函数与不等式问题的解题技巧
- 格式:docx
- 大小:397.49 KB
- 文档页数:12
第三讲 函数与不等式问题【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的使用不等式的基本知识、基本方法,解决有关不等式的问题.12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、分析几何等各部分知识中的使用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在使用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题分析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会使用用函数的定义域解决有关问题. 例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<. 故选C例2.函数y ( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数分析式的求法来求复合函数的值.二是使用已知函数定义域求复合函数的定义域.例5.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的分析式的求解以及函数的奇偶性使用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8. ()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B.方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。
一次函数和不等式的解题技巧一次函数和不等式是数学中非常基础的概念,也是我们日常生活中经常会遇到的问题。
在学习和解决这些问题时,我们需要掌握一些解题技巧,以便更好地理解和应用这些概念。
本文将介绍一些解决一次函数和不等式问题的技巧和方法。
一、一次函数一次函数是指形如y = kx + b的函数,其中k和b是常数。
在解决一次函数问题时,我们需要掌握以下几点:1. 确定函数的斜率和截距一次函数的斜率k表示函数在直线上的倾斜程度,截距b表示函数与y轴的交点。
根据这些信息,我们可以画出函数的图像并更好地理解函数的性质。
2. 确定函数的定义域和值域一次函数的定义域是指函数可取的x值的范围,值域是指函数可取的y值的范围。
在解决问题时,我们需要根据实际情况确定函数的定义域和值域,并注意函数的限制条件。
3. 利用函数的性质解决问题一次函数具有很多性质,如单调性、奇偶性、周期性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定函数的最值、解决方程等。
二、不等式不等式是指形如ax + b < c或ax + b > c的式子,其中a、b、c是常数。
在解决不等式问题时,我们需要掌握以下几点:1. 确定不等式的解集不等式的解集是指满足不等式的x值的范围。
在解决问题时,我们需要根据不等式的符号和常数确定解集,并注意解集的限制条件。
2. 利用不等式的性质解决问题不等式具有很多性质,如可加性、可减性、可乘性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定不等式的最值、解决方程等。
3. 联立不等式解决问题有时候,我们需要联立多个不等式来解决问题。
在联立不等式时,我们需要注意不等式的符号和常数,并根据实际情况确定解集。
三、综合应用在解决实际问题时,我们需要综合运用一次函数和不等式的知识和技巧。
例如,当我们需要求解一条直线与坐标轴围成的三角形的面积时,我们可以利用一次函数的性质确定直线的斜率和截距,并利用不等式的性质确定三角形的顶点坐标和面积。
Җ㊀安徽㊀孙光元㊀㊀函数的单调性会在很多题型中出现或应用,如求解函数最值㊁解函数不等式㊁求函数中参数的范围等.因此,利用函数的单调性就成为解题的关键,我们要学会巧妙利用题干中的条件把原问题进行等价转换,利用函数单调性顺利求解问题.1㊀直接法采用直接法构造函数要求考生掌握函数㊁不等式和方程之间的关系,熟悉不等式和方程所对应的函数的单调性,从而熟练构造函数,利用单调性顺利完成问题求解.直接法是构造函数最常用的一种方法,在解题时要学会灵活运用.例1㊀已知1x +1+1x +2+ +12x ȡ112l o g a (a -1)+23对于大于1的正整数x 恒成立,试确定a 的取值范围.构造函数f (x )=1x +1+1x +2+ +12x,因为f (x +1)-f (x )=12x +1+12x +2-1x +1=12x +1-12x +2>0,所以函数f (x )是增函数.又因为x 是大于1的正整数,所以f (x )ȡf (2)=712.若要使目标不等式成立,那么112lo g a (a -1)+23ɤ712,即l o g a (a -1)ɤ-1,解得1<a ɤ1+52.2㊀作差或作商法作差㊁作商法简单来说就是在解题过程中,可直接利用作差f (x 1)-f (x 2)或作商f (x 1)f (x 2)(f (x 2)>0)来构造函数,这是比较直观和简单的一个方法.例2㊀已知x >-1,且x ʂ0,n ɪN ∗,当n ȡ2时,求证:(1+x )n>1+n x .令f (n )=1+n x(1+x )n,因为x >-1,且x ʂ0,所以f (n +1)-f (n )=1+(n +1)x (1+x )n +1-1+n x (1+x )n =-n x 2(1+x )n +1<0,故f (n )在N ∗上是减函数,则f (2)<f (1)=1+x1+x=1,所以当n ȡ2时,f (n )<1,即(1+x )n>1+n x .3㊀分离参数法题目中含有参数的情况比较复杂,会使解题的过程变得有些困难,而这个时候就需要把参数单独分离在等号或者不等号的一边,让另外一边的函数关系变得清晰明了,从而利用函数单调性进行求解.例3㊀已知x >0时,1+l n (x +1)x >k x +1恒成立,求正整数k 的最大值.当x >0时,1+l n (x +1)x >k x +1恒成立,即[1+l n (x +1)](x +1)x>k 恒成立.设f (x )=[1+l n (x +1)](x +1)x(x >0),则要使f m i n (x )>k ,易知fᶄ(x )=x -1-l n (x +1)x 2.设g (x )=x -1-l n (x +1)(x >0),所以gᶄ(x )=xx +1>0,所以g (x )在区间(0,+ɕ)上单调递增,且g (2)=1-l n3<0,g (3)=2-2l n2>0.所以存在唯一实数a ,使得g (x )=0,且a ɪ(2,3).当x >a 时,g (x )>0,f ᶄ(x )>0,函数f (x )单调递增;当0<x <a 时,g (x )<0,fᶄ(x )<0,函数f (x )单调递减.所以f mi n (x )=f (a )=(a +1)[1+l n (a +1)]a =a +1ɪ(3,4).综上,正整数k 的最大值为3.直接法㊁作差或作商法㊁分离参数法等都是构造函数最常用的几种技巧和方法,除此之外,还有很多其他方法,如换元法㊁辅助法等,在解题的过程中要善于举一反三㊁灵活运用.(作者单位:安徽省肥东第一中学)51。
掌握高考数学中的三角函数方程与不等式求解方法在高考数学中,三角函数方程与不等式求解是一项重要的内容。
掌握这些方法可以帮助我们解决各种与三角函数相关的问题。
本文将详细介绍三角函数方程与不等式的基本概念,并提供一些常见的求解方法。
一、三角函数方程的基本概念三角函数方程是指含有三角函数的数学方程。
在高考数学中,我们通常会遇到包括正弦、余弦、正切等三角函数的方程。
我们首先来了解下三角函数的基本性质:1. 正弦函数(sin):正弦函数是指以单位圆上某个角对应点的纵坐标作为函数值的函数。
其定义域为实数集,值域为[-1,1]。
2. 余弦函数(cos):余弦函数是指以单位圆上某个角对应点的横坐标作为函数值的函数。
其定义域为实数集,值域为[-1,1]。
3. 正切函数(tan):正切函数是指以单位圆上某个角的正切值作为函数值的函数。
其定义域为实数集,值域为(-∞,+∞)。
了解了三角函数的基本性质后,我们可以开始介绍三角函数方程的求解方法。
二、三角函数方程的求解方法在高考考查的三角函数方程中,一般会出现如下几种类型:1. 正弦函数方程:形如sin(x) = a 的方程。
其中a为已知实数。
对于这类方程,我们可以通过反函数sin^-1来求解。
即,如果sin(x) = a,则x = sin^-1(a)。
2. 余弦函数方程:形如cos(x) = a的方程。
其中a为已知实数。
和正弦函数方程一样,我们可以通过反函数cos^-1来求解。
3. 正切函数方程:形如tan(x) = a的方程。
其中a为已知实数。
对于这类方程,我们同样可以通过反函数tan^-1来求解。
在实际求解中,可以将三角函数方程转化为代数方程,然后再通过代数方程的求解方法来解答。
这样可以简化计算,提高解题效率。
三、三角函数不等式的基本概念除了三角函数方程外,我们还经常会遇到三角函数不等式。
三角函数不等式的解集是满足不等式的实数的集合。
下面我们来了解一些常见的三角函数不等式。
数学不等式与函数题解题技巧和思路分享数学是一门既抽象又具体的学科,其中不等式与函数是数学中的重要内容。
解题技巧和思路在数学学习中起到至关重要的作用。
本文将分享一些解决数学不等式与函数题的技巧和思路,帮助读者更好地应对这类题目。
一、不等式题解题技巧不等式题是数学中常见的题型,解题时需要注意以下几个技巧:1. 观察不等式的形式:不等式可以分为一元不等式和多元不等式。
对于一元不等式,我们可以通过图像、区间、符号等方式进行分析;对于多元不等式,需要考虑各个变量之间的关系。
2. 利用性质进行转化:有时候,我们可以通过一些性质将不等式转化为更简单的形式。
例如,对于二次不等式,可以利用平方差公式将其转化为完全平方差形式,从而更方便进行求解。
3. 运用数学方法:在解决不等式问题时,可以借助数学方法进行推导和证明。
例如,可以利用数列的性质、平均值不等式、柯西-施瓦茨不等式等进行推导,从而得到更加准确的结果。
4. 注意特殊情况:在解决不等式问题时,需要注意特殊情况的存在。
例如,当不等式中的变量为负数或零时,不等式的符号可能会发生变化,需要进行特殊处理。
二、函数题解题技巧函数题是数学中的重要内容,解题时需要注意以下几个技巧:1. 理解函数的定义与性质:在解决函数题时,首先需要理解函数的定义与性质。
例如,对于一元函数,需要了解其定义域、值域、单调性、奇偶性等性质,从而更好地进行分析和推导。
2. 利用函数的图像进行分析:函数的图像可以直观地反映函数的性质。
通过观察函数的图像,可以获得一些关于函数的信息,从而更好地解决函数题。
3. 运用函数的性质进行推导:在解决函数题时,可以利用函数的性质进行推导和证明。
例如,可以利用导数的定义和性质进行函数的最值求解,利用函数的连续性进行函数的极限计算等。
4. 注意函数的特殊情况:在解决函数题时,需要注意函数的特殊情况。
例如,当函数的定义域存在间断点时,需要进行特殊处理;当函数存在极值点时,需要进行极值点的求解。
高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。
2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。
通过运用这些
基本不等式,可以简化和推导复杂的不等式。
3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。
例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。
4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。
增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。
通过多次的增减操作,可以逐步简化不等式的形式。
5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。
数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。
6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。
这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。
总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。
掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。
不等式基本解题技巧梳理技巧一: 配凑法对加法型,两个因式的未知数部分凑成倒数关系,配凑成符合基本不等式成立的三个条件“一正二定三相等”。
技巧二: 分离常数法1.已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式;2. 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式;3. 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果. 技巧三: 对勾函数法:用基本不等式求解时,若遇等号取不到的情况1.运用凑项或换元法将所给的函数化简为满足基本不等式的形式;2.结合函数()a f x x x =+的单调性,并运用其图像与性质求出其函数的最值即可; 技巧1 配凑法【例1】(2021·广西河池市)函数19()(1)41f x x x x =+>-的最小值为( ) A .134 B .3C .72D .94 【举一反三】1.已知2244x y +=,则2211x y +的最小值为( ) A .52 B .9 C .1 D .942.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 3.若正实数a ,b 满足111122a b +=++,则ab a b ++的最小值为_______. 技巧2 分类常数法 【例2】已知52x ≥,则2332x x y x -+=-有( ) A .最大值1B .最小值1C .最大值3D .最小值3【举一反三】 1.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-12.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则a =( )A .1+B .2C .4D .63.若72x ,则2610()3x x f x x -+=-有( )A .最大值52 B .最小值52 C .最大值2 D .最小值24.已知函数()2sin sin 2xf x x =+,则()f x 的最大值为( )A .2-B .1-C .0D .1技巧3 对勾函数【例3】函数()2436x x f x x ++=-的值域为__________.【举一反三】1.函数2y =的最小值为( )A .2B .52 C .1 D .不存在2.函数()ln 22ln xf x x =+,(]1,e x ∈的最小值为________.3.设(0,)x π∈,则函数sin 22sin =+xy x 的最小值是___________.巩固练习一、单选题1.已知正实数x 、y 、z 满足2221x y z ++=,则58xyz -的最小值是( )A .6B .5C .4D .32.已知x y R +∈,,若不等式110232mx y x y x y ++≥+++恒成立,则实数m 的最值情况为() A .有最小值4- B .有最大值4- C .有最小值4 D .有最大值43.已知0a >,0b >,若不等式122ma b a b +≥+恒成立,则实数m 的最大值为( )A .10B .9C .8D .74.已知不等式()19a x y x y ⎛⎫++⎪⎝⎭≥对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4C .6D .8 5.若对任意满足8a b +=的正数a ,b 都有14111x a b x ++≥+-成立,则实数x 的取值范围是( ) A .[)0,1 B .()1,+∞ C .(](),01,-∞+∞ D .()(),01,-∞⋃+∞6.已知0x >,0y >,若2288yx ym m x y ++>-恒成立,则实数m 的取值范围是() A .19m -<< B .91m -<< C .9m ≥或1m ≤- D .m 1≥或9m ≤- 7.当104x <<时,不等式11014m x x +-≥-恒成立,则实数m 的最大值为( )A .7B .8C .9D .108.已知0,0x y >>且111211x y +=++,则x y +的最小值为________.9.已知正实数a 、b 满足21a b +=,则11aba b +--的最小值为____________.10.函数2221()0sin cos 2f x x x x π⎛⎫=+<< ⎪⎝⎭的最小值是________.11.当0x >时,函数231x x y x ++=+的最小值为_________.12.函数2(2)2x y x x =>-的最小值为_______________13.若实数,x y 满足22321x xy y --=,则2252x yx xy y +++的最大值为___________.14.求()271011x x y x x ++=>-+的最小值______.15.()21147x x x x ->-+的最大值为______.16.已知()()23601x x f x x x ++=>+,则()f x 的最小值是________.。
含参数的方程、不等式的问题解题策略含参数的方程、不等式的问题是历年高考常考的题型,由于含有参数对很多同学来说感到困难重重,一重困难是选择什么样的解题方法(如2012年山东卷第12题),二重困难是含参数问题涉及到的分类讨论(如2017年全国卷1第21题),根据我多年的研究发现,(1)这类题目解题方法有规可循,基本方法有:分离参数构建函数,不分离参数构建函数,半分离参数构建函数,总之,如何构建函数是解题的关键。
(2)很多求参数取值范围的问题,其实有时可以避开分类讨论这个陷阱。
本文就结合实例谈谈这类问题的求解策略。
一、分离参数构建函数:若方程或不等式中的参数容易分离出来,即参数分离 在方程或不等式的一边,另一边是关于自变量的函数,分离后的函数不复杂,容易求出导函数,容易研究函数的性质,就选择分离参数法构建函数。
例1(2017年全国高考卷1第21题)已知函数2()(2)x x f x ae a e x =+-- 若()f x 有两个零点,求a 的取值范围.分析:2f(x)=ae (-2)e x x a x +-有两个零点,转化为方程2(2)0x x ae a e x +--=有两个根先分离参数22a x x x e x e e +=+,令222(1)(21)()g ()(1)x x x x x x x e x e x e g x x e e e e +-+-+'==++,设1x h x -+(x)=-e ,则()h x 递减,(0)0h =当(,0)x ∈-∞时()0h x > ()0g x '∴>()g x ∴递增,当(0,)x ∈+∞时,()0,()0,()h x g x g x '<∴<∴递减,所以当x →+∞时()0g x →,当x →-∞时,g(x)-→∞如图01a ∴<<评析:查阅高考评分标准,看出对参数a>0共分了三种情况讨论:(1)a=1(2)a>1(3)0<a<1,其中0<a<1时,要用函数零点的判定定理,找区间端点时非常困难,绝大多数同学完成不了。
一次函数和不等式的解题技巧一次函数和不等式是数学中基础的概念,也是学习数学的重要门槛。
在学习这两个知识点时,我们需要掌握一些解题技巧,以便更好地理解和应用这些知识点。
一、一次函数的解题技巧一次函数是指形如y=kx+b的函数,其中k和b为常数。
在解题时,我们需要掌握以下技巧:1. 确定函数的斜率和截距斜率k决定了函数的变化趋势,截距b决定了函数的位置。
因此,我们需要先确定函数的斜率和截距,才能更好地理解函数的性质。
2. 理解函数的图像一次函数的图像是一条直线,我们需要理解直线的性质,比如斜率越大,函数的变化越快;截距越大,函数的位置越高。
3. 利用函数的性质解题一次函数具有一些特殊的性质,比如斜率为正时,函数单调增加;斜率为负时,函数单调减少。
我们可以利用这些性质来解题,比如求函数的最值、最小值等。
二、不等式的解题技巧不等式是指形如a<b或a≤b的数学式子,其中a和b可以是数字、变量或表达式。
在解题时,我们需要掌握以下技巧:1. 理解不等式的含义不等式的含义是比较大小关系,我们需要理解不等式的含义,才能更好地应用不等式解题。
2. 利用不等式的性质解题不等式具有一些特殊的性质,比如加减不等式、乘除不等式、绝对值不等式等,我们可以利用这些性质来解题,比如求不等式的解集、证明不等式等。
3. 注意不等式的变形在解题时,我们需要注意不等式的变形,比如加减、乘除、开方等操作会改变不等式的性质,需要根据具体情况来进行变形。
三、一次函数和不等式的综合应用一次函数和不等式常常在实际生活中综合应用,比如求解线性规划问题、解决经济问题、分析统计数据等。
在综合应用时,我们需要掌握以下技巧:1. 理解实际问题的背景和条件在应用一次函数和不等式解决实际问题时,我们需要先理解问题的背景和条件,才能更好地应用数学知识解决问题。
2. 建立数学模型在理解问题的背景和条件后,我们需要建立数学模型,将实际问题转化为数学问题,以便更好地进行求解。
高考数学中的三角函数方程与不等式求解技巧高考数学中,三角函数方程和不等式的求解是一个重要的考点。
掌握了相关的求解技巧,不仅可以提升数学成绩,还能在解决实际问题时起到关键作用。
本文将介绍一些常见的三角函数方程和不等式求解技巧,希望能对广大考生有所帮助。
一、三角函数方程的求解技巧1. 化简与等价变形在解三角函数方程时,首先要将复杂的方程化简为简单的形式。
通过等价变形,将方程转化为更易求解的形式,例如利用倒数公式、和差化积公式、和差化简等。
2. 观察周期性大多数三角函数具有周期性。
因此,在求解三角函数方程时,要充分利用函数图像的周期性质。
可以通过观察函数值的变化规律,找到方程在一个周期内的解,并推广到整个定义域。
3. 递推思想当遇到复杂的三角函数方程时,可以通过递推思想来解决。
即将方程中的变量逐步代入,化简为只含有一个未知数的方程,并逐步求解得到最终结果。
4. 回代与验证在得到方程的解后,要进行回代与验证。
将解代入原方程,验证等式是否成立。
如果成立,则解是方程的解;如果不成立,则需要重新检查求解过程。
二、三角函数不等式的求解技巧1. 图像法在解三角函数不等式时,可以绘制函数的图像来直观地找到不等式的解集。
通过观察图像的上升和下降趋势,确定不等式的取值范围。
2. 移项与化简与方程求解类似,不等式的求解也要通过移项和化简来将复杂的不等式转化为简单的形式。
通过等价变形,将不等式转化为更易求解的形式。
3. 考虑周期性与对称性三角函数的周期性和对称性是解三角函数不等式的重要技巧。
利用函数图像的周期性和对称性,可以将不等式的解集缩小到一个周期内,然后推广到整个定义域。
4. 关系式的转化有时候,将不等式转化为等价的关系式,可以更方便地求解。
例如,将不等式化为方程,然后根据方程的解集求解不等式的解集。
总结:高考数学中的三角函数方程与不等式求解技巧可以通过化简与等价变形、观察周期性、递推思想、图像法、移项与化简、考虑周期性与对称性、关系式的转化等方法来解决。
第三讲函数与不等式问题的解题技巧【命题趋向】全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照2007年的考纲和高考函数试题有这样几个特点:1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现.3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.5.涌现了一些函数新题型.6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.函数类试题在试题中所占分值一般为22---35分.而2007年的不等式试题则有这样几个特点:1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题.2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.可以预测在2008年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性-函数极值-函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式问题,在解答题中会出现一些不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。
【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题解析】1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.(2007年广东卷理)已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<.故选C例2. ( 2006年湖南卷)函数y ( ) (A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.(2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩Q Q 解又 故选C.例4.(2007年湖北卷理)已知函数2y x a =-的反函数是3y bx =+,则a = ;b = .命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+Q 与3y bx =+比较得a =6,1.2b = 故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.例5.(2007年北京卷文)对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=Q 是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力.解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.(2006年全国卷) 已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的解析式的求解以及函数的奇偶性应用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--xx a a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8.(2007年全国卷理I )()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B. 方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证.5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.(2006年山东卷)函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A.6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.(2007年浙江卷文)已知.|1|)(22kx x x x f ++-=(Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。