第二节 固体的能带理论
- 格式:ppt
- 大小:662.50 KB
- 文档页数:24
5.3 晶体的能带结构1 导体、半导体和绝缘体的能带解释能态总数 根据周期性边界条件,布洛赫电子量子态k 在k 空间量子态的密度为V /83π,V 为晶体体积。
每个能带中的量子态数受第一布里渊区体积的限制为N 。
N 为原胞数。
考虑到每个量子态可以填充自旋相反的两个电子,每个能带可以填充2N 个电子。
简单晶格晶体的每个原子内部满壳层的电子总数肯定为偶数,正好填满能量最低的几个能带。
不满壳层中的电子数为偶数的,也正好填满几个能带,为奇数的则必定有一个能带为半满。
复式晶格可以根据单胞数N 和每个单胞中的原子和每个原子的电子数讨论电子填充能带的情况。
满带电子不导电 由于布洛赫电子的能量在k 空间具有反演对称性,即()()k k -=n n E E (5.3.1) 因此布洛赫电子在k 空间是对称分布的。
在同一能带中k 和 - k 态具有相反的速度:()()k k --=υυ (5.3.2) 在一个被电子填满的能带中,尽管对任一个电子都贡献一定的电流υq -,但是k 和 - k 态电子贡献的电流正好相互抵销,所以总电流为零。
即使有外加电场或磁场,也不改变k 和 - k 态电子贡献的电流正好相互抵销,总电流为零的情况。
在外场力的作用下,每一个布洛赫电子在k 空间作匀速运动,不断改变自己的量子态k ,但是简约区中所有的量子态始终完全占据,保持整个能带处于均匀填满的状态,k 和 - k 态电子贡献的电流始终正好相互抵销。
因此满带电子不导电。
导体和非导体模型 部分填充的能带和满带不同,虽然没有外场力作用时,布洛赫电子在k 空间对称分布,k 和 - k 态电子贡献的电流始终正好相互抵销。
但是在外场力作用下,由于声子、杂质和缺陷的散射,能带中布洛赫电子在k 空间对称分布被破坏,逆电场方向有一小的偏移,电子电流将只能部分抵销,抵销不掉的量子态上的电子将产生一定的电流。
根据布洛赫电子填充能带和在外场力作用下量子态的变化,提出了导体和非导体能带填充模型。