电子衍射原理
- 格式:ppt
- 大小:1.32 MB
- 文档页数:31
第一节电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
一、实验目的1. 了解电子衍射的基本原理和实验方法;2. 通过实验验证德布罗意波粒二象性;3. 掌握电子衍射实验装置的操作及数据分析方法。
二、实验原理电子衍射实验基于德布罗意波粒二象性原理,即粒子(如电子)同时具有波动性和粒子性。
当电子束照射到晶体样品上时,会发生衍射现象,产生一系列衍射斑点,从而可以观察到电子的波动性质。
实验原理公式如下:1. 德布罗意波长公式:λ = h/p,其中λ为电子波长,h为普朗克常数,p为电子动量;2. 布拉格定律:2dsinθ = nλ,其中d为晶面间距,θ为入射角,n为衍射级数。
三、实验仪器与材料1. 实验仪器:电子衍射仪、样品台、电子枪、荧光屏、电源、示波器等;2. 实验材料:银多晶薄膜样品、电子枪灯丝、真空泵、高纯氮气等。
四、实验步骤1. 准备实验仪器,确保电子枪、样品台、荧光屏等设备正常运行;2. 将银多晶薄膜样品固定在样品台上,调整样品台的高度和角度,使电子束垂直照射到样品表面;3. 打开电子枪,调节灯丝电压和电流,使电子枪产生稳定的电子束;4. 将电子束聚焦在样品表面,调整荧光屏与样品的距离,使荧光屏能够清晰地观察到衍射斑点;5. 打开示波器,观察并记录衍射斑点的位置、大小和形状;6. 重复以上步骤,分别改变样品台的角度和电子枪的电压,观察衍射斑点的变化;7. 对比实验数据,分析电子衍射现象,验证德布罗意波粒二象性。
五、实验结果与分析1. 观察到荧光屏上出现一系列衍射斑点,且斑点分布规律符合布拉格定律;2. 当改变样品台的角度和电子枪的电压时,衍射斑点的位置和大小发生变化,但仍然符合布拉格定律;3. 通过实验验证了德布罗意波粒二象性,即电子既具有波动性,又具有粒子性。
六、实验结论1. 电子具有波动性和粒子性,实验结果验证了德布罗意波粒二象性;2. 电子衍射实验是一种重要的实验方法,可以用于研究物质的晶体结构和电子的波动性质;3. 在实验过程中,要注意实验仪器的操作规范,确保实验数据的准确性。
电子衍射与X射线衍射比较相似性:波的叠加导致布拉格公式结构因子消光规律s s v v vK称为电子衍射相机常数λ0S v λS vg hkl vλ0S v λS vg hkl v衍射斑点矢量是产生这一斑点晶面组的倒易矢量的比例放大,K是放大倍数故仅就衍射花样的几何性质而言:单晶花样中的斑点可以直接看成是相应衍射晶面的倒易阵点,各个斑点的就是相应的,之间的夹角就等于产生衍射的两个晶面之间的夹角。
g v R v R v g v R vfr多晶电子衍射花样的标定及其应用二、应用1、已知晶体标定仪器的相机常数KRd =150kv加速电压下拍得多晶金的衍射花样①测量环的半径R i从里向外测得圆的直径:2R 1=17.6mm 、2R 2=20.5mm 、2R 3=28.5mm ,………即R l =8.8mm ,R 2=10.3mm 、R 3=14.3mm 、……已知金为面心结构,a =0.407nm②计算R i 2及R i 2/R 12(R 1—最小半径),根据R i 2/R 12确定衍射环指数8:4:3R :R :R 232221=18:6:4:2 17.9:00.3:98.1:1R :R :R :R 2D2C 2B 2A ==简单立方:1,2,3,4,…体心立方:2,4,6,8,10,12,…h+k+l=2n 面心立方:3,4,8,11,12,16,19,20,…全奇全偶满足体心结构标准花样对照法:由R=Kg可推知:单晶电子衍射花样实质是满足衍射条件的某个零层倒易面的放大像。
∗0]uvw [对于本例,可知,衍射花样是的放大像∗0]110[单晶电子衍射花样分析三、应用1、物相鉴定原理与X射线相同,根据d值和强度查PDF卡片但仅跟据某一晶带的衍射斑点,d值不够8个。
须倾动晶体样品,拍摄不同晶带的衍射花样。
根据化学成分,热处理工艺,可将待测相限制为几种可能,可根据下面三个条件,仅由一张花样鉴别。
<1>点阵类型与PDF卡片相符<2> 衍射斑点必须自洽<3> 底指数晶面间距与卡片的标准相符,允许误差3%左右单晶电子衍射花样分析三、应用2、晶体取向关系的验证和确定<1> 两相取向关系常用两相的一对互相平行的晶面及面上平行的晶向来表示()()[]BA BA w v u //]uvw [l k h //hkl ′′′′′′()()()()()()B 333A 333B 222A 222B 111A 111l k h //l k h l k h //l k h l k h //l k h ′′′′′′′′′表示:面或三对平行的晶向来有时也用三对平行的晶[][][]333A 333B 222A 222B111A 111w v u //]w v u [w v u //]w v u [w v u //]w v u [′′′′′′′′′)),根据()110()011()020()111()111()200(200()202B(h 2k 2l 2)C E F A(h 1k 1l 1)1g v 2g v 'g v D O gv 乘一个系数n,使(hkkl)转化为整数爱瓦尔德球像L 1电子衍射中间镜的物平面与背焦面物镜一次像中间镜投影镜二次像终像。
高分辨电子显微镜中的电子衍射技术电子显微镜是一种常用的高分辨率成像设备,能够观察微观世界中的细节结构。
其中,电子衍射技术是电子显微镜中一项重要的分析工具。
本文将介绍高分辨电子显微镜中的电子衍射技术及其在材料科学等领域的应用。
一、电子衍射的原理和特点电子衍射是指当电子束通过物质时,由于与物质内部的原子、晶格相互作用而发生的散射现象。
与传统的光学衍射不同,电子具有波粒二象性,具有更短的波长,因此具有更高的分辨率。
同时,电子与物质相互作用的方式也不同于光学显微镜,电子衍射技术可以用来研究物质的晶体结构和组织形貌。
二、电子衍射技术的分类根据电子衍射技术的原理和实现方式,可以将其分为两大类:选区电子衍射和散射电子衍射。
1. 选区电子衍射选区电子衍射是通过调节电子束的条件和样品的倾角来实现的。
通过选取合适的倾角和取向,电子束可以对物质进行定向散射,从而形成强衍射斑。
选区电子衍射技术通常用于研究晶体的晶格结构和晶体取向等相关信息。
2. 散射电子衍射散射电子衍射是通过将样品与电子束垂直入射,然后收集散射电子进行衍射分析。
这种技术可以提供更广泛的散射信息,从而可以研究样品的组织结构、成分分析等。
三、电子衍射技术在材料科学中的应用1. 晶体结构研究电子衍射技术可以通过选区电子衍射的方式,对晶体的晶格结构、晶胞参数、晶面取向等进行研究。
通过观察衍射斑的形状、大小和间距,可以推断出晶体的晶体学信息,并进一步了解晶体的性质和行为。
2. 纳米材料表征随着纳米科学和纳米技术的发展,纳米材料逐渐成为研究的热点。
电子衍射技术可以通过散射电子衍射的方式,对纳米材料的晶体结构、晶格畸变等进行表征。
同时,电子衍射还可以用于研究纳米材料的生长机制和相互作用等。
3. 晶体缺陷研究电子衍射技术可以对材料中的晶体缺陷进行研究。
通过观察衍射斑的形状和强度的变化,可以推断出材料中晶体缺陷的类型和分布情况。
对晶体缺陷的研究有助于我们了解材料的性能和使用寿命。
TEM分析中电子衍射花样的标定原理第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
第十章电子衍射一、概述透射电镜的主要特点是可以进行组织形貌与晶体结构同位分析。
若中间镜物平面与物镜像平面重合(成像操作),在观察屏上得到的是反映样品组织形态的形貌图像;而若使中间镜的物平面与物镜背焦面重合(衍射操作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。
本章介绍电子衍射基本原理与方法,下章将介绍衍衬成像原理与应用。
电子衍射的原理和X射线衍射相似,是以满足(或基本满足)布拉格方程作为产生衍射的必要条件。
两种衍射技术所得到的衍射花样在几何特征上也大致相似。
多晶体的电子衍射花样是一系列不同半径的同心圆环,单晶衍射花样由排列得十分整齐的许多斑点所组成。
而非晶态物质得衍射花样只有一个漫散得中心斑点(图1,书上图10-1)。
由于电子波与X射线相比有其本身的特性,因此,电子衍射和X射线衍射相比较时具有下列不同之处:(1)电子波的波长比X射线短的多,在同样满足布拉格条件时,它的衍射角θ很小,约10-2rad;而X射线产生衍射时,其衍射角最大可接近90°。
(2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着样品厚度方向延伸成杆状,因此,增加了倒易阵点和爱瓦尔德球相交截的机会,结果使略为偏离布拉格条件的电子束也能发生衍射。
(3)因为电子波的波长短,采用爱瓦尔德球图解时,反射球德半径很大,在衍射角θ较小德范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
这个结果使晶体产生的衍射花样能比较直观的反映晶体内各晶面的位向,给分析带来不少方便。
(4)原子对电子的散射能力远高于它对X射线的散射能力(约高出四个数量级),这使得二者要求试样尺寸大小不同,X射线样品线性大小位10-3cm,电子衍射样品则为10-6~10-5cm,且电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟,而X射线以小时计。
(5)X射线衍射强度和原子序数的平方(Z2)成正比,重原子的散射本领比轻原子大的多。
TEM电子衍射及分析引言透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高分辨率的显微镜,利用电子束通过样品并对透射电子进行衍射、成像和分析等操作。
TEM电子衍射是一项重要的研究技术,可以用于研究材料的结晶结构和晶体缺陷等特性。
本文将介绍TEM电子衍射的原理及常用的分析方法。
TEM电子衍射原理TEM电子衍射是指入射电子束通过样品后,由于与样品内部结构的相互作用,电子将发生衍射现象。
衍射过程中,入射电子束的波动性质被样品晶体结构所限制,形成衍射斑图。
通过观察衍射斑图的形态和分布,可以了解样品晶体的结构信息。
TEM电子衍射的原理可以用布拉格方程来描述:nλ =2d*sinθ 其中,n为衍射级数,λ为入射电子的波长,d为晶格的间距,θ为衍射角度。
TEM电子衍射图解析TEM电子衍射图是由衍射斑图组成的,通过对衍射斑图的解析,可以得到样品晶体的一些重要信息。
1.衍射斑的亮度:衍射斑的亮度反映了样品晶体中存在的晶格缺陷、位错等信息。
亮斑表示高度有序的结构,而暗斑则表示晶格缺陷存在。
2.衍射斑的分布:衍射斑的分布可以提供样品晶体的晶面方向信息。
通过观察衍射斑的位置和排列方式,可以确定样品晶体的晶体结构。
3.衍射斑的形状:衍射斑的形状可以指示晶格的对称性。
正交晶系的衍射斑为圆形,其他晶系的衍射斑形状则会有所不同。
TEM电子衍射分析方法除了观察TEM电子衍射图来获得晶体结构信息外,还有一些常用的分析方法。
1.衍射索引:通过观察衍射斑的位置和分布,结合晶体结构学的知识,利用衍射索引方法确定晶格参数、晶胞参数,从而得到样品晶体的晶体结构信息。
2.选区电子衍射:通过在选定的区域内进行电子衍射,可以得到该区域的晶格结构和取向信息。
这种方法可以用来研究样品中不同区域的晶体结构差异。
3.电子衍射支撑:通过在TEM观察区域选择多个点进行电子衍射,得到它们的衍射斑的位置和分布等信息。