器人中,轨迹规划算法作为其关键技术之一,对于焊接质量和生产效率有着非常重要的影响。
第二章焊接机器人轨迹规划算法焊接机器人轨迹规划算法的目的是确定焊接机器人在工件表面划过焊缝的路径。
焊接机器人轨迹规划算法的主要步骤包括:离线路径规划、在线路径跟踪和路径平滑等。
2.1 离线路径规划3D模型是离线路径规划的基础。
在三维模型中,工件和焊缝被定义为曲面或曲线。
焊接机器人离线路径规划的主要目的是生成一组在工件表面上跟踪焊缝的路径。
根据,离线路径规划可分为基于全局和基于局部两类。
基于全局的路径规划通常会考虑整个工作区域,包括工件的几何形状和机器人环境。
而基于局部的路径规划通常会优先考虑焊接机器人与工件接触的位置和方向。
2.2 在线路径跟踪在线路径跟踪的主要目的是使焊接机器人能够按照预定路径跟踪焊缝。
在规划路径的同时,测试轨迹也被生成,使机器人能够根据需要对其进行适应性控制。
2.3 路径平滑路径平滑的主要目的是使焊接机器人沿着平滑路径靠近焊缝,从而减小路径上的震动和噪音,从而提高焊接质量和生产效率。
第三章焊接机器人轨迹规划算法研究现状目前,焊接机器人轨迹规划算法的研究主要集中在以下几个方面:3.1 离线路径规划离线路径规划方法可以分为两大类:基于全局的规划方法和基于局部的规划方法。
基于全局的规划方法常用的有遗传算法、粒子群算法、模拟退火算法等。
基于局部的规划方法常用的有快速随机树(RRT)和其变体、控制节点建模(CNM)等。
3.2 在线路径跟踪焊接机器人在线路径跟踪方法主要分为两类:基于反馈控制的跟踪方法和基于预测控制的跟踪方法。
针对工作环境中存在的复杂干扰和非线性问题,研究人员提出了许多适用于机器人跟踪控制的方法,如自适应控制、模糊控制和神经网络控制等。
机器人焊缝跟踪标定方法我折腾了好久机器人焊缝跟踪标定方法,总算找到点门道。
说实话,这事儿一开始我也是瞎摸索。
我就知道,要让机器人能精确地沿着焊缝走,这个标定可太重要了。
最开始我觉得,这肯定就是把机器人的一些参数按照手册上给的标准值设好就行了呗。
我就对着那手册一阵摆弄,给机器人的视觉系统设置各种分辨率啊,对焦距离之类的参数,可搞完后发现,机器人追踪焊缝的时候,那轨迹歪得不像样。
后来我又想,会不会是坐标的问题呢?于是我就开始尝试去标定焊接工作区域的坐标。
我在工作台上到处找参考点,拿了个尺子量来量去的,还做记号,就像小时候做手工课一样认真。
那时候我就觉得,这每一个点就像地图上的宝藏位置,要精确定位才行。
我把这些点的坐标值输入到机器人系统里面,本以为这次行了,结果呢,机器人开始焊接的时候还是有些偏差。
又有一次,我就想是不是得根据焊缝的类型来标定啊。
我就找了不同形状的焊缝来试验,像那种直线焊缝我就觉得好标定一点,我先让机器人沿着焊缝大概扫描一次,就好像是个士兵先探探路一样,然后根据这个扫描结果来调整标定参数。
可是遇到那种弯弯扭扭的焊缝就不行了,那些参数感觉完全乱套了。
不过我没有放弃,还继续捣鼓。
后来我发现,在考虑所有外在因素之前,必须要先保证机器人传感器是干净准确的。
有时候传感器上有一点灰尘或者小划痕,就会让采集的数据出现大偏差。
就像你的眼睛被灰尘眯住了,看东西肯定不清楚。
我就开始每次标定之前,都仔细清理传感器,然后再进行下面的步骤。
还有就是对于robots 的运动学模型必须要非常清楚。
我一开始根本没重视这一点,以为只要把传感器和外部参数调好就行了。
后来我专门花时间去研究机器人各个关节的运动范围和可能出现的误差。
这就像你要知道一个人的手脚能伸展到什么程度,动作的时候可能哪里会失误一样。
我根据这个运动学模型重新精确校准了一些基础参数之后,总算在焊缝跟踪标定上取得了一点成功。
之后再慢慢调整和优化其他的参数,像视觉系统里图像识别的对比度、亮度这些参数,也和标定有重要关系。
焊缝跟踪和焊缝寻位的原理
一、焊缝跟踪原理
焊缝跟踪是焊接过程中的一项重要工作,它能够确保焊接质量和工艺
参数的一致性。
其原理是通过焊缝检测传感器或视觉传感器对焊接过
程中的焊缝进行实时监测,根据预置的规程控制焊接电流和速度实现
焊接质量的稳定性。
焊缝跟踪系统一般由控制器、传感器、信号接口等组成。
其中,传感
器可分为近红外传感器、激光传感器、摄像头传感器等,根据不同的
焊接场景选择相应的传感器。
通过掌握焊接过程中的实时参数,如焊
接速度、电流强度、电压等,可以及时调整焊接参数,确保焊接质量。
二、焊缝寻位原理
焊缝寻位是焊接前的重要工作,它可以在焊接前精确定位焊接部位,
降低焊接质量测评成本,提高焊接效率。
焊缝寻位技术可以通过机械
手臂、计算机视觉、激光测量等方式实现。
消费电子产品采用的主要焊缝寻位技术是机械手臂寻位,通过机械臂
精确控制焊枪位置,实现对焊接部位的寻位。
另外,一些大型生产厂
家也使用了激光测量的方法,在焊接前使用激光传感器对焊接部位进行测量,确定焊接位置。
三、焊缝跟踪与焊缝寻位的关系
焊缝跟踪和焊缝寻位是两个不同的概念,但它们在焊接中有着密切的关系。
首先,焊缝寻位可以为焊缝跟踪提供准确的焊接部位信息,避免焊接过程中出现偏差。
同时,焊缝跟踪技术也可以为焊缝寻位的自动化提供支持,通过对焊接过程中的数据分析,优化焊缝寻位方案,提高寻位精度和效率。
总之,焊缝跟踪和焊缝寻位是两项相互依存的技术,在焊接过程中都发挥着重要作用,提高焊接质量,降低成本。