最新高考数学(理)二轮专题复习突破精练专题对点练24圆锥曲线中的定点定值与存在性问题及解析
- 格式:doc
- 大小:1.70 MB
- 文档页数:8
(新课标)2020版高考数学二轮复习专题五解析几何第4讲圆锥曲线中的定点、定值、存在性问题练习理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2020版高考数学二轮复习专题五解析几何第4讲圆锥曲线中的定点、定值、存在性问题练习理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2020版高考数学二轮复习专题五解析几何第4讲圆锥曲线中的定点、定值、存在性问题练习理新人教A版的全部内容。
第4讲圆锥曲线中的定点、定值、存在性问题1.(2019·安徽省考试试题)已知椭圆C:错误!+错误!=1(a〉b〉0)的上顶点为P,右顶点为Q,直线PQ与圆x2+y2=错误!相切于点M错误!.(1)求椭圆C的方程;(2)若不经过点P的直线l与椭圆C交于A,B两点,且错误!·错误!=0,求证:直线l 过定点.解:(1)由已知得直线OM(O为坐标原点)的斜率k OM=2,则直线PQ的斜率k PQ=-错误!=-错误!,所以直线PQ的方程为y-错误!=-错误!错误!,即x+2y=2.可求得P(0,1),Q(2,0),故a=2,b=1,故椭圆C的方程为错误!+y2=1.(2)证明:当直线l的斜率不存在时,显然不满足条件.当直线l的斜率存在时,设l的方程为y=kx+n(n≠1),由错误!,消去y整理得(4k2+1)x2+8knx+4(n2-1)=0,Δ=(8kn)2-4×4(4k2+1)(n2-1)=16(4k2+1-n2)〉0,得4k2+1〉n2。
①设A(x1,y1),B(x2,y2),则x1+x2=错误!,x1x2=错误!.②由错误!·错误!=0,得(x1,y1-1)·(x2,y2-1)=0,又y1=kx1+n,y2=kx2+n,所以(k2+1)x1x2+k(n-1)(x1+x2)+(n-1)2=0,③由②③得n=1(舍),或n=-错误!,满足①.此时l的方程为y=kx-错误!,故直线l过定点错误!。
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。
学习资料专题专题对点练24 圆锥曲线中的定点、定值与存在性问题1.已知动圆M恒过点(0,1),且与直线y=-1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,-2),且与点M的轨迹交于A,B两点,点C与点B关于y轴对称,求证:直线AC 恒过定点.2.已知椭圆Γ:+y2=1(a>1)与圆E:x2+=4相交于A,B两点,且|AB|=2,圆E交y轴负半轴于点D.(1)求椭圆Γ的离心率;(2)过点D的直线交椭圆Γ于M,N两点,点N与点N'关于y轴对称,求证:直线MN'过定点,并求该定点坐标.3.已知抛物线E:y2=4x的焦点为F,圆C:x2+y2-2ax+a2-4=0,直线l与抛物线E交于A,B两点,与圆C 切于点P.(1)当切点P的坐标为时,求直线l及圆C的方程;(2)当a=2时,证明:|FA|+|FB|-|AB|是定值,并求出该定值.4.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.(1)求曲线C的方程;(2)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l与以定点M为圆心的动圆M也相切,当动圆M的面积最小时,证明:M,P两点的横坐标之差为定值.5.已知椭圆M:=1(a>b>0)的焦距为2,离心率为.(1)求椭圆M的方程;(2)若圆N:x2+y2=r2上斜率为k的切线l与椭圆M相交于P,Q两点,OP与OQ能否垂直?若能垂直,请求出相应的r的值;若不能垂直,请说明理由.6.已知椭圆=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△AOB的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由.专题对点练24答案1.(1)解∵动点M到直线y=-1的距离等于到定点C(0,1)的距离,∴动点M的轨迹为抛物线,且=1,解得p=2,∴动点M的轨迹方程为x2=4y.(2)证明由题意可知直线l的斜率存在,设直线l的方程为y=kx-2,A(x1,y1),B(x2,y2),则C(-x2,y2).联立化为x2-4kx+8=0,Δ=16k2-32>0,解得k>或k<-.∴x1+x2=4k,x1x2=8.直线AC的方程为y-y2=-(x+x2),又y1=kx1-2,y2=kx2-2,∴4k-4k(kx2-2)=(kx1-kx2)x+kx1x2-k,化为4y=(x1-x2)x+x2(4k-x2),∵x1=4k-x2,∴4y=(x1-x2)x+8,令x=0,则y=2,∴直线AC恒过一定点(0,2).2.(1)解由题意得A,B两点关于y轴对称,设x B=,则圆心E到AB的距离为1,∴y B=,∴B,代入椭圆方程得=1,解得a2=4,∴e=.(2)证明设M(x1,y1),N(x2,y2),N'(-x2,y2).圆E交y轴负半轴于点D,当直线MN斜率存在时,设其方程为y=kx-消去y得(1+4k2)x2-4kx-3=0.∴x1+x2=,x1x2=,直线MN'的方程y-y1=(x-x1),依据椭圆的对称性,若直线MN'过定点,定点一定在y轴上,令x=0,y=y1-=-2.当直线MN斜率不存在时,直线MN'的方程为x=0,显然过点(0,-2).综上,直线MN'过定点(0,-2).3.(1)解由圆(x-a)2+y2=4,则圆心(a,0),半径为2,将P代入圆方程,解得a=2或a=-,∴圆的方程为(x-2)2+y2=4或+y2=4,当a=2,圆心C(2,0),则直线CP的斜率k==-,由直线l的斜率为-,则直线l的方程y-,整理得4y-3x-4=0;当a=-,圆心C,则直线CP的斜率k=,由直线l的斜率为-=-,则直线l的方程y-=-,整理得20y+15x-44=0,综上可知,直线l方程为4y-3x-4=0,圆C的方程为(x-2)2+y2=4,或直线l方程为20y+15x-44=0,圆C 的方程为+y2=4;(2)证明当a=2时,圆C的方程(x-2)2+y2=4,当l垂直于x轴时,则x=4,A(4,4),B(4,-4),∴|FA|=|FB|=5,|AB|=8,∴|FA|+|FB|-|AB|=2;当l不垂直于x轴时,设直线l:y=kx+b(k≠0),直线l与圆C相切,则=2,则4kb+b2=4,结合图象知kb<b(图略).则整理得k2x2+(2kb-4)x+b2=0,由Δ=(2kb-4)2-4k2b2=-16kb+4(4kb+b2)=4b2>0,x1+x2=-,x1x2=,|AB|=====,由抛物线的性质可知|FA|+|FB|=x1+x2+p=x1+x2+2,∴|FA|+|FB|=-+2,∴|FA|+|FB|-|AB|=-+2-=2,∴|FA|+|FB|-|AB|是定值,定值为2.4.(1)解因为圆N与直线x=-1相切,所以点N到直线x=-1的距离等于圆N的半径, 所以点N到点M(1,0)的距离与到直线x=-1的距离相等.所以点N的轨迹为以点M(1,0)为焦点,直线x=-1为准线的抛物线,所以圆心N的轨迹方程,即曲线C的方程为y2=4x.(2)证明由题意,直线l的斜率存在,设直线l的方程为y-y0=k(x-x0),由得y2-y-kx0+y0=0,又=4x0,所以y2-y-+y0=0.因为直线l与曲线C相切,所以Δ=1-k=0,解得k=.所以直线l的方程为4x-2y0y+=0.动圆M的半径即为点M(a,0)到直线l的距离d=.当动圆M的面积最小时,即d最小,而当a>2时,d=≥2.当且仅当=4a-8,即x0=a-2时取等号,所以当动圆M的面积最小时,a-x0=2,即当动圆M的面积最小时,M,P两点的横坐标之差为定值.5.解 (1)依题意椭圆M:=1(a>b>0)的焦距为2,离心率为.得c=,e=,可得a=2,则b=1,故椭圆的方程为+y2=1.(2)设直线l的方程为y=kx+m,∵直线l与圆x2+y2=1相切,∴=r,即m2=r2(k2+1).①由可得(1+4k2)x2+8kmx+4m2-4=0,Δ=64k2m2-4(1+4k2)(4m2-4)=64k2-16m2+16>0,∴m2<4k2+1,可得r2<4.令P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,若OP与OQ能垂直,则=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,(1+k2)+m2=0,整理得5m2-4(k2+1)=0,把①代入得(k2+1)(5r2-4)=0,∴r=,满足r2<4,∴OP与OQ能垂直.6.解 (1)∵椭圆=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△AOB 的面积为,∴c, ab=,∴a=2,b=,∴椭圆方程为=1.(2)假设直线y=2上存在点Q满足题意,设Q(m,2),当m=±2时,从点Q所引的两条切线不垂直.当m≠±2时,设过点Q向椭圆所引的切线的斜率为k,则l的方程为y=k(x-m)+2,代入椭圆方程,消去y,整理得(1+2k2)x2-4k(mk-2)x+2(mk-2)2-4=0,∵Δ=16k2(mk-2)2-4(1+2k2)[2(mk-2)2-4]=0,∴(m2-4)k2-4mk+2=0.设两条切线的斜率分别为k1,k2,则k1,k2是方程(m2-4)k2-4mk+2=0的两个根,∴k1k2==-1,解得m=±,点Q坐标为(,2)或(-,2).∴直线y=2上两点(,2),(-,2)满足题意.。
精品基础教育教学资料,仅供参考,需要可下载使用!专题对点练24 圆锥曲线中的定点、定值与存在性问题1.(2017吉林白山二模,理22)已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1,直线l与抛物线相交于不同的A,B两点.(1)求抛物线的标准方程;(2)如果直线l过抛物线的焦点,求错误!未找到引用源。
的值;(3)如果错误!未找到引用源。
=-4,直线l是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.解(1)已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1,∴错误!未找到引用源。
=1,p=2.∴抛物线的标准方程为y2=4x.(2)设l:my=x-1,与y2=4x联立,得y2-4my-4=0,设A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=-4,∴错误!未找到引用源。
=x1x2+y1y2=(m2+1)y1y2+m(y1+y2)+1=-3.(3)假设直线l过定点,设l:my=x+n,联立错误!未找到引用源。
得y2-4my+4n=0,设A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=4n.由错误!未找到引用源。
=-4=(m2+1)y1y2-mn(y1+y2)+n2=n2+4n,解得n=-2,∴l:my=x-2过定点(2,0).2.(2017吉林三模,理20)已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为错误!未找到引用源。
,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB 的斜率依次成等差数列,试问:l2是否过定点?请说明理由.解(1)由抛物线上的点P(2,t)到焦点的距离为错误!未找到引用源。
,得2+错误!未找到引用源。
,所以n=2,则抛物线方程为y2=2x,所以曲线C在第一象限的图象对应的函数解析式为y=错误!未找到引用源。
专题复习:圆锥曲线中的定点、定值问题一、方法指导圆锥曲线是高考数学中的重点和难点,其中定点问题更是难点中的难点。
通过对近几年高考数学试卷的分析,可以发现圆锥曲线定点问题一直是高频考点,且题目难度较大,对学生的数学思维和解题能力要求较高。
因此,在高三二轮复习中,学生需要加强对圆锥曲线定点问题的复习,掌握其解题方法和技巧。
二、知识梳理圆锥曲线的定义和性质直线与圆锥曲线的位置关系圆锥曲线的定点问题及其解法三、方法总结直接法:通过联立直线和圆锥曲线的方程,消元后得到一元二次方程,再利用根与系数的关系进行求解。
这种方法适用于直线过定点但不与x轴平行的情况。
参数法:引入参数来表示直线的斜率或截距,再通过参数的取值范围来确定定点。
这种方法适用于直线过定点且与x轴平行或重合的情况。
反证法:假设定点不是坐标原点,则过该定点的直线与圆锥曲线有两个交点。
根据韦达定理,这两个交点的横坐标之和等于两倍的定点横坐标,这与题意矛盾。
因此,定点必须是坐标原点。
这种方法适用于直线过定点且与x轴垂直的情况。
由特殊到一般法如果要解决的问题是一个定值(定点)问题,而题设条件又没有给出这个定值(定点),那么我们可以这样思考:由于这个定值(定点)对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定值(定点),明确了解决问题的目标,然后进行一般情况下的推理证明.3.利用推论解题推论1过圆锥曲线上的任意一点P(x0,y0)作互相垂直的直线交圆锥曲线于点A,B,则直线AB必过一定点(等轴双曲线除外).推论2过圆锥曲线的准线上任意一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB必过焦点.推论3过圆锥曲线外一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB已知且必过定点.推论4过圆锥曲线上的任意一点P(x0,y0)作斜率和为0的两条直线交圆锥曲线于A,B两点,则k AB为定值.推论5设点A,B是椭圆x 2a2+y2b2=1(a>b>0)上关于原点对称的两点,点P是该椭圆上不同于A,B两点的任意一点,直线PA,PB的斜率分别是k1,k2,则k1·k2=-b 2a2推论6过圆锥曲线的焦点F的直线(斜率存在)交圆锥曲线于P,Q两点,PQ的中垂线交x轴于点M,则MFPQ=e2,e为圆锥曲线的离心率.推论7过圆锥曲线的焦点F的直线交圆锥曲线于A,B两点,过点A,B分别作较近准线l 的垂线AA1,BB1,垂足分别为点A1,B1,设准线l与焦点所在轴交于点P,M为PF中点,则(1)AA1与BB1过点M;(2)A1F+B1F为定值.一、动直线过定点1、齐次式:例1、椭圆C :x 24+y 2=1,C (0,1),设直线l 不过点P ,且与C 交于A 、B 两点,若k PA +k PB =−1,证明:直线l 过定点.2、参数法:例2、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.3、特殊到一般例2、(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.4、待定系数法例3、椭圆C :22143x y +=左右顶点分别为A 、B ,k ≠0的直线与C 交于M 、N 两点,K BM =2K AN ,证明:直线过定点,并求出该定点.解:A (−2,0) B (2,0)设直线:y =kx +b (k ≠0) M (x 1,y 1) N (x 2,y 2) 直线与曲线联立得:(3+4k 2)x 2+8kbx +4b 2−120 则x 1x 2=4b 2−123+4k 2x 1+x 2=−8kb3+4k 2K BM =2K AN 所以y 1x1−2= 2y 2x 2−2x 2y 1+2y 1=2x 1y 2−4y 2即k x 1x 2−(4k +b )x 2+2(b −k )x 1−6b =0代入得:−12b 2k −8k 2b −12k −18b −(6k +8k 3+9b +12k 2b )x 2=0待定系数有:{−12b 2k −8k 2b −12k −18b =06k +8k 3+9b +12k 2b =0得(2k −b )(2k +3b ) =0若b =2k ,则过定点(−2,0),不成立; 若−3b =2k ,则过定点(23,0),成立.5、y 1−y 2或x 1−x 2型例4、已知双曲线C :x 23−y 2=1,过(3,0)的直线l 交C 于P 、Q 两点,过P 作直线x =1的垂线,垂足为A ,证明:AQ 过定点解:当l 斜率不存在时P (3,√2) Q (3,−√2) 或P (3,−√2) Q (3,√2)过P 作x =1垂线:A (1,√2)或A(1,−√2)此时AQ :y =√2x −2√2或y = −√2x +2√2 过定点(2,0) 当l 斜率存在时 l :y =k (x −3) P (x 1,y 1) Q (x 2,y 2) 与双曲线联立得:(1−3k 2)x 2+18k 2x −27k 2−3=0 有x 1x 2=−27k 2−31−3k 2x 1+x 2=−18k 21−3k 2AQ :y =y 1+y 2x 2−1x −x 2(y 2−y 1)x 2−1+y 2令y =0 x =y 2−x 2y 1y 2−y 1= −kx 1x 2+4kx 2−3k2−x 1)=−x 1x 2+4x 2−3x 2−x 1= 27k 2=31−3k 2−3+4x 2−(x 1+x 2−2x 2)= 36k 21−3k 2+4x 218k 21−3k 2+2x 2=2过定点(2,0)二、动点在定直线上的问题例3、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.解:(1)由题意知12c a =,所以2a c =,又222a b c =+, 所以3b c =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c =所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y , 所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x = 故点M 在定直线4x =上.三、其他曲线过定点例4、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx bx y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=, 解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--.在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.二、例题讲解例1A ,B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB (O 为坐标原点),求证: (1)A ,B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一定点.例2如图,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.例3如图,设P (x 1,y 1),Q (x 2,y 2)是抛物线y 2=2px (p >0)上的相异两点,Q ,P 到y 轴的距离的积为4,且OP →·OQ →=0. (1)求该抛物线的标准方程;(2)过Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.三、课时练习1.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)2.若AB 是过椭圆x 2a 2+y 2b2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( )A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b23.直线y =kx -1与椭圆x 24+y 2a=1相切,则k ,a 的取值范围分别是( )A .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,12B .a ∈(0,1],k ∈⎝ ⎛⎭⎪⎫-12,12 C .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .a ∈(0,1],k ∈⎝ ⎛⎦⎥⎤-12,12 4.已知点P 是抛物线y 2=4x 上的点,设点P 到抛物线的准线的距离为d 1,到圆(x +3)2+(y-3)2=1上一动点Q 的距离为d 2,则d 1+d 2的最小值是( ) A .3 B .4 C .5 D .32+15.抛物线y 2=12x 与直线3x -y +5=0的最近距离为______.6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是____.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围;(3)直线l :y =kx +m 与椭圆相交于不同的两点M ,N (均不是长轴的顶点),AH ⊥MN ,垂足为H ,且AH →2=MH →·HN →,求证:直线l 恒过定点.。
专题对点练24 圆锥曲线中的定点、定值与存在性问题1.已知动圆M恒过点(0,1),且与直线y=-1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,-2),且与点M的轨迹交于A,B两点,点C与点B关于y轴对称,求证:直线AC 恒过定点.2.已知椭圆Γ:+y2=1(a>1)与圆E:x2+=4相交于A,B两点,且|AB|=2,圆E交y轴负半轴于点D.(1)求椭圆Γ的离心率;(2)过点D的直线交椭圆Γ于M,N两点,点N与点N'关于y轴对称,求证:直线MN'过定点,并求该定点坐标.3.已知抛物线E:y2=4x的焦点为F,圆C:x2+y2-2ax+a2-4=0,直线l与抛物线E交于A,B两点,与圆C 切于点P.(1)当切点P的坐标为时,求直线l及圆C的方程;(2)当a=2时,证明:|FA|+|FB|-|AB|是定值,并求出该定值.4.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.(1)求曲线C的方程;(2)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l与以定点M为圆心的动圆M也相切,当动圆M的面积最小时,证明:M,P两点的横坐标之差为定值.5.已知椭圆M:=1(a>b>0)的焦距为2,离心率为.(1)求椭圆M的方程;(2)若圆N:x2+y2=r2上斜率为k的切线l与椭圆M相交于P,Q两点,OP与OQ能否垂直?若能垂直,请求出相应的r的值;若不能垂直,请说明理由.6.已知椭圆=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△AOB的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由.专题对点练24答案1.(1)解∵动点M到直线y=-1的距离等于到定点C(0,1)的距离,∴动点M的轨迹为抛物线,且=1,解得p=2,∴动点M的轨迹方程为x2=4y.(2)证明由题意可知直线l的斜率存在,设直线l的方程为y=kx-2,A(x1,y1),B(x2,y2),则C(-x2,y2).联立化为x2-4kx+8=0,Δ=16k2-32>0,解得k>或k<-.∴x1+x2=4k,x1x2=8.直线AC的方程为y-y2=-(x+x2),又y1=kx1-2,y2=kx2-2,∴4k-4k(kx2-2)=(kx1-kx2)x+kx1x2-k,化为4y=(x1-x2)x+x2(4k-x2),∵x1=4k-x2,∴4y=(x1-x2)x+8,令x=0,则y=2,∴直线AC恒过一定点(0,2).2.(1)解由题意得A,B两点关于y轴对称,设x B=,则圆心E到AB的距离为1,∴y B=,∴B,代入椭圆方程得=1,解得a2=4,∴e=.(2)证明设M(x1,y1),N(x2,y2),N'(-x2,y2).圆E交y轴负半轴于点D,当直线MN斜率存在时,设其方程为y=kx-消去y得(1+4k2)x2-4kx-3=0.∴x1+x2=,x1x2=,直线MN'的方程y-y1=(x-x1),依据椭圆的对称性,若直线MN'过定点,定点一定在y轴上,令x=0,y=y1-=-2.当直线MN斜率不存在时,直线MN'的方程为x=0,显然过点(0,-2).综上,直线MN'过定点(0,-2).3.(1)解由圆(x-a)2+y2=4,则圆心(a,0),半径为2,将P代入圆方程,解得a=2或a=-,∴圆的方程为(x-2)2+y2=4或+y2=4,当a=2,圆心C(2,0),则直线CP的斜率k==-,由直线l的斜率为-,则直线l的方程y-,整理得4y-3x-4=0;当a=-,圆心C,则直线CP的斜率k=,由直线l的斜率为-=-,则直线l的方程y-=-,整理得20y+15x-44=0,综上可知,直线l方程为4y-3x-4=0,圆C的方程为(x-2)2+y2=4,或直线l方程为20y+15x-44=0,圆C 的方程为+y2=4;(2)证明当a=2时,圆C的方程(x-2)2+y2=4,当l垂直于x轴时,则x=4,A(4,4),B(4,-4),∴|FA|=|FB|=5,|AB|=8,∴|FA|+|FB|-|AB|=2;当l不垂直于x轴时,设直线l:y=kx+b(k≠0),直线l与圆C相切,则=2,则4kb+b2=4,结合图象知kb<b(图略).则整理得k2x2+(2kb-4)x+b2=0,由Δ=(2kb-4)2-4k2b2=-16kb+4(4kb+b2)=4b2>0,x1+x2=-,x1x2=,|AB|=====,由抛物线的性质可知|FA|+|FB|=x1+x2+p=x1+x2+2,∴|FA|+|FB|=-+2,∴|FA|+|FB|-|AB|=-+2-=2,∴|FA|+|FB|-|AB|是定值,定值为2.4.(1)解因为圆N与直线x=-1相切,所以点N到直线x=-1的距离等于圆N的半径, 所以点N到点M(1,0)的距离与到直线x=-1的距离相等.所以点N的轨迹为以点M(1,0)为焦点,直线x=-1为准线的抛物线,所以圆心N的轨迹方程,即曲线C的方程为y2=4x.(2)证明由题意,直线l的斜率存在,设直线l的方程为y-y0=k(x-x0),由得y2-y-kx0+y0=0,又=4x0,所以y2-y-+y0=0.因为直线l与曲线C相切,所以Δ=1-k=0,解得k=.所以直线l的方程为4x-2y0y+=0.动圆M的半径即为点M(a,0)到直线l的距离d=.当动圆M的面积最小时,即d最小,而当a>2时,d=≥2.当且仅当=4a-8,即x0=a-2时取等号,所以当动圆M的面积最小时,a-x0=2,即当动圆M的面积最小时,M,P两点的横坐标之差为定值.5.解 (1)依题意椭圆M:=1(a>b>0)的焦距为2,离心率为.得c=,e=,可得a=2,则b=1,故椭圆的方程为+y2=1.(2)设直线l的方程为y=kx+m,∵直线l与圆x2+y2=1相切,∴=r,即m2=r2(k2+1).①由可得(1+4k2)x2+8kmx+4m2-4=0,Δ=64k2m2-4(1+4k2)(4m2-4)=64k2-16m2+16>0,∴m2<4k2+1,可得r2<4.令P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,若OP与OQ能垂直,则=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,(1+k2)+m2=0,整理得5m2-4(k2+1)=0,把①代入得(k2+1)(5r2-4)=0,∴r=,满足r2<4,∴OP与OQ能垂直.6.解 (1)∵椭圆=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△AOB 的面积为,∴c, ab=,∴a=2,b=,∴椭圆方程为=1.(2)假设直线y=2上存在点Q满足题意,设Q(m,2),当m=±2时,从点Q所引的两条切线不垂直.当m≠±2时,设过点Q向椭圆所引的切线的斜率为k,则l的方程为y=k(x-m)+2,代入椭圆方程,消去y,整理得(1+2k2)x2-4k(mk-2)x+2(mk-2)2-4=0,∵Δ=16k2(mk-2)2-4(1+2k2)[2(mk-2)2-4]=0,∴(m2-4)k2-4mk+2=0.设两条切线的斜率分别为k1,k2,则k1,k2是方程(m2-4)k2-4mk+2=0的两个根,∴k1k2==-1,解得m=±,点Q坐标为(,2)或(-,2).∴直线y=2上两点(,2),(-,2)满足题意.。
专题对点练24 圆锥曲线中的定点、定值与存在性问题
1.(2017吉林白山二模,理22)已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1,直线l 与抛物线相交于不同的A ,B 两点. (1)求抛物线的标准方程; (2)如果直线l 过抛物线的焦点,求的值;
(3)如果=-4,直线l 是否过一定点,若过一定点,求出该定点;若不过一定点,试
说明理由.
解 (1)已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1,∴
=1,p=2.
∴抛物线的标准方程为y 2=4x.
(2)设l :my=x-1,与y 2=4x 联立,得y 2-4my-4=0, 设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=4m ,y 1y 2=-4,
∴
=x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=-3.
(3)假设直线l 过定点,设l :my=x+n , 联立
得y 2-4my+4n=0,
设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=4m ,y 1y 2=4n. 由
=-4=(m 2+1)y 1y 2-mn (y 1+y 2)+n 2=n 2+4n ,解得n=-2,
∴l :my=x-2过定点(2,0).
2.(2017吉林三模,理20)已知O 为坐标原点,抛物线C :y 2=nx (n>0)在第一象限内的点
P(2,t)到焦点的距离为,曲线C在点P处的切线交x轴于点Q,直线l
经过点Q且
1
垂直于x轴.
(1)求线段OQ的长;
(2)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.
解(1)由抛物线上的点P(2,t)到焦点的距离为,得2+,所以n=2, 则抛物线方程为y2=2x,所以曲线C在第一象限的图象对应的函数解析式为y=,则y'=.故曲线C在点P处的切线斜率k=,切线方程为y-2=(x-2).
令y=0得x=-2,所以点Q(-2,0),故线段OQ=2.
(2)由题意知l1:x=-2,因为l2与l1相交,所以m≠0.
设l2:x=my+b,令x=-2,得y=-,故E,
设A(x1,y1),B(x2,y2),
由消去x得y2-2my-2b=0,则y1+y2=2m,y1y2=-2b,直线PA的斜率为,
同理直线PB的斜率为,直线PE的斜率为.
因为直线PA,PE,PB的斜率依次成等差数列,
所以=2,即,
因为l2不经过点Q,所以b≠-2.
所以2m-b+2=2m ,即b=2. 故l 2:x=my+2,即l 2恒过定点(2,0). 3.(2017江西九江二模,理20)
已知椭圆C :
=1(a>b>0)的一个焦点与抛物线y 2=8
x 的焦点相同,F 1,F 2为椭
圆的左、右焦点.M 为椭圆上任意一点,△MF 1F 2面积的最大值为4.
(1)求椭圆C 的方程;
(2)设椭圆C 上的任意一点N (x 0,y 0),从原点O 向圆N :(x-x 0)2+(y-y 0)2=3作两条切线,分别交椭圆于A ,B 两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由. 解 (1)抛物线y 2=8
x 的焦点为(2,0),由题意可得c=2,
△MF 1F 2面积的最大值为4,可得当M 位于椭圆短轴端点处时取得最大值.
即有b ·2c=4
,解得b=2,a 2=b 2+c 2=4+8=12,
则椭圆方程为=1;
(2)证明:设直线OA :y=k 1x ,OB :y=k 2x ,A (x 1,y 1),B (x 2,y 2), 设圆N :(x-x 0)2+(y-y 0)2=3的切线方程为y=kx , 则有
,整理得(-3)k 2-2x 0y 0k+-3=0,k 1+k 2=
,k 1k 2=
≠3),
又因为
=1,所以可求得k 1k 2=
=-,
将y=k1x代入椭圆方程x2+3y2=12,
得,则,同理可得,所以
|OA|2+|OB|2==16.所以|OA|2+|OB|2的值为定值16.
4.(2017辽宁沈阳三模,理20)已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.
(1)求椭圆的标准方程;
(2)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
解(1)设椭圆的标准方程为mx2+ny2=1(m>0,n>0,m≠n),
椭圆C过点A,所以4m+n=1,①
将y=x+3代入椭圆方程化简得(m+n)x2+6nx+9n-1=0,
因为直线l与椭圆C相切,
所以Δ=(6n)2-4(m+n)(9n-1)=0,②
解①②可得m=,n=,所以椭圆方程为=1.
(2)设点P(x1,y1),Q(x2,y2),
则有M,N,
由题意可知l∥MN,所以k l=k MN=1,设直线MN的方程为y=x+t,
代入椭圆方程并化简得3x 2+4tx+2t 2-6=0,
由题意可知③
k OM +k ON =
,
通分后可变形得到k OM +k ON
=,
将③式代入分子k OM +k ON
=
=
=0,
所以OM ,ON 斜率之和为定值0.
〚导学号16804221〛
5.(2017陕西渭南二模,理20)已知P ,Q 是椭圆E :=1(a>b>0)上关于原点O 对
称的任意两点,且点P ,Q 都不在x 轴上.
(1)若D (a ,0),求证:直线PD 和QD 的斜率之积为定值;
(2)若椭圆长轴长为4,点A (0,1)在椭圆E 上,设M ,N 是椭圆上异于点A 的任意两点,且AM ⊥AN ,问直线MN 是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.
解 (1)由题意可知P (m ,n ),则Q (-m ,-n ),
由
=1,则n 2=b 2,由D (a ,0),则
k
·k QD==-,
PD
故直线PD和QD的斜率之积为定值.
(2)直线MN过定点,理由如下:
由2a=4,a=2,b=1,则椭圆方程为+y2=1,
当直线MN的斜率k=0时,则M,N,直线MN的方程为y=-,
当直线斜率存在,且k≠0,则直线MN的方程:y=kx+t,M(x1,y1),N(x2,y2),
则整理得(1+4k2)x2+8ktx+4t2-4=0,x1+x2=-,x1x2=,
由AM⊥AN,则=0,(1+k2)x1x2+k(t-1)(x1+x2)+(t-1)2=0,
则(1+k2)×+k(t-1)+(t-1)2=0,
整理得5t2-2t-3=0,解得t=-或t=1(舍去),
则直线MN的方程为y=kx-,且直线MN恒过点,
综上可知:直线MN过定点.〚导学号16804222〛6.(2017河北邯郸二模,理20)已知F1(-c,0),F2(c,0)分别是椭圆G:=1(0<b<a<3)
的左、右焦点,点P(2,)是椭圆G上一点,且|PF 1|-|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A,B两点,若,其中O为坐标原点,判断O到直
线l的距离是否为定值?若是,求出该定值;若不是,请说明理由.
解 (1)由椭圆的定义可知|PF 1|+|PF 2|=2a.
由|PF 1|-|PF 2|=a ,
∴|PF 1|=a=3|PF 2|,
则=3,化简得c 2-5c+6=0,
由c<a<3,∴c=2,则|PF 1|=3a ,
则a=2
,b 2=a 2-c 2=4,
故椭圆的标准方程为=1;
(2)由题意可知,直线l 不过原点,设A (x 1,y 1),B (x 2,y 2),
①当直线l ⊥x 轴,直线l 的方程为x=m (m ≠0),且-2<m<2,
则x 1=m ,y 1=,x 2=m ,y 2=-,
由,∴x 1x 2+y 1y 2=0,
即m 2-=0,解得m=±,
∴直线l 的方程为x=±,
故原点O 到直线l 的距离d=.
②当直线AB 的斜率存在时,设直线AB 的方程为y=kx+n ,
则
消去y 整理得(1+2k 2)x 2+4knx+2n 2-8=0,x 1+x 2=-,x 1x 2=
,
则y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+kn (x 1+x 2)+n 2=
.
由,∴x1x2+y1y2=0,∴=0,
整理得3n2-8k2-8=0,即3n2=8k2+8,①
则原点O到直线l的距离d=,
∴d2=,②
将①代入②,则d2=,∴d=,
综上可知:点O到直线l的距离为定值.〚导学号16804223〛。