变量之间的关系知识点及常见题型
- 格式:doc
- 大小:485.62 KB
- 文档页数:10
变量之间的关系(带答案)变量之间的关系、表达⽅法复习知识要点表⽰变量的三种⽅法:列表法、解析法(关系式法)、图象法◆要点1 变量、⾃变量、因变量(1) 在⼀变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。
(2) 在⼀变化的过程中,主动发⽣变化的量,称为⾃变量,⽽因变量是随着⾃变量的变化⽽发⽣变化的量。
例如⼩明出去旅⾏,路程S、速度V、时间T三个量中,速度V⼀定,路程S则随着时间T的变化⽽变化。
则T为⾃变量,路程为因变量。
◆要点2 列表法与变量之间的关系(1) 列表法是表⽰变量之间关系的⽅法之⼀,可表⽰因变量随⾃变量的变化⽽变化的情况。
(2) 从表格中获取信息,找出其中谁是⾃变量,谁是因变量。
找⾃变量和因变量时,主动发⽣变化的是⾃变量,因变量随⾃变量的增⼤⽽增⼤或减⼩◆要点3 ⽤关系式表⽰变量之间的关系(1) ⽤来表⽰⾃变量与因变量之间关系的数学式⼦,叫做关系式,是表⽰变量之间关系的⽅法之⼀。
(2) 写变化式⼦,实际上根据题意,找到等量关系,列⽅程,但关系式的写法⼜不同于⽅程,必须将因变量单独写在等号的左边。
即实质是⽤含⾃变量的代数式表⽰因变量。
(3) 利⽤关系式求因变量的值,①已知⾃变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每⼀个确定的⾃变量的值,因变量都有⼀个确定的与之对应的值。
◆要点4 ⽤图象法表⽰变量的关系(1) 图象是刻画变量之间关系的⼜⼀重要⽅式,特点是⾮常直观。
(2) 通常⽤横轴(⽔平⽅向的数轴)上的点表⽰⾃变量,⽤纵轴(竖直⽅向的数轴)上的点表⽰因变量。
(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利⽤图象求两个变量的对应值,由图象得关系式,进⾏简单计算,从图象上变量的变化规律进⾏预测,判断所給图象是否满⾜实际情景,所给变量之间的关系等。
(4) 对⽐看:速度—时间、路程—时间两图象★若图象表⽰的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表⽰速度在增加;“⽔平线段”②表⽰速度不变,也就是做匀速运动,“下降的线段”③表⽰速度在减少。
数学七年级下册知识点总结之变量之间的关系变量之间的关系知识点:一理论理解1、若Y随X的变化而变化,则X是自变量 Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
2、能确定变量之间的关系式:相关公式①路程=速度时间②长方形周长=2(长+宽)③梯形面积=(上底+下底)高2 ④本息和=本金+利率本金时间。
⑤总价=单价总量。
⑥平均速度=总路程总时间3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2. 随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算) 对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.拓展:数学学习技巧一、课内重视听讲,课后及时复习。
备战高考数学复习考点知识与题型讲解第85讲变量间的相关关系及回归模型考向预测核心素养两个变量线性相关的判断及应用,经验回归方程的求法及应用是高考考查的热点,各种题型均会出现.数据分析、数学运算一、知识梳理1.变量的相关关系(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)散点图每一个成对样本数据都可用直角坐标系中的点表示出来,由这些点组成了统计图.我们把这样的统计图叫做散点图.(3)相关关系的分类:正相关和负相关.(4)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关.2.样本相关系数(1)r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-x)2.(2)当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.3.一元线性回归模型参数的最小二乘估计(1)我们将y^=b^x+a^称为Y关于x的经验回归方程,其中⎩⎪⎨⎪⎧b ^=∑ni =1(x i-x )(y i-y )∑ni =1(x i-x )2,a ^=y -b ^x .(2)残差分析①对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.②残差的散点图比较均匀地集中在以横轴为对称轴的水平带状区域内,则满足一元线性回归模型对随机误差的假设.在R 2表达式中,∑i =1 n (y i -y )2与经验回归方程无关,残差平方和∑i =1n(y i -y ^i )2与经验回归方程有关.因此R 2越大,意味着残差平方和越小,即模型的拟合效果越好;R 2越小,表示残差平方和越大,即模型的拟合效果越差.[提醒](1)经验回归直线过样本的中点(x ,y ).(2)回归分析和独立性检验都是基于成对样本观测数据进行估计或推断 ,得出的结论都可能犯错误.二、教材衍化1.(人A 选择性必修第三册P 103习题8.1T 1改编)下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )解析:选D.观察题图可知,只有D选项的散点图表示的是变量x与y之间具有负的线性相关关系,故选D.2.(人A选择性必修第三册P138复习T1改编)已知变量x与y正相关,且由观测数据算得样本平均数x-=3,y-=3.5,则由该观测数据算得的经验回归方程可能是( )A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4解析:选A.由题意,x与y正相关,故排除C,D,将(x-,y-)代入经验回归方程检验得A正确.3.(人A选择性必修第三册P120习题8.2T2(2)改编)已知x,y的对应取值如下表,可得到经验回归方程为y^=0.95x+a^,则a^=( )x 013 4y 2.2 4.3 4.8 6.7A.3.25B.2.6C.2.2D.0解析:选B.经验回归直线过点(2,4.5),所以4.5=0.95×2+a^,所以a^=2.6.4.(人A选择性必修第三册P120习题8.2T2(2)改编)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归方程y^=0.67x+54.9.零件数x/个1020304050加工时间y/min62758189 现发现表中有一个数据看不清,请你推断出该数据的值为________.解析:由x=30,得y=0.67×30+54.9=75.设表中的“模糊数字”为a,则62+a+75+81+89=75×5,所以a=68.答案:68一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系来表示.( )(2)经验回归直线y^=b^x+a^至少经过点(x1,y1),(x2,y2),…,(x n,y n)中的一个点.( )(3)任何一组数据都对应着一个经验回归方程.( )答案:(1)√(2)×(3)×二、易错纠偏1.(回归模型意义不明致误)一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的一元线性回归模型为y^=7.19x+73.93,用这个模型预报这个孩子10岁时的身高,则正确的叙述是( )A.身高一定是145.83 cmB.身高在145.83 cm以上C.身高在145.83 cm左右D.身高在145.83 cm以下解析:选C.由一元线性回归模型可得y^=7.19×10+73.93=145.83,所以预报这个孩子10岁时的身高在145.83 cm左右.2.(忽视经验回归直线过样本点中心致误)已知变量x和y的统计数据如下表:x 34567y 2.534 4.5 6根据上表可得经验回归方程为y^=b^x-0.25,据此可以预测当x=8时,y^=( ) A.6.4 B.6.25C.6.55D.6.45解析:选 C.由题中图表可知,x-=5,y-=4,因为经验回归方程经过样本的中心(x-,y-),则4=5b^-0.25,得b^=0.85,则经验回归方程为y^=0.85x-0.25,再将x=8代入方程,得y^=6.55.3.(决定系数的意义及应用不清致误)x和y的散点图如图所示,在相关关系中,若用y=c1e c2x拟合时的决定系数为R21,用y^=b^x+a^拟合时的决定系数为R22,则R21,R22中较大的是________.解析:由题图知,用y=c1e c2x拟合的效果比y^=b^x+a^拟合的效果要好,所以R21>R22,故较大者为R21.答案:R21考点一成对数据的相关性判断(自主练透)复习指导:通过收集现实问题中的成对数据作出散点图,并利用散点图直观认识变量间的相关关系.1.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(u,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判i断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图可得两组数据均线性相关,且图①的经验回归方程斜率为负,图②的经验回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析:选A.由题图知图①与图③是正相关,故r1>0,r3>0,图②与图④是负相关,故r2<0,r4<0,且图①与图②的样本点集中在一条直线附近,因此r2<r4<0<r3<r1,故选A.3.某公司在2020年上半年的月收入x(单位:万元)与月支出y(单位:万元)的统计资料如表所示:月份1月份2月份3月份4月份5月份6月份收入x 12.314.515.017.019.820.6支出y 5.63 5.75 5.82 5.89 6.11 6.18 根据统计资料,则( )A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系解析:选C.月收入的中位数是15+172=16,收入增加,支出增加,故x 与y 有正线性相关关系.判定两个变量相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:当r >0时,正相关;当r <0时,负相关;|r |越接近于1,相关性越强.(3)经验回归方程:当b ^>0时,正相关;当b ^<0时,负相关.考点二 一元线性回归模型(多维探究)复习指导:经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的一元线性回归模型系数公式建立经验回归方程,并进一步了解回归的基本思想、方法及初步应用.角度1 经验回归方程(2022·贵州凯里第一中学高二期中)某市2017至2021年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2017 2018 2019 2020 2021 年份代号t12 3 4 5 人均纯收入y 3.13.53.94.64.9从表可以看出,人均纯收入y 与年份代号t 线性相关,已知i =15t i y i =64.70.(1)求y 关于t 的经验回归方程y ^=b ^t +a ^;(2)预测2025年的人均纯收入为多少.(附:参考公式:【解】 (1)由题中表格知,n =5,t -=15(1+2+3+4+5)=3,y -=15(3.1+3.5+3.9+4.6+4.9)=4,i =15t 2i =12+22+32+42+52=55,则b ^==64.7-5×3×455-5×32=0.47,a ^=y --b ^t -=4-0.47×3=2.59,故经验回归方程为y ^=0.47t +2.59.(2)当年份为2025年时,对应的年份代码t =9, 所以y ^=0.47×9+2.59=6.82, 故2025年的人均纯收入约为6.82千元. 角度2 相关系数足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:年份x 2016 2017 2018 2019 2020 足球特色学校y (百个)0.30 0.60 1.00 1.40 1.70根据上表数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关程度. (已知:0.75≤|r |≤1,则认为y 与x 线性相关程度很强;0.3≤|r |<0.75,则认为y 与x 线性相关程度一般;|r |≤0.25,则认为y 与x 线性相关程度较弱.参考公式和数据:r =∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2,∑ni =1(x i -x )2=10,∑ni =1(y i -y )2=1.3,13≈3.605 6)【解】 由题得x =2 018,y =1,所以r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-y)2=3.610 × 1.3=3.63.605 6≈0.998>0.75,所以y与x的线性相关程度很强.一元线性回归模型应用要点(1)建立经验回归方程的步骤①计算出x,y,x21+x22+…+x2n,x1y1+x2y2+…+x n y n的值;②利用公式计算参数a^,b^;③写出经验回归方程y^=b^x+a^.(2)经验回归方程的拟合效果,可以利用相关系数判断,当|r|越接近于1时,两变量的线性相关程度越强.|跟踪训练|某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销售量y(单位:万件)之间的关系如下表:x 123 4y 12284256(1)在图中画出表中数据的散点图;(2)根据散点图选择合适的回归模型拟合y与x的关系(不必说明理由);(3)建立y 关于x 的经验回归方程,预测第5年的销售量.参考公式:经验回归方程y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2=∑ni =1x i y i -nx y ∑n i =1x 2i -n x 2,a ^=y -b ^x . 解:(1)作出的散点图如图:(2)根据散点图观察,可以用一元线性回归模型拟合y 与x 的关系. (3)观察(1)中散点图可知各点大致分布在一条直线附近,列出表格:i x i y i x 2i x i y i 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 4 4 56 16 224 ∑1013830418可得x =52,y =692,所以b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2.故经验回归方程为y ^=735x -2.当x =5时,y ^=735×5-2=71.故预测第5年的销售量大约为71万件.考点三 非线性回归模型(综合研析)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到如图所示的散点图及一些统计量的值.x y w∑8i =1(x i -x )2∑8i =1(w i -w )2∑8i =1(x i -x )·(y i -y )∑8i =1(w i -w )·(y i -y ) 46.6 563 6.8 289.81.61469108.8表中w i =x i ,w =18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型;(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①当年宣传费x =49千元时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v^=a^+b^u的斜率和截距的最小二乘估计分别为:b^=∑ni=1(u i-u)(v i-v)∑ni=1(u i-u)2,a^=v-b^u.【解】(1)由散点图可以判断y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的经验回归方程,由d^=∑8i=1(w i-w)·(y i-y)∑8i=1(w i-w)2=108.81.6=68.得c^=y-d^w=563-68×6.8=100.6.所以y关于w的经验回归方程为y^=100.6+68w,因此y关于x的非线性经验回归方程为y^=100.6+68x.(3)①由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x +20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.非线性回归分析问题求解策略有些非线性回归分析问题并不给出经验公式,这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)的图象进行比较,挑选一种跟这些散点拟合得最好的函数,用适当的变量进行变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:|跟踪训练|中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品“排骨茶”,为了解每壶“排骨茶”中所放茶叶量x(单位:克)与食客的满意率y的关系,通过调查研究发现可选择函数模型y=1100e kx+c来拟合y与x的关系,根据以下数据:茶叶量x/克1234 5ln(100y) 4.34 4.36 4.44 4.45 4.51 可求得y关于x的回归方程为( )A.y^=1100e0.043x+4.291B.y^=1100e0.043x-4.291C.y^=e0.043x+4.291D.y^=e0.043x-4.291解析:选 A.由表中数据可知x-=1+2+3+4+55=3,4.34+4.36+4.44+4.45+4.515=4.42.对于A,y^=1100e0.043x+4.291化简变形可得100y^=e0.043x+4.291,两边同时取对数可得ln(100y^)=0.043x+4.291,将x-=3代入可得ln(100y^)=0.043×3+4.291=4.42,与题中数据吻合,故选项A正确;对于B,y^=1100e0.043x-4.291化简变形可得100y^=e0.043x-4.291,两边同时取对数可得ln(100y^)=0.043x-4.291,将x-=3代入可得ln(100y^)=0.043×3-4.291=-4.162≠4.42,所以选项B错误;对于C,y^=e0.043x+4.291,两边同时取对数可得ln y^= 0.043x+4.291,而表中所给数据为ln(100y^)的相关量,所以C错误;对于D,y^=e0.043x-4.291,两边同时取对数可知ln y^=0.043x-4.291,而表中所给数据为ln(100y^)的相关量,所以D错误;故选A.[A 基础达标]1.对两个变量x,y进行线性回归分析,计算得到相关系数r=-0.996 2,则下列说法中正确的是( )A.x与y正相关B.x与y具有较强的线性相关关系C.x与y几乎不具有线性相关关系D.x与y的线性相关关系还需进一步确定解析:选B.因为相关系数r=-0.996 2,所以x与y负相关,因为|r|=0.996 2,非常接近1,所以相关性很强,故选B.2.(2022·四川省彭山一中高三入学考试)下列命题错误的是( )A.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱B.抛掷均匀硬币一次,出现正面的次数是随机变量C.将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍D.若回归直线的斜率估计值为0.25,x=2,y=3,则回归直线的方程为y=0.25x+2.5解析:选A.对于A,线性相关系数|r|越接近于1,则相关性越强,所以A错误;对于B,抛掷均匀硬币一次,出现正面的次数是随机变量,所以B正确;对于C,由标准差的定义可知将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍,所以C正确;对于D,因为回归直线的斜率估计值为0.25,x=2,y=3,所以b^=0.25,a^=y-b^x=3-2×0.25=2.5,则回归直线的方程为y=0.25x+2.5,所以D 正确.3.(多选)(2022·重庆巴蜀中学高三月考)为了建立茶水温度y随时间x变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据(x1,y1),(x2,y2),…,(x n,y),绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度y随时间nx的变化情况,函数模型一:y=kx+b(k<0,x≥0);函数模型二:y=ka x+b(k>0,0<a<1,x≥0),下列说法正确的是( )A.变量y与x具有负的相关关系B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C.若选择函数模型二,利用最小二乘法求得y=ka x+b的图象一定经过点(x-,y-)D.当x=5时,通过函数模型二计算得y=65.1,用温度计测得实际茶水温度为65.2,则残差为0.1解析:选ABD.观察散点图,变量x与y具有负的相关关系,A正确;由于函数模型二中的函数y=ka x+b(k>0,0<a<1,x≥0),在x≥0时,函数单调递减,可得B正确;若选择函数模型二,利用最小二乘法求出的回归方程一定经过(a x,y),C错误;由于残差=真实值-预测值,因此残差为65.2-65.1=0.1,故D正确.4.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的经验回归方程:y^=0.245x+0.321,可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x变为x+1,y^=0.245(x+1)+0.321=0.245x+0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2455.(2022·合肥检测)某公司一种型号的产品近期销售情况如下表:根据上表可得到经验回归方程y^=0.75x+a^,据此估计,该公司7月份这种型号产品的销售额为________万元.解析:由题意,x=2+3+4+5+65=4,y=15.1+16.3+17.0+17.2+18.45=16.8,经验回归直线y^=0.75x+a^过(x,y),可得a^=13.8,当x=7时,可得y^=0.75×7+13.8=19.05.答案:19.056.(2020·高考全国卷Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,yi)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x )2=80,∑20i =1(y i -y )2=9 000,∑20i =1(x i -x )(y i -y )=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1(x i -x )(y i -y )∑ni =1 (x i -x )2∑ni =1(y i -y )2,2≈1.414.解:(1)由已知得样本平均数y =120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1(x i -x )(y i -y )∑20i =1 (x i -x )2∑20i =1(y i -y )2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x 个月)和市场占有率(y %)的几组相关对应数据:(1)根据上表中的数据,用最小二乘法求出y 关于x 的经验回归方程;(2)根据上述经验回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精准到月).解:(1)根据表中数据,计算x -=15×(1+2+3+4+5)=3,y -=15×(0.02+0.05+0.1+0.15+0.18)=0.1,所以b ^=1×0.02+2×0.05+3×0.1+4×0.15+5×0.18-5×3×0.112+22+32+42+52-5×32=0.042,所以a ^=0.1-0.042×3=-0.026, 所以经验回归方程为y ^=0.042x -0.026.(2)由上面的经验回归方程可知,上市时间与市场占有率正相关, 即上市时间每增加1个月,市场占有率都增加0.042个百分点; 由y ^=0.042x -0.026>0.5, 解得x ≥13;预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.[B 综合应用]8.(2022·河南省湘豫名校联盟高三联考)如下表,根据变量x 与y 之间的对应数据可求出y ^=-0.32x +b .其中y -=8.现从这5个样本点对应的残差中任取一个值,则残差不大于0的概率为( )A.15B.25C.35D.45解析:选C.由表中的数据可知,x =10+15+20+25+305=20,设y 的最后一个数据为n ,则y =11+10+8+6+n5=8,所以n =5,将x ,y 代入y ^=-0.32x +b 得b =14.4, 这5个样本点对应的残差分别为:y 1-y ^1=11-(-0.32×10+14.4)=-0.2, y 2-y ^2=10-(-0.32×15+14.4)=0.4, y 3-y ^3=8-(-0.32×20+14.4)=0, y 4-y ^4=6-(-0.32×25+14.4)=-0.4, y 5-y ^5=5-(-0.32×30+14.4)=0.2, 所以残差不大于0的概率为35.9.(多选)(2022·石家庄市藁城新冀明中学阶段性测试)某市对2016年至2020年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的经验回归方程为y ^=b ^t +273,则下列说法正确的是( )A .该市2016年至2020年全市烧烤店盈利店铺个数的平均数y =219B .y 关于t 的经验回归方程为y ^=-18t +273 C .估计该市2022年烧烤店盈利店铺的个数为147D .预测从2027年起,该市烧烤店盈利店铺的个数将不超过100解析:选ABC.由已知数据得t -=3,y -=219,故A 正确;因为y 关于t 的经验回归直线过点(3,219),所以219=3b ^+273,所以b ^=-18,所以y 关于t 的经验回归方程为y ^=-18t +273.故B 正确;2022年的年份代码为7,故2022年该市烧烤店盈利店铺的个数约为y ^=-18×7+273=147.故C 正确;令-18t +273≤100,由t ∈N *,得t ≥10,故从2025年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选ABC.[C 素养提升]10.(2022·江苏省南通市高三教学质量监测)紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数呈增长的趋势.下表给出了2019年种植的一批试验紫甘薯在温度升高时6组死亡的株数.经计算,x =16∑i =16 x i =26,y =16∑i =16y i =33,∑i =16 (x i -x )·(y i -y )=557,∑i =16(x i -x )2=84,∑i =16 (y i -y )2=3 930,∑i =16(y i -y ^i )2=236.64,e 8.060 5≈3 167,其中x i ,y i 分别为试验数据中的温度和死亡株数,i =1,2,3,4,5,6.(1)若用一元线性回归模型,求y 关于x 的经验回归方程y ^=b ^x +a ^(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的非线性经验回归方程y ^=0.06e 0.230 3x ,且决定系数为R 2=0.884 1.①试与(1)中的回归模型相比,用R2说明哪种模型的拟合效果更好;②用拟合效果好的模型预测温度为35 ℃时该批紫甘薯的死亡株数(结果取整数).解:(1)由题意,得b^=∑i=16(x i-x-)(y i-y-)∑i=16(x i-x-)2=55784≈6.6,所以a^=33-6.6×26=-138.6,所以y关于x的经验回归方程为y^=6.6x-138.6. (2)①经验回归方程y^=6.6x-138.6对应的决定系数为R2=1-∑i=16(y i-y^i)∑i=16(y i-y-)2=1-236.643 930≈0.939 8,因为0.939 8>0.884 1,所以经验回归方程y^=6.6x-138.6比非线性经验回归方程y^=0.06e0.230 3x的拟合效果更好.②当x=35时,y=6.6×35-138.6=92.4≈92,即当温度为35 ℃时,该批紫甘薯的死亡株数为92.21 / 21。
变量之间的关系知识点1 :变量、自变量、因变量的定义一般地,在某一变化过程中,可以取不同数值的量就是变量。
如果有两个变量,当其中一个变量在一定范围内取一个数值时,另一个变量也有唯一一个数值与其对应,那么,通常前一个变量叫做自变量,后一个变量叫做自变量的因变量。
【典型例题】例1圆柱的高h为10厘米,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A. r是因变量, V是自变量 B . r是自变量,V是因变量C. r是自变量, h是因变量 D. h是自变量,V是因变量举出一些发生变化的例子吗?例如:烧一壶水,十分钟后水开了。
在这一过程中,什么在发生变化?知识点2 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。
而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。
区别:因变量随自变量的变化而变化。
【典型例题】(1)上表反映了哪两个变量的关系?自变量和因变量各是什么?(2)12时,水位是多高?(3)哪一段水位上升最快?知识点3:从表格中获取信息,点明哪个变量是自变量,哪个是因变量,并对变化趋势进行初步预测。
表示两个变量之间的关系的表格,一般第一行表示自变量,第二行表示因变量,从表格中可以发现因变量随自变量变化存在一定规律,或者增加或者减少或者呈现规律性地起伏变化,从而利用变化趋势对结果做出预测。
【典型例题】例3、下面是王波学习小组得到的数据根据上表回答下列问题:(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3) h每增加10厘米,t的变化情况相同吗?(4)估计当h=110厘米时,t的值是多少,你是怎样估计的【课堂练习】(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由。
知识梳理:变量之间的关系我们生活在一个变化的世界中,如时间、温度,还有我们的身高、体重等都在悄悄地发生变化. 若能从数学的角度研究变化的量,将有助于我们了解自己、认识世界和预测未来. 为帮助同学们学好本章知识,特作如下知识梳理:一、理解变量、自变量和因变量的概念所谓变量..,就是处于变化的量. 变量是相对于不变的量而言的.如,(1)小明的体重随年龄的增长而增加. 这里的体重和年龄都是变量;(2)自然界的气温随着季节的变化而变化. 这里的气温和季节都是变量.上述两例中,年龄和季节都是首先变化的量,则称之为自变量...;而体重因年龄的增长而增加,气温因季节的变化而变化,则我们把体重、气温称之为因变量.... 因此,因变量随自变量的变化而变化,它们都是某一变化过程中的量.二、掌握“变量之间的关系”的三种表示方法1、表格法:通过列表格可以得到变量之间的关系信息,进一步预测其变化趋势,从而作出科学的判断. 一般地,因变量随自变量的变化呈现一定的规律,依据此规律对结论作出预测.2、关系式法:关系式是表示变量之间关系的另一种方法,它能准确地反应出因变量与自变量之间的数值对应关系. 也就是说,当自变量每一个确定的值,因变量就有惟一一个确定的值与它对应.3、图象法:图象是表示变量之间关系的又一种方法,图象能非常直观形象地反映出因变量随自变量的变化的趋势. 其通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.三、学会用三种方法分析实际问题学会运用“变量之间的关系”的三种表示方法,能作出正确的分析,从中获得相关信息,并加以处理,依据其变化趋势作出预测.例1某试验小组研究表明,玉米的产量与施肥量的关系统计数据如下表:1/ 32 / 3(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当施肥量为40千克/亩时,玉米的产量是多少?如果不施肥呢?(3)依据上表中数据,你认为施肥量是多少时比较适宜?请说明理由.(4)简单分析一下施肥量对玉米产量的影响.解析:(1)上表反映了施肥量与玉米产量这两个变量之间的关系,施肥量是自变量,玉米产量是因变量.(2)由上表知,)当施肥量为40千克/亩时,玉米的产量是401.1千克,如果不施肥玉米的产量是192.4千克.(3)依据上表中数据,认为施肥量在56千克左右时比较适宜.理由是:由上表的数据表明:每亩玉米肥量56千克产量较高,施肥量达80千克,玉米产量增加甚微,再增加玉米产量降低.(4)在一定的范围内(0—56千克),施肥量与玉米产量成正比,但并不是施肥量越多越好,施肥量超出范围会造成玉米烧苗,从而玉米产量降低.例2 如图所示,梯形的上底长是5厘米,下底长是13厘米. 当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是 、因变量是 .(2)梯形的面积y (厘米2)与高x (厘米)之间的关系式为 .(3)当梯形的高有10厘米变化到1厘米时,梯形的面积由 厘米2变化到 厘米2.解析:(1)在这个变化过程中,自变量是梯形的高,因变量是梯形的面积.(2)由梯形的面积公式,得 y =21(5+13)×x = 9x. 所以,梯形的面积y 与高x 之间的关系式为:y = 9x.(3)当x = 10厘米时,y = 9x = 9×10 = 90(厘米2);当x = 1厘米时,y = 9x = 9×1= 9(厘米2).所以,当梯形的高有10厘米变化到1厘米时,梯形的面积由90厘米2变化到9厘米2.13例 3 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?解析:⑴由图象知,第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时.⑵由图象知,前两天12时这头骆驼的体温是39℃,又因在这四天中每昼夜的体温变化情况相同,所以第三天12时这头骆驼的体温仍是39℃.例 4 “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.。
变量之间的关系知识梳理1.概念变量:在某一变化过程中,数值发生变化的量是变量。
自变量、因变量:一般地,在一个变化过程中,如果有两个变量x和y,其中y随x 的变化而变化,我们就说x是自变量,y是因变量。
常量:在某一个变化过程中,数值始终保持不变的量是常量。
表格法:借助表格,可以表示因变量随自变量的变化而变化的情况。
表格法的基本特征是:表示两个变量之间的表格,一般第一栏表示自变量,第二栏表示因变量,从表格中可以发现因变量随自变量变化而存在一定的变化规律,从而可以利用变化趋势对结果作出预测。
关系式法:利用等式表示两个变量之间的关系。
关系式的基本特征是:(1)等式的左边是因变量,等式的右边是关于自变量的代数式;(2)等式中只含有自变量和因变量两个变量,其他的量都是常数;(3)自变量可在允许的范围内任意取值。
图像:将一个变量随着另一个变量的变化而变化的情况绘制成一条曲线,这条曲线称为两个变量之间关系的图像。
图像法:用图像来表示一个变量与另一个变量之间关系的方法,叫做图像法。
例题精讲考点1.变量、自变量、因变量、常量例1.甲、乙两城市相距300千米,在甲城市有一列火车以每小时100千米的速度向乙城市行驶,t 小时后火车与乙城市的距离为y 千米,在这个问题中, 是常量, 是自变量, 是因变量。
变式1.下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60m 的篱笆围城一个边长为l (m)、面积为S (㎡)的矩形场地; (2)正方形边长是3,若边长增加x ,则面积增加y 。
变式2.小明帮妈妈预算家庭4月份电费的开支情况,下表是小明家4月处连续8天每天早上电表显示的读数。
(1)表格中反映的变量是 ,自变量是 ,因变量是 。
(2)估计小明家4月份(按30天计)用电量是 ,若每度电0.55元,估计他家4月份应交电费 元。
考点2.表格法表示变量之间的关系例2.下表是一次秋汛期某河流在一天内涨水情况,警戒水位是25米。
变量之间的关系知识点与习题训练【基础知识导引】一、变量、自变量、因变量的概念在—个变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.例如在表示路程关系式s=50t中,速度50恒定不变为常量,随t取不同数值时也取不同数值,s 与t都为变量.t是自变量,s是因变量.二、变量之间关系的表示法典型例题1.在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的质量x的一组对应值:(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?2.如图6—1所示,梯形上底的长是x,下底的长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到20时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?说说你的理由;(4)当x=0时,y等于什么?此时它表示的是什么?3.地壳的厚度约为8到40km.在地表以下不太深的地方,温度可按y=35x+t计算,其中x是深度(km),t是地球表面温度(℃),y是所达深度的温度(℃).(1)在这个变化过程中,自变量、因变量各是什么?(2)分别计算当x为lkm,5km,10km,20km时地壳的温度(地表温度为2℃).一.变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y 随另一个变量x 的变化而变化,则把x 叫做自变量,y 叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计; 2、关系式(1)能根据题意列简单的关系式; (2)能利用关系式进行简单的计算; 3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。
变量之间的关系讲解+例题+练习+详解变量之间的关系复习变量之间的关系、表达方法知识要点表示变量的三种方法:列表法、解析法、图象法◆要点1 变量、自变量、因变量(1) 在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。
(2) 在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。
例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。
则T为自变量,路程为因变量。
◆要点2 列表法与变量之间的关系(1) 列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。
(2) 从表格中获取信息,找出其中谁是自变量,谁是因变量。
找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点 3 用关系式表示变量之间的关系(1) 用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。
(2) 写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。
即实质是用含自变量的代数式表示因变量。
(3) 利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。
◆要点4 用图象法表示变量的关系(1) 图象是刻画变量之间关系的又一重要方式,特点是非常直观。
(2) 通常用横轴上的点表示自变量,用纵轴上的点表示因变量。
(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利用图象求两个变量的对应值,图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。
(4) 对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。
变量之间的关系知识点与习题训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(变量之间的关系知识点与习题训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为变量之间的关系知识点与习题训练的全部内容。
变量之间的关系知识点与习题训练【基础知识导引】一、变量、自变量、因变量的概念在—个变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.例如在表示路程关系式s=50t中,速度50恒定不变为常量,随t取不同数值时也取不同数值,s与t 都为变量.t是自变量,s是因变量.二、变量之间关系的表示法典型例题1.在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧?(2)当所挂重物为4kg时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?2.如图6—1所示,梯形上底的长是x,下底的长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到20时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?说说你的理由;(4)当x=0时,y等于什么?此时它表示的是什么?3.地壳的厚度约为8到40km.在地表以下不太深的地方,温度可按y=35x+t计算,其中x 是深度(km),t是地球表面温度(℃),y是所达深度的温度(℃).(1)在这个变化过程中,自变量、因变量各是什么?(2)分别计算当x为lkm,5km,10km,20km时地壳的温度(地表温度为2℃).一。
变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y 随另一个变量x 的变化而变化,则把x 叫做自变量,y 叫做因变量.3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。
三林教育培训学校 第 1 页 共 10 页 变量之间的关系
一、基础知识 1、常量:在一组数据中或者关系式中不会没发生变化的量; 2、变量:变化的量 (1)自变量:可以自己发生变化的量; (2)因变量:随自变量的变化而变化的量。
二、表示方式 1、表格 (1)借助表格可以感知因变量随自变量变化的情况; (2)从表格中可以获取一些信息,能够做出某种预测或估计; 2、关系式 (1)能根据题意列简单的关系式; (2)能利用关系式进行简单的计算; 3、图像 (1)识别图像是否正确; (2)利用图像尽可能地获取自变量因变量的信息。
1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( ) A、明明 B、电话费 C、时间 D、爷爷 2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置: 排 数 1 2 3 4 … 座位数 50 53 56 59 … 上述问题中,第五排、第六排分别有 个、 个座位;第n排有 个座位.
3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量。
4、下表中的数据是根据某地区入学儿童人数编制的: 年份 1998 1999 2000 2001 2002 入学儿童人数 2930 2720 2520 2330 2140
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)随着自变量的变化,因变量变化的趋势是什么? (3)你认为入学儿童的人数会变成零吗? 三林教育培训学校 第 2 页 共 10 页 5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30) 提出概念所用时间(x) 2 5 7 10 12 13 14 17 20
对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55 (1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量? (2)当提出概念所用时间是10分钟时,学生的接受能力是多少? (3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强? (4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么 范围内,学生的接受能力逐步降低? (5) 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?
6 下表是某同学做“观察水的沸腾”实验时所记录的数据: 时间(分) 0 1 2 3 4 5 6 7 8 9 10 11 12 温度(℃) 60 65 70 75 80 85 90 95 100 100 100 100 100 (1)时间为8分钟时,水的温度是多少? (2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (3)水的温度是怎样随时间变化的? (4)根据表格,你认为13分钟、14分钟时水的温度是多少? (5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?
1.给定自变量x与因变量y的关系式xy1,当x=2时,y= ,当x=x1时y= 2、地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式2035xy来表示,则y随x的增大而( ) A、增大 B、减小 C、不变 D、以上答案都不对 3、如图, 一圆锥高为6cm,当其底面半径从5cm变化到10cm时, 其体积从 变化到 。(保留π) 4、某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3), 蓄水时间为t(时) (1)V与t之间的关系式是什么? (2)用表格表示当t从2变化到8时(每次增加1),相应的V值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t逐渐增加时,V怎样变化?说说你的理由。 三林教育培训学校 第 3 页 共 10 页 4、三角形底边为8 cm,当它的高由小到大变化时,三角形的面积也随之发生了变化.
1.在这个变化过程中,高是_________,三角形面积是_________. 2.如果三角形的高为h cm,面积S表示为_________. 3.当高由1 cm变化到5 cm时,面积从_________cm2变化到_________cm2. 4.当高为3 cm时,面积为_________cm2. 5.当高为10 cm时,面积为_________cm2.
5.出租车的车费y(元)随着路程x(km)变化而变化,有一种出租车的计费y与路程x间的关系可以近似地用关系式:y=1.2x+2.6(x≥2)来表示. 1.在上式中_________是自变量,y是_________. 2.计算一下:当x=2时,y=_________;当x=3时,y=_________;当x=10时,y=_________. 3.小明家距火车站15 km,如果乘这种出租车需付_________元车费. 4.小明的爸爸付了7.4元车费,他乘出租车行了_________km的路程. 6、长方形的长为10 cm,宽为x cm. 1.长方形的面积y与x间的关系式是_________. 2.填右表:
3.当x每增加1时,y增加_________. 7、打电话时电话费随时间的变化而变化,有一种手机的电话费用y(元)与通话时间x(分)之间的关系可近似地表示为y=5+0.25x..小张打了100分钟电话,费用为多少元?
1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( ) A、沙漠 B、体温 C、时间 D、骆驼 2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同。下图反映了一天24小时内小明体温的变化情况,下列说法错误的是 ( ) A. 清晨5时体温最低 B. 下午5时体温最高 C. 这一天中小明体温T(单位:℃)的范围是36.5≤T≤37.5 D. 从5时至24时,小明体温一直是升高的.
3、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.( ) 水温 水温 水温 水温
0 时间 0 时间 0 时间 0
x 1 2 3 …… y …… 80 三林教育培训学校
第 4 页 共 10 页 4.某市一天的温度变化如图所示,看图回答下列问题:
(1)这一天中什么时间温度最高?是多少度?什么时间温度最低?是多少度?
(2)在这一天中,从什么时间到什么时间温度开始上升?在这一天中,从什么时间到什么时间温度开始下降?
5某种动物的体温随时间的变化图如图示: (1)一天之内,该动物体温的变化范围是多少? (2)一天内,它的最低和最高体温分别是多少?是几时达到的. (3)一天内,它的体温在哪段时间内下降. (4)依据图象,预计第二天8时它的体温是多少?
1、某种长途电话收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,求: (1)当时间t3分钟时的电话费y (元)与t (分) 之间的关系. (2)画出对应的”机器图”. (3)计算当时间分别为5分、10分、30分、50分的电话费。
1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中(落地前)速度变化情况( ) v v v v
A B C D 0 0 0 0
t t t t 三林教育培训学校 第 5 页 共 10 页 2、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息的和y(元)与所存月数x(月)之间的关系式为( )
A、xy36.0100 B、xy6.3100
C、xy36.11 D、xy36.1001 3、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( ) A、1000元 B、800元 C、600元 D、400元 4、某人骑车外出,所行的路程S(千米)与时间t(小时)的 关系如图所示,现有下列四种说法: ①第3小时中的速度比第1小时中的速度快; ②第3小时中的速度比第1小时中的速度慢; ③第3小时后已停止前进; ④第3小时后保持匀速前进。 其中说法正确的是 ( ) A、②、③ B、①、③ C、①、④ D、②、④
5、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校。下面四个图象中,描述李老师与学校距离的图象是( ) S(距离) S(距离) S(距离) S(距离)
0 0 0 0 A t(时间) B t(时间) C t(时间) D t(时间) 6、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a立方米,平均每天流出的水量控制为b立
方米.当蓄水位低于135米时,ab;当蓄水位达到135米时,ab.则库区的蓄水量y(立方米)随时间t(天)变化的大致图象是( )
A、 B、 C、 D、 变量之间的关系进阶题 拓展练习(一) 1、如图,L甲、L乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则它们的平均速度的关系是( ) A.甲比乙快 B.乙比甲快 C.甲、乙同速 D.不一定
12345S(千米)t(小时)
oty oty
oty oty