The effects of preparation condition and dopant on the electrochemical property for Fe-substituted
- 格式:pdf
- 大小:337.92 KB
- 文档页数:7
电化学氢扩散科斯特电化学氢扩散的研究旨在探究氢在材料中的扩散规律、机理以及对材料性能的影响,从而解决氢在各种领域(如氢能、石油化工、材料科学等)中的应用问题。
科斯特效应是电化学氢扩散中一个重要的现象,指当氢在金属中扩散时,由于氢在金属中的溶解度与温度成反比,因此在恒定温度和氢化程度时,金属中的电导率会出现随时间而降低的现象。
本文将介绍科斯特效应的原理、形成原因以及对金属材料性能的影响。
科斯特效应是氢在材料中扩散时,由于氢与材料中的电子、离子、空穴等发生相互作用而导致的电学效应。
在外加电场的作用下,材料中的离子、电子等会向电极方向运动,促进氢的扩散。
同时,由于氢与材料中的载流子发生相互作用,会影响材料的电导率,使得电导率随时间而减小,这就是科斯特效应。
科斯特效应的主要机理是氢与材料中的载流子(如电子、空穴和离子等)发生化学反应,形成电离态的氢分子离子,并促进载流子的再结合和扩散。
因此,科斯特效应的大小与载流子的浓度、移动性以及氢浓度和温度有关。
科斯特效应的形成原因是氢的扩散速率受到材料中的物理和化学因素的影响。
在高温下,材料中的氢可以溶解并扩散,但是在低温下,氢的溶解度会减小,扩散速率也会降低。
而科斯特效应就是在低温下,氢的扩散速率受到材料电导率的影响,从而使其扩散速率下降。
科斯特效应的发现和研究始于20世纪50年代,当时科学家发现在氢电极电位保持不变的条件下,金属电导率会随时间而降低。
这个现象被称为氢诱导损伤(hydrogen-induced damage),当时研究人员认为这是氢对金属晶格的损伤导致的。
但是,随着对氢扩散机制的深入研究,科学家们逐渐认识到,科斯特效应才是导致电导率下降的主要原因。
科斯特效应对金属材料的影响主要表现在两个方面:一是降低了材料的电导率,影响电子、电离子等的传输和扩散,从而影响材料的电子器件和光电器件性能;二是产生了氢脆性(hydrogen embrittlement)等问题,导致金属材料的力学性能下降,缩短材料使用寿命。
Preparation and Characterization of Thin Film Li4Ti5O12Electrodes by Magnetron SputteringC.-L.Wang,a,b Y.C.Liao,a,c,z F.C.Hsu,a,b N.H.Tai,b and M.K.Wu a,c,da Materials Science Center,b Department of Materials Science and Engineering,andc Department ofPhysics,National Tsing Hua University,Hsinchu,Taiwand Institute of Physics,Academia Sinica,Nankang,Taipei,TaiwanThis paper reports that spinel-phase Li4Ti5O12thinfilms were successfully grown by radio frequency͑rf͒magnetron sputtering on an Au/Ti/SiO2/Si substrate.In this process,the buffer layer of gold serves as a template for the texture growth of Li4Ti5O12film. The growth temperature affects the microstructure and electrochemical characteristics of the depositedfilms.In our study,the spinel phase of Li4Ti5O12appears at deposition temperatures above500°C.The redox peaks in the cyclic voltammetry of the Li/Li4Ti5O12cell approach the typical value of1.55V as raising the deposition temperature.Moreover,the influences of the surface morphology of thefilm on the capacity were studied.They show that a columnar structure with high porosity was obtained in thefilm deposited above650°C.The columnar grains with good crystallinity of the deposited Li4Ti5O12enhance the capacity of the electrode.In this work,the capacity of53Ah/cm2m can be attained for thefilm with a thickness of230nm deposited at700°C.This study sheds light on the realization of a solid-state thinfilm battery and provides a possible solution of electrical power for a mobile integrated circuit chip.©2005The Electrochemical Society.͓DOI:10.1149/1.1861193͔All rights reserved.Manuscript submitted May17,2004;revised manuscript received September25,2004.Available electronically February10,2005.Solid-state thin-film rechargeable batteries have great advantages over other types of batteries due to theirflexibility,safety,and min-iaturization.There are many potential applications,such as smart cards,complementary metal oxide semiconductor͑CMOS͒-based integrated circuits,and microelectromechanical system͑MEMS͒de-vices.Lithium-transition-metal-oxide thinfilms have long been recognized as good candidates for battery electrode materials. For example,layered-phase LiCoO2,1LiNiO2,2and spinel-phase LiMn2O43with high voltage and stability were successfully used as the positive electrode in lithium ion batteries.Thackeray et al.4pro-posed that the ionic conductor Li4Ti5O12can also be a good elec-trode material for rechargeable lithium ion batteries.This material can be used as the negative electrode in the cell combined with other high voltage materials,such as LiCoO2and LiMn2O4.5,6The theo-retical capacity of Li4Ti5O12is175mAh/g͑60Ah/cm2m͒ac-cording to the following reaction suggested by Ohzuku et al.7͑Li͒8a͑Li1/3,Ti5/3͒16d O4+e−+Li+→͑Li2͒16c͑Li1/3,Ti5/3͒16d O4 Based on this equation,during the insertion process,lithium ions are in the tetrahedral͑8a͒sites and the guest lithium ions move to the octahedral͑16c͒sites,thus the total insertion capacity is determined by the number of free octahedral sites.The merits of adopting spinel Li4Ti5O12include itsflat electrical potential,nearly zero volume change,and excellent reversibility during the insertion/extraction process of Li ions.Li4Ti5O12thinfilm prepared by the sol-gel process for lithium battery electrodes has been reported in the past.8-10The sol-gel growth method is known to be difficult to incorporate into the con-ventional semiconductor process.This article reports the successful growth of spinel Li4Ti5O12thinfilms using a radio frequency͑RF͒magnetron sputtering technique.Through a series of examinations of the crystallinity,surface morphology,and electrochemical properties of the high quality Li4Ti5O12thinfilm,this paper demonstrates the great potential of Li4Ti5O12used as the material of the electrodes of solid-state thin-film batteries.ExperimentalLi4Ti5O12thinfilms were deposited by rf magnetron sputtering from a2in.diameter target onto Au͑100nm͒/ Ti͑10nm͒/SiO2/Si substrate maintained at various temperatures in the range of500-700°C.The substrate was adhered to the surface of the heater by a silver paste,and the temperature was determined bythe thermocouple in the heater.All substrates were cleaned in anorganic solvent͑acetone,methanol,isopropanol͒using a ultrasoniccleaner.The background pressure of the chamber before the heating of the substrate was less than10−5Torr.Aufilm functions as acurrent collector,while the Ti layer is the buffer layer that improves the adhesion between Au and SiO2.These two metal layers were deposited by standard dc magnetron sputtering.The Li4Ti5O12target was prepared by the solid-state reaction of TiO2and Li2CO3pow-ders.The mixed powder was calcined at800°C.Then it was re-ground,cold pelletized,and sintered at950°C in the ambient air.The X-ray diffraction͑XRD͒patterns showed a pure spinel phase with the space group Fd3¯m.Before the deposition,the target was presputtered for about20min.Thefilms were deposited at the pres-sure of30mTorr with the mixed Ar/O2͑3:2͒gas,and the power density was estimated to beϳ4W/cm2.Allfilms have a thickness around230nm.The crystal structure was examined by an X-ray diffractometer͑MAC Science͒employing Cu K␣line.The surface morphologies of Li4Ti5O12films deposited at various temperatureswere observed with a JEOL6500F scanning electron microscope ͑SEM͒.The electrochemical properties of the oxidefilms were measuredin a two-electrode cell at room temperature.The cell uses an oxidefilm as the working electrode combined with a lithium metal foil asthe counter electrode.In the cell,the electrolyte was prepared by adopting1M LiPF6dissolved in a solution of ethylene carbonate ͑EC͒and ethylmethyl carbonate͑EMC͒with the volume ratio of 1:1.All cells were assembled inside the argon-filled glove box.For galvanostatic cycling testing,cells were discharged and charged at the constant current density of10A/cm2between1.0and2.0V. Cyclic voltammetry͑CV͒was performed at a sweep rate of 0.5mV/s for the characterization of thefilm electrode.ResultsTexture and crystallinity of the as-deposited thinfilms.—Figure 1shows the X-ray diffraction͑XRD͒patterns of the Li4Ti5O12thin films grown on the Au/Ti/SiO2/Si substrate at different deposition temperatures.The well-crystallized thinfilm can be obtained at the deposition temperatures above500°C,and it exhibits a texture growth in the͑111͒plane.The texture growth along certain direc-tions is beneficial to the performance of the thin-film electrode.11 These thinfilms are colorless insulators,as expected.As the sub-strate temperature is increased,the crystallinity of thefilms is sub-z E-mail:ycliao@.tw Journal of The Electrochemical Society,152͑4͒A653-A657͑2005͒0013-4651/2005/152͑4͒/A653/5/$7.00©The Electrochemical Society,Inc.A653stantially improved,and it shows a highly preferred orientation along the ͓111͔,which is the major diffusion channel of Li ion.As mentioned earlier,the Au layer functions as the current col-lector for the electrode.Surprisingly,we find that this Au layer en-hances the crystallinity of the as-grown thin films,thus gold acts as a buffer layer between the substrate and the Li 4Ti 5O 12film as well.As shown in Fig.1,the Au layer also exhibits the preferred ͑111͒orientation at the deposition temperature.The preferred orientation of the Au buffer layer provides a better template to grow ͑111͒-oriented Li 4Ti 5O 12films.This statement is proved by comparing the XRD patterns between the Li 4Ti 5O 12films deposited on the sub-strates Au/Ti/SiO 2/Si and SiO 2/Si ͑Fig.2͒.The ͑111͒peak of Li 4Ti 5O 12film grown at 700°C is enhanced by using the Au/Ti/SiO 2/Si substrate,while the amorphous SiO 2layer did not act as a good template to deposit Li 4Ti 5O 12film.The preferred orientation along ͓111͔in the Au layer also plays an important role here.Our experimental results indicate that there is no preferred orientation in the Li 4Ti 5O 12film deposited on a gold foil without a specific texture.This gives further support to the above statement.The lattice constant of Li 4Ti 5O 12film deposited on Au/Ti/SiO 2/Si,calculated from the XRD data,does not show any specific trend with the deposition temperature.The average of cubic lattice constants of the four samples is 8.291Åwith a standard deviationof 0.006Å.This value is only 0.81%less than the bulk value ͑8.358Å͒of Li 4Ti 5O 12.Perhaps it is the strain of gold ͑2a 0=8.158Å,a 0is the cubic lattice constant of gold ͒that leads to this result.To conclude the discussion on the XRD data,the gold layer on the substrate can promote the texture growth of Li 4Ti 5O 12along ͓111͔.The evolvement of surface morphology of Li 4Ti 5O 12film with the deposition temperature is shown in Fig.3.There exists a transi-tion of surface morphology around the growth temperature of 650°C.At the deposition temperature of 600°C,the Li 4Ti 5O 12film is smooth and shows densely packed grains ͑Figs.3a and 4a ͒.Above 650°C,more dispersed island-like grains emerge in the film,as shown in the cross-sectional SEM image of the sample deposited at 700°C ͑Fig.4b ͒,and the film exhibits a rougher surface.The length scale of this porous structure is around 0.1-0.2m.This kind of structure does not exist in the Li 4Ti 5O 12film grown on the SiO 2/Si substrate at the same growth temperature,which is demonstrated in Fig.4c.The formation of these grain structures should be attributed to the presence of islands on the Au layer.These islands,which form preferentially along the ͓111͔plane,serve as the nucleation sites for the depositing Li 4Ti 5O 12materials.Consequently,the preferred ori-ented Li 4Ti 5O 12grains with good crystallinity and the island-like structure appear only on the Au-buffered substrate.This is consistent with our XRD results.Electrochemical measurement of the as-deposited thin films .—Figure 5shows the CVs obtained from the Li 4Ti 5O 12films grown at various substrate temperatures.All cyclic voltammogram measurements were operated in the potential range between 1.0and 2.0V at a scan rate of 0.5mV/s.The measurement results indicate that the primary insertion and extraction potential of Li ion are in a range between 1.5and 1.6V,which have been suggested resulting from the coexistence of the spinel phase and the rock-salt phase during the extraction and insertion processes of Li +ions.12The CV diagrams clearly show that the shape and peak current density of redox peaks depend on the growth temperature.As increasing the deposition temperature,the difference in the peak potential and the width of the redox peak reduce gradually.This reveals the better crystallinity of the film grown at a higher temperature.The value of the potential,which is 1.54and 1.59V in Li insertion and extraction of the film deposited at 700°C respectively,agrees with the typical value of Li 4Ti 5O 12.13This result indicates that the insertion and extraction of lithium ions are easier to accomplish in the film syn-thesized under higher deposition temperature.The observation is consistent with the previous data that the films grown at higher temperature exhibits better crystallinity and preferred orientation.These films provide more reversible channels for Li ions to diffuse in the three-dimensional framework of Li 4Ti 5O 12.14Figure 6shows the discharge behaviors between 1.0and 2.0V of the films deposited at various temperatures at the constant current density of 10A/cm 2.All these as-grown films show the potential plateau around 1.55V,which is the typical redox value of spinel-phase Li 4Ti 5O 12.The discharge capacity for the films deposited at 700°C is about 53Ah/cm 2m,and it is much greater than the films deposited at 600°C.These observations are consistent with the results of cyclic voltammograms,where the peak current density relating to the capacity is enhanced significantly from the deposition temperature of 600to 650°C.The capacity of the deposited thin film increases substantially as the deposition temperature over 650°C.However,the crystallinity does not change drastically above 650°C.This suggests that the crystallinity of the as-grown film is not the sole reason responsible for the large energy capacity.The plot of both ⌬2of ͑111͒diffraction peak and the discharge capacity confirms this suggestion further.In the left axis of Fig.7,it shows that the crystallinity of Li 4Ti 5O 12film improves gradually with rais-ing the growth temperature while there is a significant enhancement of discharge capacity above 650°C,as shown in the right axis.The transitions of electrochemical properties coincide with the transition of surface morphology ͑Fig.3and 4͒.It is apparent that thesurfaceFigure 1.XRD patterns of the Li 4Ti 5O 12films deposited on Au/Ti/SiO 2/Si at various deposition temperatures.It shows that both Li 4Ti 5O 12film and the gold layer have the preferred orientation ͑111͒.Figure 2.XRD patterns of the Li 4Ti 5O 12films on the two substrates Au/Ti/SiO 2/Si and SiO 2/Si grown at 700°C.The film on Au/Ti/SiO 2/Si has a much better crystallinity than the film on SiO 2/Si.A654Journal of The Electrochemical Society ,152͑4͒A653-A657͑2005͒morphology of the film also plays an important role on the capacity.Owing to the finite diffusion length of Li ions in Li 4Ti 5O 12,Li ions cannot fully penetrate into the grains.Those island-like grains that exist in the films deposited at higher temperatures provide much more effective area for the insertion of Li ions.This statement is inagreement with the previous study on the relationship between the charge capability and the particle size of Li 4Ti 5O 12.15In that paper,Kavan et al.showed that the charge capacity is proportional to the surface area of Li 4Ti 5O 12powder before the particle size reaches to few tens of nanometers.Therefore,the high capacity of Li 4Ti 5O 12film deposited on Au/Ti/SiO 2/Si at 700°C results from both the rougher island-like grains and the good crystallinity,and conse-quently,it has sharp redox peaks and a large capacity.ConclusionsSpinel-phase Li 4Ti 5O 12thin films are successfully grown by rf magnetron sputtering on Au/Ti/SiO 2/Si substrate.Thedeposi-Figure 3.SEM images of the surface morphology of Li 4Ti 5O 12thin films deposited on Au/Ti/SiO 2/Si at ͑a ͒600,͑b ͒650,and ͑c ͒700°C.The surface morphology transits to a rougher one at the deposition temperature above650°C.Figure 4.SEM image of the cross-sectional structure of Li 4Ti 5O 12thin films deposited at ͑a ͒600and ͑b ͒700on Au/Ti/SiO 2/Si and ͑c ͒700°C on SiO 2/Si.The film on Au/Ti/SiO 2/Si grown at 700°C has a disperse-like grain structure while the same one deposited at 600°C shows the close-packed grains.This is attributed to the effect of the gold layer because the film grown on SiO 2/Si at 700°C did not have a columnar structure.A655Journal of The Electrochemical Society ,152͑4͒A653-A657͑2005͒tion temperature influences the physical and electrochemical characteristics of the films profoundly.Li 4Ti 5O 12films grown on Au/Ti/SiO 2/Si can possess good crystallinity and proper surface morphology for the application in an electrode of a thin film ing the optimized Li 4Ti 5O 12thin film,the test cell of Li/Li 4Ti 5O 12exhibits sharp redox peaks and a large capacity.The capacity of this film estimated by the discharge curve is 53Ah/cm 2m,and this value is comparable to those elec-trodes prepared by other methods.Both CV diagrams and dis-charge curves show that thin film Li 4Ti 5O 12/Au/Ti/SiO 2/Si depos-ited by sputtering can be used as an excellent negative electrode in a lithium thin-film battery.The results of this study demonstrate the potential for the realization of lithium-based solid-state thin-film batteries.AcknowledgmentsThe authors thank Chen-En Wu for help taking the SEM images.We also thank Phillip Wu for help editing the English writing.This work is supported by the Taiwan National Science Council grant no.NSC91-2112-M-007-056.Figure 5.Cyclic voltammograms of Li 4Ti 5O 12thin films deposited on Au/Ti/SiO 2/Si at various deposition temperatures ͑a ͒600,͑b ͒650,and ͑c ͒700°C in 1M in LiPF 6/EC +EMC at 0.5mV/s.The peak current density is significantly enhanced above 650°C.The potentials of reduction peak ͑Li +insertion ͒and oxidization peak ͑Li +extraction ͒agree with otherstudies.Figure 6.Initial discharge curves of Li 4Ti 5O 12thin films deposited on Au/Ti/SiO 2/Si at various temperatures.The substantial increase of charge capacity indicates that there should be some transition around the deposition temperature of 650°C.The capacity of the film grown at 700°C reaches to nearly 90%of the theoretical value ͑60Ah/cm 2m ͒.Figure 7.The plot of both ⌬2of ͑111͒diffraction peak ͑left axis ͒and the discharge capacity ͑right axis ͒.It indicates that the enhancement of capacity of Li 4Ti 5O 12thin film does not totally result from the improvement of crys-tallinity.Because the discharge curve of the film deposited at 500°C did not have any observable plateau,the discharge capacity of this film is nominally zero in our measurement.A656Journal of The Electrochemical Society ,152͑4͒A653-A657͑2005͒National Tsing Hua University assisted in meeting the publication costs of this article.References1. C.N.Polo da Fonseca,J.Davalos,M.Kleinke,M.C.A.Fantini,and A.Gorenstein,J.Power Sources,81-82,575͑1999͒.2.M.Yoshimura,K.S.Han,and S.Tsurimoto,Solid State Ionics,106,39͑1998͒.3. F.K.Shokoohi,J.M.Tarascon,B.J.Wolkens,D.Guyomard,and C.C.Chang,J.Electrochem.Soc.,137,1845͑1992͒.4. E.Ferg,R.J.Gummow,A.de Kock,and M.M.Thackeray,J.Electrochem.Soc.,141,L147͑1994͒.5.N.Koshiba,K.Takada,M.Nakanishi,K.Chikayama,and Z.Takehara,DenkiKagaku oyobi Kogyo Butsuri Kagaku,62,970͑1994͒.6.G.X.Wang,D.H.Bradhurst,S.X.Dou,and H.K.Liu,J.Power Sources,83,156͑1999͒.7.T.Ohzuku,A.Ueda,and N.Yamamoto,J.Electrochem.Soc.,142,1431͑1995͒.8.Y.H.Rho,K.Kanamura,M.Fujisaki,J.Hamagami,S.Suda,and T.Umegaki,SolidState Ionics,151,151͑2002͒.9.L.Kavan and M.Grätzel,Electrochem.Solid-State Lett.,5,A39͑2002͒.10.Y.H.Rho,K.Kanamura,and T.Umegaki,Chem.Lett.,2001,1322.11.K.-F.Chiu,F.C.Hsu,G.S.Chen,and M.K.Wu,J.Electrochem.Soc.,150,503͑2003͒.12.S.Scharner,W.Weppner,and P.Schmid-Beurmann,J.Electrochem.Soc.,146,857͑1999͒.13. D.Peramunage and K.M.Abraham,J.Electrochem.Soc.,145,2609͑1998͒.14. C.-M.Shen,X.-G.Zhang,Y.-K.Zhou,and H.-L.Li,Mater.Chem.Phys.,78,437͑2002͒.15.L.Kavan,G.Procházka,T.M.Spitler,M.Kalbáč,M.Zakalová,T.Drezen,and M.Grätzel,J.Electrochem.Soc.,150,1000͑2003͒.A657Journal of The Electrochemical Society,152͑4͒A653-A657͑2005͒。
姜泰勒效应锰酸锂摘要:一、引言1.介绍姜泰勒效应2.姜泰勒效应在锰酸锂中的应用二、姜泰勒效应的原理1.姜泰勒效应的定义2.姜泰勒效应的发生条件3.姜泰勒效应的影响因素三、锰酸锂的性质1.锰酸锂的基本性质2.锰酸锂的晶体结构3.锰酸锂的电化学性能四、姜泰勒效应在锰酸锂中的应用1.提高锰酸锂的电化学性能2.改善锰酸锂的循环稳定性3.提高锰酸锂的安全性能五、总结1.姜泰勒效应对锰酸锂的重要性2.未来发展方向正文:一、引言姜泰勒效应,是指在某些离子化合物中,当温度变化时,其晶格会发生畸变,从而导致离子间距和晶格常数发生变化的现象。
锰酸锂作为一种重要的锂离子电池正极材料,其性能受到姜泰勒效应的影响较大。
本文将详细介绍姜泰勒效应在锰酸锂中的应用及其重要性。
二、姜泰勒效应的原理1.姜泰勒效应的定义姜泰勒效应是由英国物理学家威廉·泰勒(William Taylor)和约翰·姜(John J.)于1951年首次发现的。
他们发现,在某些离子晶体中,当温度变化时,晶格会发生畸变,从而导致离子间距和晶格常数发生变化。
这种现象被称为姜泰勒效应。
2.姜泰勒效应的发生条件姜泰勒效应的发生需要满足以下条件:(1)晶体具有较高的离子性;(2)晶格中存在较弱的离子间相互作用力;(3)温度变化较大。
3.姜泰勒效应的影响因素姜泰勒效应的程度受到以下因素的影响:(1)离子化合物的类型;(2)晶格结构;(3)离子间距离;(4)温度变化。
三、锰酸锂的性质1.锰酸锂的基本性质锰酸锂(LiMn2O4)是一种具有尖晶石结构的锂离子电池正极材料,具有较高的理论容量和较优的电化学性能。
2.锰酸锂的晶体结构锰酸锂的晶体结构为尖晶石结构,由锂离子(Li+)、锰离子(Mn2+)和氧离子(O2-)组成。
3.锰酸锂的电化学性能锰酸锂具有较高的理论容量(约为148 mAh/g),较好的循环稳定性和倍率性能。
但在实际应用中,锰酸锂的性能受到其晶体结构、离子间相互作用力等因素的影响,导致其性能受限。
第50卷增刊化工新型材料Vol.50Suppl.
2022年10月NEW CHEMICAL MATERIALS
全氟聚醚硅氮烷的制备及其疏水涂层的性能研究苏厚鑫 樊 荣 唐旭东*
(天津科技大学化工与材料学院,天津300457)
摘 要 以K型全氟聚醚羧酸(数均分子量Mn=3300和6000)和双[3-(三甲氧基甲硅烷基)丙基]胺为原料,
通
过硅氢加成合成3种全氟聚醚硅氮烷用红外光谱(FT-IR)、核磁氢谱(1 HNMR)、X射线光电子能谱(XPS)对K型全
氟聚醚硅氮烷的结构进行表征,并利用接触角和耐摩擦实验对全氟聚醚硅氮烷的耐摩擦性能进行测试。探究了相对
分子量大小、分子结构对涂层耐磨性能影响,以及涂层的耐化学稳定性和透光性能的优劣。结果表明:全氟聚醚硅氮
烷(M
n=3300和6000)均具有优异的疏水性能。二氯一甲基硅烷合成的全氟聚醚硅氮烷(K6000-PFPE Silazane Si-N
(4))的耐摩擦性能最好,在负载质量为
1000g
的外力作用下钢丝绒往返循环摩擦2000次后水接触角仍能保持在
97.7°。化学稳定性和透光性能测试结果表明涂层具有良好的耐酸性、耐盐性和透光性能。关键词
全氟聚醚,硅氮烷,接触角,耐摩擦性能
中图分类号 TQ317 文献标识码 A 文章编号:1006-3536(2022)S-0273-05
DOI:10.19817/j.cnki.issn1006-3536.2022.S.052
Study on the preparation of perfluoropolyether silazane andthe performance of its hydrophobic coatin
g
Su Houxin Fan Rong Tang Xudong
(School of Chemical Engineering and Material Science,Tianjin University of Science and
第40卷㊀第7期2019年7月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 40No 7Julyꎬ2019文章编号:1000 ̄7032(2019)07 ̄0915 ̄07界面处理对AlGaN/GaNMIS ̄HEMTs器件动态特性的影响韩㊀军1ꎬ赵佳豪1ꎬ赵㊀杰1ꎬ2ꎬ邢艳辉1∗ꎬ曹㊀旭1ꎬ付㊀凯2ꎬ宋㊀亮2ꎬ邓旭光2ꎬ张宝顺2(1.北京工业大学信息学部光电子技术省部共建教育部重点实验室ꎬ北京㊀100124ꎻ2.中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室ꎬ江苏苏州㊀215123)摘要:研究不同界面处理对AlGaN/GaN金属 ̄绝缘层 ̄半导体(MIS)结构的高电子迁移率晶体管(HEMT)器件性能的影响ꎮ采用N2和NH3等离子体对器件界面预处理ꎬ实验结果表明ꎬN2等离子体预处理能够减小器件的电流崩塌ꎬ通过对N2等离子体预处理的时间优化ꎬ发现预处理时间10min能够较好地提高器件的动态特性ꎬ30min时动态性能下降ꎮ进一步引入AlN作为栅介质插入层并经过高温热退火后能够有效提高器件的动态性能ꎬ将器件的阈值回滞从411mV减小至111mVꎬ动态测试表明ꎬ在900V关态应力下ꎬ器件的电流崩塌因子从42.04减小至4.76ꎮ关㊀键㊀词:电流崩塌ꎻAlN栅介质插入层ꎻ界面处理ꎻAlGaN/GaN高电子迁移率晶体管中图分类号:TN386.2㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194007.0915ImpactofInterfaceTreatmentonDynamicCharacteristicofAlGaN/GaNMIS ̄HEMTsHANJun1ꎬZHAOJia ̄hao1ꎬZHAOJie1ꎬ2ꎬXINGYan ̄hui1∗ꎬCAOXu1ꎬFUKai2ꎬSONGLiang2ꎬDENGXu ̄guang2ꎬZHANGBao ̄shun2(1.KeyLaboratoryofOpto ̄electronicsTechnologyꎬMinistryofEducationꎬBeijingUniversityofTechnologyꎬBeijing100124ꎬChinaꎻ2.KeyLaboratoryofNanoDevicesandApplicationsꎬSuzhouInstituteofNano ̄techandNano ̄bionicsꎬChineseAcademyofSciencesꎬSuzhou215123ꎬChina)∗CorrespondingAuthorꎬE ̄mail:xingyanhui@bjut.edu.cnAbstract:TheeffectsofdifferentkindsofinterfacetreatmentonthecharacteristicofAlGaN/GaNMIS ̄HEMTswerestudiedinthispaper.N2andNH3plasmapretreatmentwereusedtoimprovetheinterfacequality.TheresultsshowthatN2plasmapretreatmentcouldreducethecurrentcollapseofdevices.ByoptimizingthetimeofN2plasmapretreatmentꎬitwasfoundthatthedynamiccharacteristicofdeviceswith10minthepretreatmentwasimprovedꎬwhilethatof30minwasdegraded.Asagatedielectricin ̄tercalationlayerꎬtheannealedAlNinterlayercaneffectivelyimprovethedynamiccharacteristicofthedevice.TheVthhysteresiswasdecreasedfrom411mVto111mVꎬandthedevicecurrentcollapsefactorwasreducedfrom42.04to4.76afterunderOFF ̄stateVDstressof900.Keywords:currentcollapseꎻAlNgatedielectricinsertionlayerꎻinterfacetreatmentꎻAlGaN/GaNhighelectronmobilitytransistors㊀㊀收稿日期:2018 ̄08 ̄20ꎻ修订日期:2018 ̄10 ̄17㊀㊀基金项目:国家自然科学基金(61204011ꎬ11204009ꎬ61574011)ꎻ北京市自然科学基金(4142005ꎬ4182014)ꎻ北京市教委科学研究基金(PXM2018_014204_500020)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61204011ꎬ11204009ꎬ61574011)ꎻBeijingNaturalScienceFounda ̄tion(4142005ꎬ4182014)ꎻBeijingMunicipalEducationCommissionScientificResearchFund(PXM2018_014204_500020)916㊀发㊀㊀光㊀㊀学㊀㊀报第40卷1㊀引㊀㊀言GaN作为第三代半导体的代表ꎬ具有高禁带宽度㊁高击穿电场㊁高电子迁移率㊁以及耐酸碱等特点ꎮ以AlGaN和GaN异质结结构制备的高电子迁移率晶体管ꎬ由于极化效应产生的天然的高浓度㊁高迁移率的二维电子气ꎬ在功率开关器件的大功率及高频性能方面有很好的应用前景[1 ̄4]ꎮMIS ̄HEMT器件可以有效地减小器件的栅极漏电ꎬ提高耐压ꎬ提高栅驱动能力ꎮ但是由于栅介质的引入ꎬ产生新的界面ꎬ界面质量给器件的应用带来新的问题ꎬ影响器件的可靠性和阈值回滞等ꎮEller等[5]详细报道了对于GaN表面的处理过程ꎬ包括湿法化学处理[6]㊁真空退火处理[7]㊁气体氛围下退火处理[8]及离子束㊁等离子体处理[9 ̄10]等ꎮGaN材料表面存在含O的化合物和N空位[2ꎬ11]ꎬ这两种缺陷态成为影响界面质量的主要因素ꎬ目前的报道中ꎬ集中于使用含N等离子体来处理器件表面[12 ̄14]ꎬ主要作用机理为去除O杂质和补充N空位ꎮHashizume[15]在器件钝化作用前使用N2作为等离子体处理样品表面ꎬ得到了很高质量的钝化结果ꎬ而且界面态浓度下降ꎮRomero[16]通过原位含氮气等离子体预处理ꎬ器件的电流崩塌㊁输出功率㊁增益等特性取得了非常好的效果ꎮ在本文研究中ꎬ我们对AlGaN/GaNMIS ̄HEMT器件工艺过程中的界面处理进行优化比较ꎬ实验利用等离子体预处理研究不同气体(N2和NH3)及不同预处理时间对器件直流性能和动态特性的影响ꎬ并在该研究基础上ꎬ继续引入AlN栅介质插入层进行界面处理ꎬ研究采用AlN栅介质插入层进行界面处理对器件动静态特性的影响ꎮ2㊀实㊀㊀验AlGaN/GaNHEMT外延材料是通过金属有机物化学气相沉积技术在Si(111)衬底上生长的ꎬ外延结构依次为成核层㊁GaN缓冲层和AlGaN势垒层ꎮ器件的制备工艺过程为:(1)界面处理过程ꎻ(2)栅介质钝化层制备ꎬ采用LPCVD沉积SiNx作为栅介质ꎬ主要考虑其具有良好的稳定性和漏电[7]ꎬ利用SiH2Cl2和NH3作为Si源和N源ꎬ温度780ħꎻ(3)注入隔离ꎬ采用F离子进行注入隔离ꎻ(4)欧姆接触制备ꎬ利用磁中性环路放电刻蚀SiNx形成窗口ꎬ电子束蒸发沉积Ti/Al/Ni/Au为20/130/50/50nmꎬN2氛围下850ħ退火30s形成欧姆接触ꎻ(5)栅电极制备ꎬ利用金属热蒸发沉积Ni/Au为50/10nm制备栅电极ꎮ图1(a)显示的是AlGaN/GaNMIS ̄HEMT器件基本结构示意图ꎬ器件栅介质层厚度为20nmꎬ器件栅长为2μmꎬ栅宽为100μmꎬ栅漏距离为16μmꎬ栅源距离为4μmꎮ其中对于界面处理工艺过程ꎬ设计了实验Ⅰ:采用不同预处理气体N2和NH3对AlGaN/GaNHEMT表面预处理ꎬ预处理时间均为5minꎬ实验分别设置为样品A和样品Bꎮ在实验I基础上设计实验方案Ⅱ:选取N2作为预处理气体ꎬ研究不同预处理时间对AlGaN/GaNMIS ̄HEMT器件的影响ꎬ设置样品C㊁D㊁E分别预处理的时间为0ꎬ10ꎬ30minꎮ上述等离子体预处理温度为350ħꎬ压强为266Pa(2000mtorr)ꎬRF功率为60WꎬLF功率为50WꎮSiN x2DEGAlGaNSiBufferSGAlN2DEGAlGaNSiN xSiBufferSGDD(a)(b)图1㊀(a)实验器件基本结构示意图ꎻ(b)引入插入层后的器件结构示意图ꎮFig.1㊀(a)Schematicofdevicesfordifferentpre ̄treatment.(b)Schematicofdevicestructureforsamplewithin ̄sertionlayer.为进一步改善AlGaN/GaNMIS ̄HEMT器件性能ꎬ在上述实验的基础上ꎬ设计实验Ⅲ:采取PEALD生长的AlN作为栅介质插入层ꎬ设置样品F㊁G㊁Hꎬ引入AlN插入层的器件结构示意图为图1(b)ꎮ样品F作为空白对照组未引入插入层界面处理过程ꎬ样品G和样品H利用PEALD生长3nmAlNꎬTMAl为Al源ꎬN2为N源ꎬ生长温度300ħꎮ样品H在栅介质沉积后于N2氛围下1000ħ退火2minꎮ样品栅介质LPCVD ̄SiNx12nmꎮ器件尺寸分别为:栅长2μmꎬ栅宽100μmꎬ栅漏距离30μmꎬ栅源距离3μmꎮ每组实验均采用安捷伦B1505A进行测试表征ꎮ㊀第7期韩㊀军ꎬ等:界面处理对AlGaN/GaNMIS ̄HEMTs器件动态特性的影响917㊀3㊀结果与讨论3.1㊀界面预处理气体的影响图2是N2和NH3预处理器件的转移输出曲线ꎬ从图2中可以看出不同的预处理气体对器件的直流特性具有明显的影响ꎮN2和NH3等离子体预处理之后器件的峰值跨导分别是64.6mS/mm和70.7mS/mmꎬ饱和电流分别为579.3mA/mm和550mA/mmꎮN2等离子体预处理的器件跨导峰值较NH3等离子体预处理器件低ꎬ但是饱和电流有所增加ꎮ在图2中还看到ꎬ相比于N2等离子体预处理ꎬNH3等离子体预处理的实验结果中存在饱和电流下降的现象ꎬ这与Kim[12]报道的一致ꎬ究其原因是在NH3在较低功率下产生等离子体的同时会产生一个H+的钝化效果ꎮ类似的钝化对于器件的RF性能会有所提升ꎬ但对器件的DC特性有退化ꎬHashizume[17]和Romero[16]的研究已经证明了这一点ꎮ为了进一步对比采用N2和NH3不同预处理气体对表面态引起的器件性能退化作用ꎬ实验对样品A和样品B进行了电流崩塌的表征ꎮ图3分别显示了关态下漏极电压600500-20V GS /VI D /(m A ·m m -1)4003002001000N 2plasmaNH 3plasma(a )-15-10-55406080200G m /(m S ·m m -1)6005002V d /VI D /(m A ·m m -1)4003002001000N 2plasma NH 3plasma(b )461012143V -3V -5V -7V -9V80V GS -15~3V 图2㊀N2和NH3等离子体预处输出曲线理器件转移输出曲线对比ꎮ(a)转移曲线ꎻ(b)输出曲线ꎮFig.2㊀TtransferandoutputcurvesforsampleAwithN2plasmaandsampleBwithNH3plasma.(a)Trans ̄fercurves.(b)Outputcurves.10080300V d /VR D y n a m i c /R O N20010100506040200N 2plasma NH 3plasmaOFF 鄄state:V GS =-15VOFF 鄄ON swtiching time:t =200滋s ON 鄄state:V GS =0V V D =1V图3㊀N2和NH3等离子体预处理器件电流崩塌对比Fig.3㊀CurrentcollapseforsampleAwithN2plasmaandsampleBwithNH3plasma10ꎬ50ꎬ100ꎬ200ꎬ300V下的电流崩塌ꎮ从图3中可以看到在不同的漏极偏压下ꎬN2等离子体预处理器件的电流崩塌因子明显较NH3等离子体预处理的小ꎬN2等离子体预处理器件在偏压100V时崩塌因子最大值为35.6ꎬNH3等离子体预处理器件为57.5ꎻ在偏压300V时ꎬNH3等离子体预处理器件的崩塌因子最大值为85.3ꎬN2等离子体预处理器件为19.1ꎮ对比器件的动静态性能ꎬ采用N2等离子体预处理能够有效地提高器件的动态性能ꎮ3.2㊀界面预处理时间的影响图4给出了不同预处理时间下ꎬ器件转移输出特性对比ꎮ结果显示不同预处理时间对样品的基本电学性能影响不明显ꎬ预处理后器件的静态性能没有大的提高ꎮ采用pulse ̄DC表征器件的动态性能ꎮ器件测试脉冲是(5msꎬ3ms)ꎬ即关态偏压施加的时间是3msꎬ测试周期是5msꎬ器件关态偏压为(VD:50VꎬVGS:-20V)ꎮ图5中展示了不同时间预处理器件的直流/脉冲输出电流曲线对比ꎮ相比于静态输出电流ꎬC㊁D㊁E样品的脉冲输出电流都发生了明显下降ꎬ其中未经过N2等离子体预处理的样品C下降最为严重ꎬ预处理时间10min的样品D结果最好ꎬ样品C㊁D及样品E的饱和电流下降幅度分别为306.1ꎬ99.1ꎬ184.5mA/mmꎮ该结果表明利用N2等离子体预处理能够明显地减小器件界面导致的性能退化ꎮ对比预处理10min的样品D和处理30min的样品E的结果ꎬ发现长时间的预处理对器件的性能有一定的损害ꎬ主要原因是长时间的预处理导致表面有正电荷或者新的施主态的积累ꎬ使得器件动态性能下降[18]ꎮ918㊀发㊀㊀光㊀㊀学㊀㊀报第40卷V GS /V600500-15I D /(m A ·m m -1)400300200CD E 1000-20-10-505V d :10V20406080G m /(m S ·m m -1)(a )V D /V6005004I D /(m A ·m m -1)400300200C D E100001081214V GS (b )-14~2V 622V -2V-6V-10V 图4㊀不同预处理时间下器件转移输出特性曲线ꎮ(a)转移曲线ꎻ(b)输出曲线ꎮFig.4㊀Transferandoutputcurvesforthreesamples.(a)Transfercurves.(b)Outputcurves.6005002V D /VI D /(m A ·m m -1)(a )Pulse:(5ms,3ms)Based:(V d ,V gs )(50V,-20V)DC:V g :-14~2V step:4V V d :0~10VDCPulse40030020010000468101214166005002V D /VI D /(m A ·m m -1)(b )Pulse:(5ms,3ms)Based:(V d ,V gs )(50V,-20V)DC:V gs :-14~2V step:4V V d :0~10VDC Pulse40030020010000468101214166005002V D /VI D /(m A ·m m -1)(c )Pulse:(5ms,3ms)Based:(V d ,V gs )(50V,-20V)DC:V gs :-14~2V step:4V V d :0~10VDC Pulse 4003002001000046810121416600500CV D /VI D /(m A ·m m -1)(d )400300D E200DCPulse100图5㊀直流㊁脉冲输出曲线对比ꎮ(a)样品Cꎻ(b)样品Dꎻ(c)样品Eꎻ(d)实验样品直流/脉冲下饱和电流对比ꎮFig.5㊀ComparisionofpulsedI ̄Vcharacteristics.(a)SampleC.(b)SampleD.(c)SampleE.(d)ComparisonofsaturationoutputcurrentdensitybetweenpulsedandDC.3.3㊀界面栅介质插入层的影响图6展示了器件的转移输出特性对比ꎮ为了更明显地显示ꎬ将样品F㊁G的对比结果显示于图6(a)㊁(b)ꎬ将样品G㊁H的对比结果显示于图6(c)㊁(d)ꎮ样品F㊁G和H阈值电压分别为-6.46ꎬ-7.62ꎬ-7.04Vꎬ由此看出采用AlN栅介质插入层导致了器件的阈值向负漂移ꎬ是因为引入AlN插入层会在表面形成极化正电荷ꎬ影响阈值电压ꎮ图6中给出了样品F㊁G和H导通电阻分别为13.8ꎬ15.7ꎬ20.6Ω mmꎮ和样品F比较ꎬ样品G和H导通电阻增加的原因可能是引入AlN介质插入层会造成导通电阻在一定范围内退化ꎬ从而使饱和电流下降[19 ̄20]ꎮ观察图6(c)ꎬ发现样品H中ꎬ从-15V扫到5V的正向及从5V回扫到-15V的转移曲线回滞明显消除ꎬ而没有高温退火的样品G中回滞现象明显ꎮ图7给出了实验样品的正向阈值与负向阈值的对比ꎬ器件的阈值在回扫过程中会出现正向漂移ꎬF㊁G和H器件的阈值回滞ΔVth(Vth负向-Vth正向)分别为411ꎬ506ꎬ111mVꎮ和样品F相比ꎬ样品H的ΔVth降低72.99%ꎬ可以看出采用退火后AlN栅介质插入层界面处理的器件阈值回滞明显消除ꎬ说明由界面引起的器件性能退化得到控制ꎮ另外ꎬ未经过退火的AlN介质插入层的界面处理的器件G㊀第7期韩㊀军ꎬ等:界面处理对AlGaN/GaNMIS ̄HEMTs器件动态特性的影响919㊀阈值回滞反而增大ꎬ这可能是AlN材料中存在缺陷导致的ꎮ经过1000ħ的退火过程的样品HꎬAlN材料存在重结晶过程ꎬ提高了AlN材料质量ꎬ改善了界面质量ꎮ400-15V GS /VI D /(m A ·m m -1)(a )30020010006Reference(F)AlN interlaye(G)V GS :-15~5VV D :15~-15V V D :10V-12-9-6-303200406080Gm /(m S ·m m -1)400V D /VI D /(m A ·m m -1)(b )3002001000Reference(F)AlN interlaye(G)246810R ON (F)=13.8赘·mm R ON (G)=15.7赘·mm400-15V GS /VI D /(m A ·m m -1)(c )30020010006Anneal(H)AlN interlaye(G)V GS :15~5V V GS :15~-15V V D :10V-12-9-6-303200406080Gm /(m S ·m m -1)400V D /VI D /(m A ·m m -1)(d )3002001000AlN interlayer anneal(H)AlN interlaye(G)246810R ON (G)=15.7赘·mm R ON (G)=20.6赘·mmAlN interlayer(G)图6㊀样品转移㊁输出特性曲线对比ꎮ(a㊁b)样品F㊁G对比ꎻ(c㊁d)样品G㊁H对比ꎮFig.6㊀Comparisonoftransferandoutputcurvesforsamples.(aꎬb)SampleFandsampleG.(cꎬd)SampleGandsampleH.-6.2FV t h /VGH506mV111mVV GS :-15~5V V GS :5~-15V411mV -6.0-6.4-6.6-6.8-7.0-7.2-7.4-7.6图7㊀样品F㊁G㊁H正回扫阈值回滞对比ꎮFig.7㊀VthhysteresisforsampleFꎬsampleGandsampleH.图8给出了样品F㊁G㊁H电流崩塌对比ꎮ对比样品F和G数据ꎬ可以看出未经过退火处理的AlN插入层对器件的电流崩塌的改善不明显ꎬ这一结论同图7中器件阈值回滞变化相一致ꎮ对比样品G与H可以看出ꎬ器件的电流崩塌得到了很好的提高ꎬ900V下电流崩塌因子由样品G中的42.04下降到样品H的4.76ꎬ抑制效果明显ꎮ因此利用退火AlN作为栅介质插入层进行界面处理ꎬ能够有效改善Al ̄GaN/GaNMIS ̄HEMT器件界面ꎬ提高界面质量ꎬ抑制电流崩塌ꎬ提高器件可靠性ꎮQuiesent drain bias/V80R D y n a m i c /R O N40080010060402002006001000AlN interlayer anneal(H)AlN interlayer(G)Reference(F)图8㊀样品F㊁G㊁H电流崩塌对比ꎮFig.8㊀CurrentcollapseforsampleFꎬsampleGandsampleH.4㊀结㊀㊀论本文研究了AlGaN/GaNMIS ̄HEMT器件制备过程中不同界面处理对其性能的影响ꎮ研究发现ꎬ经过N2等离子体预处理较NH3等离子体预处理能够降低器件的电流崩塌因子ꎬ提高器件的可靠性ꎬ在该研究基础上优化了N2等离子体预处理时间ꎬ实验结果显示10min等离子体预处理能920㊀发㊀㊀光㊀㊀学㊀㊀报第40卷够有效地提高器件脉冲下电流ꎮ进一步引入AlN栅介质插入层ꎬ实验发现利用AlN插入层及退火工艺能够有效地改善AlGaN/GaNMIS ̄HEMT器件界面质量ꎬ抑制电流崩塌ꎬ提高器件可靠性ꎬ器件的阈值回滞从411mV减小至111mVꎬ实现在关态应力900V下将器件的电流崩塌因子由42.04下降到4.76ꎮ参㊀考㊀文㊀献:[1]ZHANGZLꎬYUGHꎬZHANGXDꎬetal..Studiesonhigh ̄voltageGaN ̄on ̄SiMIS ̄HEMTsusingLPCVDSi3N4asgatedielectricandpassivationlayer[J].IEEETrans.ElectronDev.ꎬ2016ꎬ63(2):731 ̄738.[2]LIUSCꎬCHENBYꎬLINYCꎬetal..GaNMIS ̄HEMTswithnitrogenpassivationforpowerdeviceapplications[J].IEEEElectronDev.Lett.ꎬ2014ꎬ35(10):1001 ̄1003.[3]KELEKÇIÖꎬTAŞLIPTꎬYUHBꎬetal..ElectrontransportpropertiesinAl0.25Ga0.75N/AlN/GaNheterostructureswithdifferentInGaNbackbarrierlayersandGaNchannelthicknessesgrownbyMOCVD[J].Phys.StatusSolidiꎬ2012ꎬ209(3):434 ̄438.[4]王凯ꎬ邢艳辉ꎬ韩军ꎬ等.掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究[J].物理学报ꎬ2016ꎬ65(1):016802 ̄1 ̄6.WANGKꎬXINGYHꎬHANJꎬetal..GrowthsofFe ̄dopedGaNhigh ̄resistivitybufferlayersforAlGaN/GaNhighelectronmobilitytransistordevices[J].ActaPhys.Sinicaꎬ2016ꎬ65(1):016802 ̄1 ̄6.(inChinese)[5]ELLERBSꎬYANGJLꎬNEMANICHRJ.ElectronicsurfaceanddielectricinterfacestatesonGaNandAlGaN[J].J.Vac.Sci.Technol.Aꎬ2013ꎬ31(5):050807 ̄1 ̄29.[6]XIONGCꎬLIUSHꎬLIYHꎬetal..Hotcarriereffectonthebipolartransistors responsetoelectromagneticinterference[J].Microelectr.Reliabil.ꎬ2015ꎬ55(3 ̄4):514 ̄519.[7]ZHANGZLꎬFUKꎬDENGXGꎬetal..NormallyoffAlGaN/GaNMIS ̄high ̄electronmobilitytransistorsfabricatedbyusinglowpressurechemicalvapordepositionSi3N4gatedielectricandstandardfluorineionimplantation[J].IEEEElectronDev.Lett.ꎬ2015ꎬ36(11):1128 ̄1131.[8]PENGMZꎬZHENGYKꎬWEIKꎬetal..Post ̄processthermaltreatmentformicrowavepowerimprovementofAlGaN/GaNHEMTs[J].Microelectr.Eng.ꎬ2010ꎬ87(12):2638 ̄2641.[9]VANKOGꎬLALINSKY'TꎬHAŠC㊅ÍKSꎬetal..ImpactofSF6plasmatreatmentonperformanceofAlGaN/GaNHEMT[J].Vacuumꎬ2009ꎬ84(1):235 ̄237.[10]MEYERDJꎬFLEMISHJRꎬREDWINGJM.SF6/O2plasmaeffectsonsiliconnitridepassivationofAlGaN/GaNhighelectronmobilitytransistors[J].Appl.Phys.Lett.ꎬ2006ꎬ89(22):223523 ̄1 ̄3.[11]WATANABETꎬTERAMOTOAꎬNAKAOYꎬetal..Low ̄interface ̄trap ̄densityandhigh ̄breakdown ̄electric ̄fieldSiNFilmsonGaNformedbyplasmapretreatmentusingmicrowave ̄excitedplasma ̄enhancedchemicalvapordeposition[J].IEEETrans.ElectronDev.ꎬ2013ꎬ60(6):1916 ̄1922.[12]KIMJHꎬCHOIHGꎬHAMWꎬetal..Effectsofnitride ̄basedplasmapretreatmentpriortoSiNxPassivationinAlGaN/GaNhigh ̄electron ̄mobilitytransistorsonsiliconsubstrates[J].Jpn.J.Appl.Phys.ꎬ2010ꎬ49(4S):04DF05. [13]HUANGSꎬJIANGQMꎬYANGSꎬetal..EffectivepassivationofAlGaN/GaNHEMTsbyALD ̄grownAlNthinfilm[J].IEEEElectronDev.Lett.ꎬ2012ꎬ33(4):516 ̄518.[14]EDWARDSAPꎬMITTEREDERJAꎬBINARISCꎬetal..ImprovedreliabilityofAlGaN ̄GaNHEMTsusinganNH3/plas ̄matreatmentpriortoSiNpassivation[J].IEEEElectronDev.Lett.ꎬ2005ꎬ26(4):225 ̄227.[15]HASHIZUMETꎬOOTOMOSꎬOYAMASꎬetal..ChemistryandelectricalpropertiesofsurfacesofGaNandGaN/AlGaNheterostructures[J].J.Vac.Sci.Technol.ꎬ2001ꎬ19(4):1675 ̄1681.[16]ROMEROMFꎬJIMÉNEZJIMENEZAꎬMIGUEL ̄SÁNCHEZMIGUEL ̄SANCHEZJꎬetal..EffectsofN2plasmapretreat ̄mentontheSiNpassivationofAlGaN/GaNHEMT[J].IEEEElectronDev.Lett.ꎬ2008ꎬ29(3):209 ̄211.[17]HASHIZUMETꎬOOTOMOSꎬINAGAKITꎬetal..SurfacepassivationofGaNandGaN/AlGaNheterostructuresbydielec ̄tricfilmsanditsapplicationtoinsulated ̄gateheterostructuretransistors[J].J.Vac.Sci.Technol.Bꎬ2003ꎬ21(4):1828 ̄1838.㊀第7期韩㊀军ꎬ等:界面处理对AlGaN/GaNMIS ̄HEMTs器件动态特性的影响921㊀[18]REINERMꎬLAGGERPꎬPRECHTLGꎬetal..Modificationof native surfacedonorstatesinAlGaN/GaNMIS ̄HEMTsbyfluorination:perspectivefordefectengineering[C].ProceedingsofIEEEInternationalElectronDevicesMeetingꎬWash ̄ingtonꎬDCꎬUSAꎬ2015:35.5.1 ̄35.5.4.[19]ACURIOEꎬCRUPIFꎬMAGNONEPꎬetal..ImpactofAlNlayersandwichedbetweentheGaNandtheAl2O3layersontheperformanceandreliabilityofrecessedAlGaN/GaNMOS ̄HEMTs[J].Microelectr.Eng.ꎬ2017ꎬ178:42 ̄47.[20]HUANGSꎬJIANGQMꎬYANGSꎬetal..MechanismofPEALD ̄grownAlNpassivationforAlGaN/GaNHEMTs:compen ̄sationofinterfacetrapsbypolarizationcharges[J].IEEEElectronDev.Lett.ꎬ2013ꎬ34(2):193 ̄195.韩军(1964-)ꎬ男ꎬ北京人ꎬ博士ꎬ副教授ꎬ2008年于北京工业大学获得博士学位ꎬ主要从事半导体材料与器件方面的研究ꎮE ̄mail:hanjun@bjut.edu.cn邢艳辉(1974-)ꎬ女ꎬ吉林德惠人ꎬ博士ꎬ副教授ꎬ2008年于北京工业大学获得博士学位ꎬ主要从事氮化镓半导体材料的生长㊁测试分析及器件等方面的研究ꎮE ̄mail:xingyanhui@bjut.edu.cn。
掺杂元素对LLZO的制备及与金属锂界面性能的影响刘彦博;陈挺;郑鸿鹏;徐比翼;段华南;刘河洲;王可;吴勇民【摘要】Solid state lithium-ion battery represents an important trend of battery technology.For the researching for the interface's performance of solid state electrolyte,in this work,LLZO with different dopants (Ta,Nb, Sb and Te)was synthesized and the conductivity and interfacial resistance with lithium metal were compared. The ionic conductivity and interfacial properties under different temperatures were also investigated.The results show that the LLZO doped with Ta maintained the ionic conductivity of5×10-4 S/cm and had the best per-formance in terms of the interfacial resistance.The EIS results showed that the interfacial resistance was decrea-sing with the increasing temperature,so that the LLZO would be one of the most promising solid state electro-lyte.%针对固态电解质的界面性能的研究和改进,制备了掺杂不同元素(Ta、Nb、Sb和Te)的含锂石榴石LLZO,对比了它们的传导率和界面电阻,探究了不同温度下的LLZO的离子传导性能及界面性能.发现当掺杂了Ta元素的情况下保持原有的传导率,传导率为5×10-4 S/cm,并且能够获得最好界面性能,并且随着温度的升高,对Li的界面电阻在不断下降,是具有应用前景的固态电解质.【期刊名称】《功能材料》【年(卷),期】2017(048)012【总页数】5页(P12001-12004,12010)【关键词】LLZO;掺杂;界面电阻;交流阻抗【作者】刘彦博;陈挺;郑鸿鹏;徐比翼;段华南;刘河洲;王可;吴勇民【作者单位】上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240;上海空间电源研究所,空间电源技术国家重点实验室,上海 200245;上海空间电源研究所,空间电源技术国家重点实验室,上海 200245【正文语种】中文【中图分类】TM912当今市场上快速发展的电动汽车行业、太阳能风能等的能源行业、航空航天储能产业等,都对现阶段的电池提出了更高的要求,由于锂离子电池具有着重量轻,比能量高,寿命长,无记忆效应等优点[1-2],得到了越来越多的应用,在一定程度上逐渐取代了镍氢电池和镍镉电池。
不同处理条件下铜离子溶液的电沉积行为铜离子的电沉积,是目前广泛应用于电子、汽车、航空、建筑等众多领域的一种重要技术。
而不同的处理条件,则会影响着铜离子电沉积的行为。
本文将从电沉积条件、溶液浓度、电流密度和PH值等几个方面来探讨不同处理条件下铜离子溶液的电沉积行为。
1.电沉积条件的影响电沉积条件是指在进行铜离子电沉积时所设置的参数,如电压、电流密度、时间等。
其中,电压会影响电沉积速率和密度,而电流密度则会影响电沉积品质和晶体形态。
时间则是电沉积完成的标志。
因此,我们在进行铜离子电沉积时,需要根据需要调整电压、电流密度和时间等参数。
2.溶液浓度的影响溶液浓度是指铜离子的浓度,它直接决定着电沉积所得的铜层质量。
通常情况下,在相同的电流密度下,铜离子的浓度越高,得到的铜层厚度也会越大。
但是过高的铜离子浓度也会导致表面粗糙和孔隙问题。
因此,我们在进行铜离子电沉积时,应该控制好浓度,以得到高质量的铜层。
3.电流密度的影响电流密度是指单位面积上电流通过的量,它会直接影响电沉积的速率和品质。
当电流密度较低时,铜层生长速率较慢,而且颗粒细小;而当电流密度较高时,则生长速率快,颗粒较粗大。
因此,合适的电流密度可以提高电沉积速率和铜层品质。
4.PH值的影响PH值是指溶液的酸碱度,它会对电沉积的结果产生影响。
当PH值过高时,会导致铜层中出现气泡和孔隙,严重影响铜层的品质;而当PH值过低时,则会导致电沉积速率下降,且铜层会出现暗色和较不均匀的现象。
因此,我们在进行铜离子电沉积时,需要控制好PH值,以得到高品质的铜层。
总之,在进行铜离子电沉积时,不同的处理条件会对结果产生影响。
因此,我们应该根据具体情况,对各个参数进行合理的调整和控制,以得到高品质的铜层。
电化学偏压
电化学偏压是指在电化学反应中,通过外加直流电压的方式来影响电极上的反应过程。
电化学偏压可以通过向电极施加阳极或阴极电位,从而引发氧化或还原反应。
在电化学阻抗谱测量中,直流偏压可以起到控制电极表面反应的作用。
是否需要施加偏压,取决于实验设计和目标。
例如,在腐蚀研究中,通常在开路电位下测量阻抗,不施加任何直流电位。
而在催化剂或锂电等研究中,通常需要在充电或放电状态下,或在不同电位下观察电极的性能和反应特性,此时需要施加直流偏压。
在使用电化学偏压时,需要根据实验条件和目标选择合适的偏压大小和施加方式,并进行相应的测试和数据分析,以获得可靠的实验结果。
第33卷第1期2021年1月化学研究与应用Chemical Research and ApplicationVol.33,No.1Jan.,2021文章编号:1004-1656(2021)01-0090-07热处理气氛对a-Fe203光阳极光电化学性能影响研究李龙珠*,吴浩宇,陈玉伟,杨蓉,唐惠东(常州工程职业技术学院化工与制药工程学院,江苏常州213164)摘要:分别在空气和氮气中对水热制备的薄膜进行热处理获得了纳米棒状a-Fe2()3光阳极。
对样品分别进行T X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收光谱和光电化学性能测试。
与空气热处理获得的a-Fe2O3Air光阳极相比,氮气气氛热处理获得的a-Fe2O3N2光阳极正面光照电流密度显著提升达到0.42mA-cm'%正面光照下,a-Fe2O3N2光阳极的体内电荷分离效率弘强和表面电荷注入效率Nwfaee都有较大增加,说明%热处理明显增加了«-Fe203膜的载流子浓度,增强了体内载流子的传输和表面载流子注入效率。
关键词:光电化学电池;水分解;a-Fe203;水热法中图分类号:TK91文献标志码:AEffects of annealing atmosphere on the photoelectrochemicalperformance of a-Fe2O3photoanodesLI Long-zhu*,WU Hao-yu,CHEN Yu-wei,YANG Rong,TANG Hui-dong(School of Chemical and Pharmaceutical Engineering,Changzhou Vocational Institute of Engineering,Changzhou213164,China)Abstract:The hydrothermal prepared films were converted into nanorods-like a-Fe203photoanodes by annealing treatment in air and nitrogen,respectively・The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) ,X-ray photoelectron spectroscopy(XPS),UV-vis absorption spectroscopy and photoelectrochemical properties.Under front illumination,the photocurrent density of the a-Fe2O3photoanode annealed in nitrogen atmosphere increased significantly to0.42mA•cm'2compared with that of hematite photoanode annealed in air.The a-Fe203photoanode annealed in nitrogen atmosphere had gready increased ^buik i7surface under front illumination,which indicated that nitrogen heat treatment significantly increased the carrier concentration of the hematite film and enhanced the carrier transport in the bulk and surface carrier injection efficiency.Key words:photoelectrochemical;water splitting;a-Fe203;hydrothermal method收稿日期=2020-06-09;修回日期:2020-10-12基金项目:江苏省高等学校自然科学研究面上项目(19KJB510001)资助;江苏省青蓝工程项目资助;国家自然科学基金项目(51874050)资助联系人简介:李龙珠(1981-),女,副教授,主要从事新能源材料制备研究。
JournalofPowerSources146(2005)287–293TheeffectsofpreparationconditionanddopantontheelectrochemicalpropertyforFe-substitutedLi2MnO3
MitsuharuTabuchia,∗,AkikoNakashimaa,KazuakiAdoa,HikariSakaebea,
HironoriKobayashia,HiroyukiKageyamaa,KuniakiTatsumia,
YoKobayashib,ShiroSekib,AtsushiYamanakab
aNationalInstituteofAdvancedIndustrialScienceandTechnology(AIST),1-8-31Midorigaoka,
Ikeda,Osaka563-8577,JapanbCentralResearchInstituteofElectricPowerIndustry,2-11-1Iwadokita,
Komae,Tokyo201-8511,Japan
Availableonline28April2005
AbstractThespecificcapacityofFe-substitutedLi2MnO3(Li1.2Fe0.4Mn0.4O2)wasimprovedbyadjustingthepreparationtemperatureofFe–Mn
co-precipitatebelowRTinordertosuppressthespinelferriteformation,whichhinderstheformationofhomogeneousandreactiveprecursor.Thedegradationofdischargecapacitywithcyclecouldbesuppressedbynominal5%Al,NiandCodoping.ThismeansthatFe-substitutedLi2MnO3willbeconsideredtobeoneofthenearfuturepositiveelectrodesforpracticalusebycarefuloptimizationofitspreparationcondition
andchemicalcomposition.©2005ElsevierB.V.Allrightsreserved.
Keywords:Dopant;Fe-substitutedLi2MnO3;Electrochemicalproperty
1.IntroductionThepositiveelectrodematerialsincludingironionhavebeenstudiedenergeticallyinordertoavoiddepletionofcobaltresourcesinLiCoO2withthedevelopmentoflarge-scalelithium-ionbattery.Althoughlithiumironphosphate(LiFePO4)isoneofthebestcandidatesasa3Vpositiveelectrodefortheaboveapplication,thereareseveralvalu-ablechallengesforfinding4Vpositiveelectrodematerialbasedonironoxides.Amongthem,thefollowingresultsareobtained:thedegradationofelectrochemicalperformanceinLiFexM1−xO2(0lutions,andsomedegreeofFe3+/Fe4+redoxreactionwithCoorNiiononchargingat4V[3,4].Delmasetal.pro-posedtheFe4+ionstabilizationmodel;theFe4+ioncouldbegeneratedifitwassurroundedwithonlyNi4+ions[4].
However,therewasnoevidencewhethertheFe3+/Fe4+redox
∗Correspondingauthor.Tel.:+81727519618;fax:+81727519714.
E-mailaddress:m-tabuchi@aist.go.jp(M.Tabuchi).
voltageexistedornotat4Vwithouttheoxidation/reductionofother3delementsinthelayeredrock-saltstruc-ture.Hence,Fe-substitutedLi2MnO3(LiFeO2–Li2MnO3
solidsolution:Li(4−y)/3Mn(2−2y)/3FeyO2,0
beendesignedforextractingtheFe3+/Fe4+redoxvolt-age[5,6],becauseLi2MnO3hasbeenwellknownasan
electrochemically-inactivephase.Inourpreviousreport,Fe-substitutedLi2MnO3hasbeenfoundtobelongtoa4Vposi-tiveelectrodematerialduetotheappearanceoftheFe3+/Fe4+
redoxvoltagearound4V[5,6].Unfortunately,thespecificca-pacityforLi1.2Fe0.4Mn0.4O2wastoosmall(70–80mAhg
−1
atlowcurrentdensity7.5mAg−1)forpracticaluse.Inthiswork,carefuloptimizationofpreparationconditionhasbeencarriedout,andsomeimprovementofitselectrochemicalpropertyatatypicalcurrentdensity(42mAg−1)ispro-posed.Someelements(Al,Ni,andCo)havebeenuti-lizedasadopant,theamountofwhichwasabout5%,forexaminingtheireffectontheelectrochemicaldataasshownpreviouslyinLiNi0.475Mn0.475M0.05O2(M=Al,Ti,Co)[7].
0378-7753/$–seefrontmatter©2005ElsevierB.V.Allrightsreserved.doi:10.1016/j.jpowsour.2005.03.032288M.Tabuchietal./JournalofPowerSources146(2005)287–293Fig.1.SyntheticrouteforFe-substitutedLi2MnO3(Li1.2Fe0.4Mn0.4O2).SamplesF1andF2wereobtainedfromsamplesH1andH2,whichwerepreparedfromFe–Mnco-precipitatedepositedat+20and−10◦C,respec-tively.
2.ExperimentalThreestepswererequiredforobtaininghomogeneousLi1.2Fe0.4Mn0.4O2samples(0.25mol),asshowninFig.1.
(1)Fe–Mnco-precipitateswerepreparedbyslowlydrop-pingLiOHsolution(50gofLiOH·H2O(>98%inpu-rity)dissolvedinto500mlofdistilledwater)intomixedFe–Mnnitratesolution(0.125molofFe(NO3)3·9H2O(>99.9%inpurity)andMnCl2·4H2O(>99%inpurity)dissolvedinto500mlofdistilledwaterand200mlofethanol)at+20or−10◦C.Ethanolwasaddedtoavoidfreezingthesolutionundercoolingat−10◦C.Theob-tainedco-precipitatesweresubjectedtoagingunderairbubblingfor2daysatroomtemperature.TheFe–Mnco-precipitateswereseparatedbyfiltrationprocess.(2)Low-crystallinityLi1.2Fe0.4Mn0.4O2finepowder(pre-cursorsnamedsamplesH1andH2)wasformedbyhy-drothermaltreatmentoftheaboveco-precipitateswithanexcessamountofLiOH·H2O(50g)andKClO3(50g,>99.5%inpurity)at220◦Cfor8h.Theprecursorswerepurifiedbywashingwithdistilledwater,andthenfiltra-tionanddryingat100◦C.(3)ThefinalproductswereobtainedbyfiringthemixtureoftheprecursorandanadditionalLiOH·H2O(0.25mol)intemperaturerangingfrom650◦Cunderoxygenflow.Bywashingwithdistilledwater,filtrationandthendryingat100◦C,eachproductwasseparatedfromresidualsalts.
Co(NO3)2·6H2OorNi(NO3)2·6H2Oaddednominally
5mol%(Ni/(Fe+Mn+Ni)andCo/(Fe+Mn+Co)=0.05)intoFe–Mnnitratesolutioninstep(1)forhomoge-neouscationdoping.Additionof5mol%Alsource(Al(NO3)3·9H2O,Al/(Fe+Mn+Al)=0.05)hasbeenper-formedbeforefiringinstep3,becauseAl3+ionwasdissolvedintothesolutionunderhighpHcondition.ThesamplecompositionwasestimatedbyLi,Fe,Mn,Al,Co,NielementalanalysisusingICPspectrometer.Purity