2019年四川省阿坝州中考数学试卷
- 格式:docx
- 大小:283.65 KB
- 文档页数:16
阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试卷2.全卷共10页,用蓝色或黑色钢笔、圆珠笔直接答在试卷上.3.本试卷由A 卷和B 卷组成.A 卷满分100分,B 卷满分50分.120分钟内完卷.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.(-3)2的结果是( ) A. 6 B. -6 C. 9 D. -9 2.下列计算正确的是( )A.(m+n )2=m 2+n 2B.m 2·m 3=m 5C. 2m +3n =5mnD.3.如图,已知直线AC ∥ED ,∠C =30°,∠BED =70°,则∠CBE 度数是 ( ) A.20° B.100° C. 55° D. 40°4.下列哪个不等式组的解集在数轴上表示如图所示 ( )5.某市统计局发布的统计公报显示,2006年到2010年,某市GDP 增长率分别为9.9%、10.1%、10.3%、10.5%、10.2%. 经济评论员说,这5年该的GDP 增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的 比较小. A.中位数 B. 方差 C.众数 D.平均数A.所有正方形都全等B. C.相等的圆周角所对的弧相等D. 顺次连结四边形各边中点所得到的四边形是平行四边形7.数学课外兴趣小组的同学每人制作一个面积为200cm 2的三角形学具进行展示. 设三角形的一边长为x cm ,该边上的高为y cm ,那么这些同学所制作的三角形的高y (cm )与边长x (cm )之间的函数关系的图象大致是 ( )8.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( )A.∠ACB=∠AOEB.AD=BDC. 12AOB ABC S S ∆∆=D.AE BE=9.如图,为一个多面体的表面展开图,每个面内都标注了数字. 若数字为6的面是底面,则朝上一面所标注的数字为(A.5B.4C.3D.210.如图,OAB△绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则α∠的度数是( ) A .60° B .50° C .40° D .30°二、填空题:(本大题共4小题,每小题4分,共16分)11.分解因式:39x x -= .12.如图,已知在Rt ABC △中,90ACB ︒∠=,4AB =,分别以AC ,BC 为边向外作正方形,面积分别记为1S ,2S ,则1S +2S 的值等于 .(第9 B(第10题)中,菱形OACB 的顶点O 在原点,点C 的坐标为(40),,点B 的纵坐标是1-,则顶点A 的坐标是 _.14.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为 .三、解答题:(本大题共5小题,共44分)15.(本小题满分6分)1012)4sin 60|3-⎛⎫++- ⎪⎝⎭°.16. (本小题满分6分)解方程:22333x x x -=---17.(本小题满分7分)某镇开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该镇所管辖的两个乡内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题:(1)甲区参加问卷调查的贫困群众有多少人?(2)请将统计图补充完整;(3)小明说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙18.(本小题满分7分)杨佳和杨靓是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,杨佳和杨靓都想先挑选.于是杨佳设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则杨佳先挑选;否则杨靓先挑选.(1)用树状图或列表法求出杨佳先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.第17题图19、(本小题满分8分)如图一次函数y kx b =+的图象与反比例函数xmy =的图象相交于点A (1, 4-)、点B (3,n ). (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.20、(本小题满分10分)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角的平分线,BE ⊥AE . (1)求证:AE ⊥DA ;(2)试判断AB 与DE 是否相等?并证明你的结论.B 卷(50分)四、填空题(每小题4分,共20分) 21.已知x 2+3x -3=0,那么4x 2+12x +2010的值为 . 22.a 、b 、c 、d 为实数,先规定一种新的运算:a c ad bcb d=-,那么3423(1)5x =-时,x = .23.如图,已知等腰三角形ABC 中,AB =AC ,∠A =36°,BD 为∠ABC 的平分线,则AD AC的值等于.第23题 第25题24.若点(-2, a ),(-1, b ),(1, c )在反比例函数1y x=的图象上,则a 、b 、c 的大小关系为 .(用“<”连接)25.如图AB 是半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC 交半圆O 于点D ,已知CD =1,AD =4,则tan ∠CAB = .五、解答题:(本大题共3小题,共30分) 26.(本题共10分)某商店专销一种文具盒,进价12元/个,售价20元/个,为了促销,商店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如,某人买20个文具盒,于是每个降价0.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.(1)求顾客一次至少买多少个,才能以最低价购买?(2)有一天,一位甲顾客买了46个,另一位乙顾客买了50个,求商店在甲乙顾客的购买中分别赚了多少元?(3)写出当顾客一次购买x 个时(x >10),商店利润y (元)与购买量x (个)之间的函数关系式.27.(本题共10分) 如图,已知F 是以AC 为直径的半圆O 上任一点,过AC 上任一点(1)求证:DF是⊙O的切线;(2)若BF=AF,求证:AF2=EF·CF如图,在平面直角坐标系中,已知点A坐标为(-2, 4),直线x=-2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;③当线段PB最短时,在抛物线对称轴的右侧是否存在一点Q,使△PMQ为直角三角形.阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 正式阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.2. 全卷满分150分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3. 参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4. 要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.C2.B3.D4.D5.B6.A7.B8.C9.D 10.B 二、填空题:(本大题共4小题,每小题4分,共16分) 11. (3)(3)x x x +- 12. 16 13. (2,1) 14. 4 三、解答题:(本大题共6小题,共44分) 15. (本小题满分6分) 解:原式=1+3+4×2-………………………………4分 =4……………………………………………………6分16.(本小题满分6分) 解:17.(本小题满分7分)223133223(3)322394255526x x x x x x x x x x -=-----=----=--+==……………………………………分……………………………………分………………………………………分……………………………………………………分5经检验:=是原方程的根…………………………分2解:(1)1200 ························································································································ 2分 (2)图形正确(甲区满意人数有500人) ··········································································· 4分 (3)不正确. ························································································································ 5分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ············································································ 7分18.(本小题满分7分).解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 41—— (1,2) (1,3) (1,4) 2(2,1) —— (2,3) (2,4) 3(3,1) (3,2) —— (3,4) 4(4,1) (4,2) (4,3) —— ··································································································· 4分···················································································································· 4分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=·········································································································· 5分 (2)不公平. ························································································································ 6分 ∵杨佳先挑选的概率是P (和为奇数)23=,杨靓先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ··········································································································· 7分19、(本小题满分8分)解:(1)将点A (1, 4-)代入x m y =中,41m -= ∴m =-4∴反比例函数解析式为4y x =-······································································ 2分 将B (3,n )代入4y x =-中,43n =-,∴B 点坐标为(3,43-)………………………………………… ················· 3分 (1,2) (1,3) (1,4) 2 3 4 1 (1,1) (2,3) (2,4) 1 3 4 2 (3,1) (3,2) (3,4) 1 2 4 3 (4,1) (4,2) (4,3) 1 2 3 4 第一次摸球第二次摸球将A (1, 4-)、B (3,43-)的坐标分别代入y kx b =+中,得4433k b k b +=-⎧⎪⎨+=-⎪⎩,解得43163k b ⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的解析式为41633y x =-………………………… ······················ 5分(2)设一次函数解析式图象与x 轴交与点C ,当y =0时,416033x -=, x =4,∴C 点坐标(4,0) ∴OC =4 …………………… 6分S △AOC =21·OC ·| y A | =21×4×4=8, S △BOC =21·OC ·| y B | =21×4×43=83S △AOB = S △AOC -S △BOC =883-=163······························································· 8分20、(本小题满分10分)解:(1)证明:1212 18011()18090422905AD BAC BAD BAC AE BAF BAE BAF BAC BAF BAD BAE BAC BAF DAE AE DA ⎫∠⇒∠∠⎪⎪⎪∠⇒∠∠⎬⎪⎪⎪∠+∠=︒⎭⇒∠+∠∠+∠=⨯︒=︒⇒∠=︒⇒⊥平分=平分==分分(2)AB =DE ,理由是:………………………………6分907 B 9 90 90810AB AC AD BC ADB AD BAC AE D BE AE AEB DAE AB DE=⎫⎫⇒⊥⇒∠=︒⎬⎪∠⎭⎪⎪⇒⎬⎪⊥⇒∠=︒⎪⎪∠=︒⎭⇒=分平分四边形是矩形分分分B 卷四、(每小题4分,共20分)21.∵x 2+3x -3=0,∴x 2+3x =3 4x 2+12x =12,4x 2+12x +2010=12+2012=202422.∵3×5-4(1-x )=23,∴15-4+4x =23 11+4x =23 4x =12 ∴x =3 23.AD AC =24.b <a <c25.12五、解答题:(本大题共3小题,共30分) 26.(本小题满分10分)解:(1)设至少购买a 个 20-16=40.10×(a -10)=4元a =50个 ………………………………………………2分 (2)甲顾客降0.10×(46-10)=3.6元 每个利润:20―12―3.6=4.4元/个4.4×46=202.4元 …………………………4分 乙顾客降:0.10×(50-10)=4元 每个利润:20―12―4=4元/个4×50=200元 ……………………………………6分 ∴商店在甲顾客处赚了202.4元,在乙顾客处赚了200元。
2019年四川省各市中考数学试题汇编(1)(含参考答案与解析)(word版,9份)目录1.四川省成都市中考数学试题及参考答案与解析 (2)2.四川省攀枝花市中考数学试题及参考答案与解析 (29)3.四川省自贡市中考数学试题及参考答案与解析 (52)4.四川省泸州市中考数学试题及参考答案与解析 (76)5.四川省宜宾市中考数学试题及参考答案与解析 (96)6.四川省绵阳市中考数学试题及参考答案与解析 (119)7.四川省眉山市中考数学试题及参考答案与解析 (145)8.四川省南充市中考数学试题及参考答案与解析 (169)9.四川省达州市中考数学试题及参考答案与解析 (193)2019年四川省成都市中考数学试题及参考答案与解析(全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求。
1.比﹣3大5的数是()A.﹣15 B.﹣8 C.2 D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.3.2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)5.将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是()A.5ab﹣3a=2b B.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1 D.2a2b÷b=2a27.分式方程+=1的解为()A.x=﹣1 B.x=1 C.x=2 D.x=﹣28.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件9.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重命),则∠CPD的度数为()A.30°B.36°C.60°D.72°10.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0 B.b2﹣4ac<0 C.a﹣b+c<0 D.图象的对称轴是直线x=3第Ⅱ卷(非选择题共70分)二、填空题(术大题共4个小题,每小题4分,共16分)11.若m+1与﹣2互为相反数,则m的值为.12.如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE 的长为.13.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.14.如图,▱A BCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:16.(6分)先化简,再求值:(1﹣)÷,其中x=+1.17.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.20.(10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.估算:≈(结果精确到1)22.已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k 的值为.23.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为。
2019年四川省阿坝州中考数学试卷一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.12.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×1093.如图所示的几何体的俯视图是()A.B.C.D.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.45.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,956.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x7.方程﹣=0的解为()A.2B.4C.5D.68.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm29.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共9小题)11.分解因式:x2﹣4=.12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为.13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为度.15.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为.16.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是.17.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.18.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=.19.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为.三.解答题(共9小题)20.(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.21.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.22.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE=1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)23.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.24.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.25.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE ⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故选:A.2.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为2.35×108.故选:C.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】俯视图就是从几何体的上面看到的图形,从上面看得到的是两个横着排列的小正方形,因此可得选项C是正确的.【解答】解:根据俯视图的意义可知,从上面看到的是选项C的图形,故选:C.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.4【分析】利用平行线分线段成比例定理即可解决问题.【解答】解:∵DE∥BC,∴=,又∵AD=2,DB=1,AE=4,∴=,∴EC=2,故选:B.5.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,95【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为89,93,94,95,96,96,97,所以这组数据的众数为96分,中位数为95(分),故选:D.6.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x【分析】根据同底数幂的乘除法法则、幂的乘方的性质,以及合并同类项法则进行计算.【解答】解:A、x10÷x2=x8,故此选项不合题意;B、x2•x3=x5,故此选项符合题意;C、(x2)3=x6,故此选项不合题意;D、x6和x不是同类项,不能合并,故此选项不合题意;故选:B.7.方程﹣=0的解为()A.2B.4C.5D.6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣x+4=0,解得:x=6,经检验x=6是分式方程的解,故选:D.8.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm2【分析】将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故=12π.故选:C.9.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先由二次函数的图象确定b、c的符号,再求出一次函数的图象所过的象限,即可得出答案.【解答】解:由图象可知:∵对称轴在y轴右侧,∴对称轴x=﹣>0,∴b>0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∴一次函数y=bx+c的图象过一、二、三象限,不经过第四象限.故选:D.二.填空题(共9小题)11.分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为(3,﹣2).【分析】直接利用关于原点对称点的性质分析得出答案.【解答】解:点P(﹣3,2)关于原点O中心对称的点P'的坐标为:(3,﹣2).故答案为:(3,﹣2).13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为6.【分析】连接OA,根据勾股定理的推论得到OM⊥AB,根据勾股定理求出AM,得到答案.【解答】解:连接OA,∵M为弦AB的中点,∴OM⊥AB,∴AM===3,∴AB=2AM=6,故答案为:6.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为70度.【分析】根据矩形的性质和直角三角形的性质可得∠AEB=55°,根据翻折变换的性质得到∠AEF=110°,再根据平行线的性质即可求解.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵∠ABE=35°,∴∠AEB=55°,由翻折变换可得∠AEF=110°,∴∠BFE=70°.故答案为:70.15.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为9.【分析】由点A在直线y=﹣3x+5上,利用一次函数图象上点的坐标特征可得出3a+b=5,将其代入6a+2b﹣1=2(3a+b)﹣1中即可求出结论.【解答】解:∵点A(a,b)在直线y=﹣3x+5上,∴b=﹣3a+5,∴3a+b=5,∴6a+2b﹣1=2(3a+b)﹣1=9.故答案为:9.16.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是30.【分析】设黑球有2x个,则白球为3x个,根据概率公式得到:即可求解.【解答】解:设黑球有2x个,则白球为3x个,根据题意得:,解得:x=10,∴白球有:3x=30,故答案为:30.17.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.【分析】由正方形的性质得出AB=BC=CD=AD=4,∠D=∠A=∠B=90°,由勾股定理得出BE=3,同理DF=3,得出AE=AF=1,则△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=;作EH⊥CF于H,由△CEF的面积=CF×EH,求出EH的长即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠D=∠A=∠B=90°,∴BE===3,同理DF=3,∴AE=AF=1,∴△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=4×4﹣×1×1﹣2××4×3=;作EH⊥CF于H,如图:∵△CEF的面积=CF×EH=3.5,∴EH==,即点E到CF的距离为;故答案为:;.18.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=﹣1.【分析】根据题意先计算出前五个数,发现每4个数一个循环,进而可求第2019个数的值.【解答】解:S1=1;S2=1+=1+1=2;S3=1﹣S2=1﹣2=﹣1;S4=1+=1+(﹣1)=0;S5=1﹣S4=1﹣0=1;…发现规律:每4个数一个循环,所以2019÷4=504…3,所以按此规律,S2019=﹣1.故答案为:﹣1.19.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为 4.8.【分析】当CP与A'B'垂直时,CP有最小值,即为直角三角形斜边上的高,由勾股定理求出CP长即可.【解答】解:当CP与A'B'垂直时,CP有最小值,如图,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∴A'B'=AB=10,由旋转的性质知B'C=BC=6,A'C=AC=8,∵S△A'B'C=×B'C×A'C=×A'B'×CP,∴CP==4.8.故答案为:4.8.三.解答题(共9小题)20.(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.【分析】(1)直接利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案;(2)首先将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:(1)(π﹣2019)0+|﹣1|+2cos45°=1+﹣1+2×=1+﹣1+=2;(2)(1+)÷=•=x+1.21.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.【分析】根据判别式的意义得到△=(﹣2)2+4(k+1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2+4(k+1)>0,解得k>﹣2.22.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE=1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)【分析】根据题意可得四边形ABED是矩形,再根据特殊角三角函数值即可求出CD的长,进而可求这棵树大约有多高.【解答】解:根据题意可知:∠ABE=90°,AB∥DE,AB=DE=1.75m,∴四边形ABED是矩形,∴AD=BE=6m,∠CDA=90°,在Rt△ACD中,∠CAD=30°,∴CD=AD•tan30°=6×=2(m),∴CD+DE=2+1.75≈5.2(m).答:这棵树大约有5.2m高.23.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)根据C等级的人数除以该组频率进而得出该年级的学生数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案,从而补全统计图;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【解答】解:(1)该年级学生共有的人数是:105÷0.35=300(人);(2)a==0.25,b=300×0.4=120(人),补图如下:(3)根据题意画图如下:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.24.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.【分析】(1)把B点坐标代入y=﹣2x+b中求出b得到一次函数解析式,把B点坐标代入y=中求出k得到反比例函数解析式;(2)先利用一次函数解析式得到C点坐标为(7,0),再解方程组得A(1,12),然后根据三角形面积公式计算△AOC的面积.【解答】解:(1)把B(6,2)代入y=﹣2x+b得﹣12+b=2,解得b=14,∴一次函数解析式为y=﹣2x+14,把B(6,2)代入y=得k=6×2=12,∴反比例函数解析式为y=(x>0);(2)当y=0时,﹣2x+14=0,解得x=7,∴C点坐标为(7,0),解方程组得或,∴A(1,12),∴△AOC的面积=×7×12=42.25.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质得到∠HCO=90°,于是得到结论;(2)设BD=BH=x,得到BH=2x,根据相似三角形的性质得到CH==,由三角函数的定义即可得到结论.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴BH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)当每件商品的售价为64元时,该商品每天的销售数量为200﹣10×(64﹣60)=160(件);(2)设每件商品的售价为x元,销售该商品每天获得的利润为W,则W=(x﹣50)[200﹣10(x﹣60)]=﹣10x2+1300x﹣4000=﹣10(x﹣65)2+2250,∵a=﹣10,∴当x=65时,W取得最大值,最大值为2250,答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE ⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.【分析】(1)由“AAS”可证△ABC≌△FBD,可得AB=BF;(2)由全等三角形的性质可得AC=DF,S△ABC=S△FBD,由角平分线的性质可求解;(3)由直角三角形的性质可求解.【解答】解:(1)∵∠ABC=∠AED=90°,∴∠A+∠ACB=90°,∠A+∠ADE=90°,∴∠ACB=∠ADE,且BC=BD,∠ABC=∠DBF=90°,∴△ABC≌△FBD(AAS)∴AB=BF;(2)如图,过点B作BG⊥AC于点G,作BH⊥DF于点H,∵△ABC≌△FBD,∴AC=DF,S△ABC=S△FBD,∴AC×BG=×DF×BH,∴BG=BH,且BG⊥AC,BH⊥DF,∴∠AEB=∠DEB=45°,(3)如图,过点B作BN⊥AC于N,∵∠BEA=45°,∴∠EBN=∠BEN=45°,∴BN=EN,∴BE=BN,∵∠A=60°,∴sin∠A==,∴AB=BN,∴BF=BN,∴=.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.【分析】(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A、O的坐标代入上式,即可求解;(2)OAQP为菱形时,则OA=AQ,则点Q与点A关于函数对称轴对称,故点P和点A 关于x轴对称,即可求解;(3)延长HM交直线OP于点R,利用解直角三角形的方法求解点M的坐标,即可求解.【解答】解:(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A的坐标代入得,y=a(x﹣2)2﹣4,将O的坐标代入上式并解得:a=1,故抛物线的表达式为y=x2﹣4x;(2)点A(2,﹣4),则抛物线的对称轴为x=2,OAQP为菱形时,则OA=AQ,则点Q(抛物线与x轴的右侧交点)与点A关于函数对称轴对称,故点P和点A关于x轴对称,故点P(2,4);(3)存在,理由:过点M分别作x轴、PO的垂线,垂足分别为H、G,延长HM交直线OP于点R,点M到直线OP的距离与其到x轴的距离相等,则GH=MH,tan∠POH==2,则tan∠ORH=,设GM=MH=m,则GR=2m,则RM=m,RH=RM+MH=m+m,tan∠ORH==,则OH=RH=m,故点M(m,m),设直线OM的表达式为y=sx,将点M坐标代入上式并解得:s==,故直线OM的表达式为y=x.。
2019年四川省阿坝州中考数学试卷一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.12.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×1093.如图所示的几何体的俯视图是()A.B.C.D.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.45.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,956.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x7.方程﹣=0的解为()A.2B.4C.5D.68.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm29.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共9小题)11.分解因式:x2﹣4=.12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为.13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为度.15.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为.16.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是.17.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.18.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=.19.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为.三.解答题(共9小题)20.(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.21.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.22.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE=1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)23.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.24.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.25.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE ⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故选:A.2.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为2.35×108.故选:C.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】俯视图就是从几何体的上面看到的图形,从上面看得到的是两个横着排列的小正方形,因此可得选项C是正确的.【解答】解:根据俯视图的意义可知,从上面看到的是选项C的图形,故选:C.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.4【分析】利用平行线分线段成比例定理即可解决问题.【解答】解:∵DE∥BC,∴=,又∵AD=2,DB=1,AE=4,∴=,∴EC=2,故选:B.5.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,95【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为89,93,94,95,96,96,97,所以这组数据的众数为96分,中位数为95(分),故选:D.6.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x【分析】根据同底数幂的乘除法法则、幂的乘方的性质,以及合并同类项法则进行计算.【解答】解:A、x10÷x2=x8,故此选项不合题意;B、x2•x3=x5,故此选项符合题意;C、(x2)3=x6,故此选项不合题意;D、x6和x不是同类项,不能合并,故此选项不合题意;故选:B.7.方程﹣=0的解为()A.2B.4C.5D.6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣x+4=0,解得:x=6,经检验x=6是分式方程的解,故选:D.8.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm2【分析】将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故=12π.故选:C.9.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先由二次函数的图象确定b、c的符号,再求出一次函数的图象所过的象限,即可得出答案.【解答】解:由图象可知:∵对称轴在y轴右侧,∴对称轴x=﹣>0,∴b>0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∴一次函数y=bx+c的图象过一、二、三象限,不经过第四象限.故选:D.二.填空题(共9小题)11.分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为(3,﹣2).【分析】直接利用关于原点对称点的性质分析得出答案.【解答】解:点P(﹣3,2)关于原点O中心对称的点P'的坐标为:(3,﹣2).故答案为:(3,﹣2).13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为6.【分析】连接OA,根据勾股定理的推论得到OM⊥AB,根据勾股定理求出AM,得到答案.【解答】解:连接OA,∵M为弦AB的中点,∴OM⊥AB,∴AM===3,∴AB=2AM=6,故答案为:6.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为70度.【分析】根据矩形的性质和直角三角形的性质可得∠AEB=55°,根据翻折变换的性质得到∠AEF=110°,再根据平行线的性质即可求解.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵∠ABE=35°,∴∠AEB=55°,由翻折变换可得∠AEF=110°,∴∠BFE=70°.故答案为:70.15.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为9.【分析】由点A在直线y=﹣3x+5上,利用一次函数图象上点的坐标特征可得出3a+b=5,将其代入6a+2b﹣1=2(3a+b)﹣1中即可求出结论.【解答】解:∵点A(a,b)在直线y=﹣3x+5上,∴b=﹣3a+5,∴3a+b=5,∴6a+2b﹣1=2(3a+b)﹣1=9.故答案为:9.16.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是30.【分析】设黑球有2x个,则白球为3x个,根据概率公式得到:即可求解.【解答】解:设黑球有2x个,则白球为3x个,根据题意得:,解得:x=10,∴白球有:3x=30,故答案为:30.17.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.【分析】由正方形的性质得出AB=BC=CD=AD=4,∠D=∠A=∠B=90°,由勾股定理得出BE=3,同理DF=3,得出AE=AF=1,则△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=;作EH⊥CF于H,由△CEF的面积=CF×EH,求出EH的长即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠D=∠A=∠B=90°,∴BE===3,同理DF=3,∴AE=AF=1,∴△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=4×4﹣×1×1﹣2××4×3=;作EH⊥CF于H,如图:∵△CEF的面积=CF×EH=3.5,∴EH==,即点E到CF的距离为;故答案为:;.18.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=﹣1.【分析】根据题意先计算出前五个数,发现每4个数一个循环,进而可求第2019个数的值.【解答】解:S1=1;S2=1+=1+1=2;S3=1﹣S2=1﹣2=﹣1;S4=1+=1+(﹣1)=0;S5=1﹣S4=1﹣0=1;…发现规律:每4个数一个循环,所以2019÷4=504…3,所以按此规律,S2019=﹣1.故答案为:﹣1.19.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为 4.8.【分析】当CP与A'B'垂直时,CP有最小值,即为直角三角形斜边上的高,由勾股定理求出CP长即可.【解答】解:当CP与A'B'垂直时,CP有最小值,如图,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∴A'B'=AB=10,由旋转的性质知B'C=BC=6,A'C=AC=8,∵S△A'B'C=×B'C×A'C=×A'B'×CP,∴CP==4.8.故答案为:4.8.三.解答题(共9小题)20.(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.【分析】(1)直接利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案;(2)首先将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:(1)(π﹣2019)0+|﹣1|+2cos45°=1+﹣1+2×=1+﹣1+=2;(2)(1+)÷=•=x+1.21.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.【分析】根据判别式的意义得到△=(﹣2)2+4(k+1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2+4(k+1)>0,解得k>﹣2.22.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE=1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)【分析】根据题意可得四边形ABED是矩形,再根据特殊角三角函数值即可求出CD的长,进而可求这棵树大约有多高.【解答】解:根据题意可知:∠ABE=90°,AB∥DE,AB=DE=1.75m,∴四边形ABED是矩形,∴AD=BE=6m,∠CDA=90°,在Rt△ACD中,∠CAD=30°,∴CD=AD•tan30°=6×=2(m),∴CD+DE=2+1.75≈5.2(m).答:这棵树大约有5.2m高.23.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)根据C等级的人数除以该组频率进而得出该年级的学生数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案,从而补全统计图;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【解答】解:(1)该年级学生共有的人数是:105÷0.35=300(人);(2)a==0.25,b=300×0.4=120(人),补图如下:(3)根据题意画图如下:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.24.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.【分析】(1)把B点坐标代入y=﹣2x+b中求出b得到一次函数解析式,把B点坐标代入y=中求出k得到反比例函数解析式;(2)先利用一次函数解析式得到C点坐标为(7,0),再解方程组得A(1,12),然后根据三角形面积公式计算△AOC的面积.【解答】解:(1)把B(6,2)代入y=﹣2x+b得﹣12+b=2,解得b=14,∴一次函数解析式为y=﹣2x+14,把B(6,2)代入y=得k=6×2=12,∴反比例函数解析式为y=(x>0);(2)当y=0时,﹣2x+14=0,解得x=7,∴C点坐标为(7,0),解方程组得或,∴A(1,12),∴△AOC的面积=×7×12=42.25.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质得到∠HCO=90°,于是得到结论;(2)设BD=BH=x,得到BH=2x,根据相似三角形的性质得到CH==,由三角函数的定义即可得到结论.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴BH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)当每件商品的售价为64元时,该商品每天的销售数量为200﹣10×(64﹣60)=160(件);(2)设每件商品的售价为x元,销售该商品每天获得的利润为W,则W=(x﹣50)[200﹣10(x﹣60)]=﹣10x2+1300x﹣4000=﹣10(x﹣65)2+2250,∵a=﹣10,∴当x=65时,W取得最大值,最大值为2250,答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE ⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.【分析】(1)由“AAS”可证△ABC≌△FBD,可得AB=BF;(2)由全等三角形的性质可得AC=DF,S△ABC=S△FBD,由角平分线的性质可求解;(3)由直角三角形的性质可求解.【解答】解:(1)∵∠ABC=∠AED=90°,∴∠A+∠ACB=90°,∠A+∠ADE=90°,∴∠ACB=∠ADE,且BC=BD,∠ABC=∠DBF=90°,∴△ABC≌△FBD(AAS)∴AB=BF;(2)如图,过点B作BG⊥AC于点G,作BH⊥DF于点H,∵△ABC≌△FBD,∴AC=DF,S△ABC=S△FBD,∴AC×BG=×DF×BH,∴BG=BH,且BG⊥AC,BH⊥DF,∴∠AEB=∠DEB=45°,(3)如图,过点B作BN⊥AC于N,∵∠BEA=45°,∴∠EBN=∠BEN=45°,∴BN=EN,∴BE=BN,∵∠A=60°,∴sin∠A==,∴AB=BN,∴BF=BN,∴=.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.【分析】(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A、O的坐标代入上式,即可求解;(2)OAQP为菱形时,则OA=AQ,则点Q与点A关于函数对称轴对称,故点P和点A 关于x轴对称,即可求解;(3)延长HM交直线OP于点R,利用解直角三角形的方法求解点M的坐标,即可求解.【解答】解:(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A的坐标代入得,y=a(x﹣2)2﹣4,将O的坐标代入上式并解得:a=1,故抛物线的表达式为y=x2﹣4x;(2)点A(2,﹣4),则抛物线的对称轴为x=2,OAQP为菱形时,则OA=AQ,则点Q(抛物线与x轴的右侧交点)与点A关于函数对称轴对称,故点P和点A关于x轴对称,故点P(2,4);(3)存在,理由:过点M分别作x轴、PO的垂线,垂足分别为H、G,延长HM交直线OP于点R,点M到直线OP的距离与其到x轴的距离相等,则GH=MH,tan∠POH==2,则tan∠ORH=,设GM=MH=m,则GR=2m,则RM=m,RH=RM+MH=m+m,tan∠ORH==,则OH=RH=m,故点M(m,m),设直线OM的表达式为y=sx,将点M坐标代入上式并解得:s==,故直线OM的表达式为y=x.。
2017年四川省阿坝州茂县中考数学一模试卷一、选择题:(每小题4分,共40分)1. - 一的倒数是()5A. - 5B. -C. - 一D . 55 52. 下列事件,是必然事件的是()A掷一枚六个面分别标有1〜6的数字的均匀正方体骰子,骰子停上转动后偶数点朝上B. 从一幅扑克牌中任意抽出一张,花色是红桃C. 在同一年出生的367名学生中,至少有两人的生日是同一天D. 任意选择在播放中电视的某一频道,正在播放新闻3.已知O O的半径为3,圆心O到直线L的距离为2,则直线L与O O的位置关系是()A.相交B .相切C.相离D.不能确定4. 不等式组勺”的最小整数解是()A. 0B. - 1C. - 2D. 35. 下列运算中,正确的是()A. 3-2 = - 6 B . ' ' / = ± 6C. (- x)2十(-x)=x D. (- 2x2)3= - 8x66. 如图中的几何体的左视图是()7. 2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次, 其中4640万用科学记数法可表示为()A. 0.464 X 109B. 4.64 X 108C. 4.64 X 107D. 46.4 X 106&已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A.第一象限B •第二象限C •第三象限D •第四象限O O 的半径为3,且sinB=,则弦AC 的长为()6 ABCD 中, AC=4 BD=6, P 是BD 上的任一点,过点 P 作EF// AQ 与 平行四边形的两条边分别交于点E 、F ,设BP=x EF=y,则能反映y 与x 之间关系的图象是二、填空题:(每小题3分,共15分)11. ____________________ 分解因式:X 2- 4= .12. 如图所示,在梯形 ABCD 中,AB// DCBD 丄ADAD=DC=BC=2cjn 那么梯形 ABCD 勺面积是10.如图,在平行四边形( ) C13. 在一个不透明的布袋中装有红球6个,白球3个,黑球1个,这些球除颜色外没有任何区别,从中任意取出一球为红球的概率是_______ .14. 已知一个菱形的周长为24cm,有一个内角为60°,则这个菱形较短的一条对角线长为15.已知:2…22X,3+ =32X,4+- =4= •••,若14+ =14= ( a、b均为正整,则a+b=三、解答题:16. (1)计算:—-(二-1) 0- 2cos30°(2 )解方程:——+丄二=2.17 .如图所示,在△ ABC中,BO AC,点D在BC上,且DC=AC/ ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1) 求证:EF// BC(2 )若厶ABD的面积是6,求四边形BDFE的面积.18.某中学团委会为了解该校学生的课余活动情况,采取抽样的办法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:(1) 这次抽样中,一共调查了多少名学生?(2) “其它”在扇形图中所占的圆心角是多少度?(3) 若该校有2500名学生,你估计全校可能有多少名学生爱好阅读?A测得某岛C在北偏东60方向上,航行半小时后到达点B测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1) 说明点B是否在暗礁区域内;y i=- x+a与x轴、y轴分别交于点(2) 若继续向东航行有无触礁的危险?请说明理由.于A B两点,且点A的坐标是(1, 3)点B的坐标是(3, m)(1 )求a, k, m的值;(2 )求C D两点的坐标,并求△ AOB的面积.D、C两点和反比例函数一、填空题(本大题共5小题,每小题4分,共20分.)B卷(50)分21. _______________________________ 若3a2- a- 2=0,则5+2a- 6a2= .22. 如图,PA PB分别与O O相切于点A、B,O O的切线EF分别交PA PB于点E、F,切23. 在函数尸世(k>0的常数)的图象上有三个点(- 2, y i), (- 1, y2),丄,y3),函x 2数值y i, y2, y3的大小为______ .24. 如图,在厶ABC中,BC=4,以点A为圆心、2为半径的O A与BC相切于点D,交AB于E, 交AC 于F,点P是O A上的一点,且/ EPF=40 ,则图中阴影部分的面积是 _ (结果保留25. 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm —只蚂蚁从杯口的点 E 处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离_ cmo二•解答题(本大题共3小题,共30分)26. 某个体经营户销售同一型号的A、B两种品牌的服装,平均每月共销售60件,已知两种品牌的成本和利润如表所示,设平均每月的利润为y元,每月销售A品牌x件.(1)写出y关于x的函数关系式.(2)如果每月投入的成本不超过6500元,所获利润不少于2920元,不考虑其他因素,那么销售方案有哪几种?(3)在(2)的条件下要使平均每月利润率最大,请直接写出A、B两种品牌的服装各销售多少件?A B成本(元/件) 12085利润(元/件) 603027 .如图,AB为O O的直径,AD平分/ BAC交O O于点D, DEL AC交AC的延长线于点E, BF 丄AB交AD的延长线于点F,(1)求证: DE是O O的切(2)若DE=3 O O的半径为5,求BF的长.2 ..28.如图,已知二次函数y=ax+bx+c的象经过A (- 1, 0)、B (3, 0)、N (2, 3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2) 若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3) 点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在, 请说明理由.2017年四川省阿坝州茂县八一中学中考数学一模试卷参考答案与试题解析、选择题:(每小题4分,共40分)1的倒数是(C.) -—D . 555A.- 5B.5【考点】倒数.【分析】乘积是1的两数互为倒数,由此可得出答案【解答】解:- =的倒数为-5.5故选A.2. 下列事件,是必然事件的是()A. 掷一枚六个面分别标有1〜6的数字的均匀正方体骰子,骰子停上转动后偶数点朝上B. 从一幅扑克牌中任意抽出一张,花色是红桃C. 在同一年出生的367名学生中,至少有两人的生日是同一天D. 任意选择在播放中电视的某一频道,正在播放新闻【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可作出判断.【解答】解:A、不一定发生,是随机事件,故选项错误,B不一定发生,是随机事件,故选项错误,C是必然事件,故正确,D不一定发生,是随机事件,故选项错误,故选C.3. 已知O O的半径为3,圆心O到直线L的距离为2,则直线L与O O的位置关系是()A.相交B .相切C.相离D.不能确定【考点】直线与圆的位置关系.【分析】根据圆O的半径和,圆心O到直线L的距离的大小,相交:d v r;相切:d=r ;相6.如图中的几何体的左视图是( )离:d> r ;即可选出答案.【解答】解:TO O的半径为3,圆心O到直线L的距离为2,•/ 3>2,即:d v r ,•••直线L与O O的位置关系是相交.故选A.4. 不等式组•/的最小整数解是( )h<3A. 0B. - 1C. - 2D. 3【考点】一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式(1)得:x >-.,则不等式组的解集是:- v x w 3,2故最小的整数解是:-1.故选B.5•下列运算中,正确的是( )A. 3-2 = - 6B. = ± 6C. (- x) 2十(-x) =xD. (- 2x2) 3= - 8x6【考点】整式的除法;算术平方根;幕的乘方与积的乘方;负整数指数幕.【分析】直接利用整式除法运算法则以及结合算术平方根和负指数幕的性质分别化简求出答案.【解答】解:A、3-2=七=.,故此选项错误,不合题意;39B —7=6,故此选项错误,不合题意;C (- x) 2*(—x) =- x,故此选项错误,不合题意;D (- 2x2) 3=- 8x6,正确,符合题意.故选:D.A.第一象限B .第二象限C .第三象限D .第四象限【考点】一次函数图象与系数的关系;二次函数图象与系数的关系.【分析】 根据抛物线的开口向上可得: a > 0,根据抛物线的对称轴在y 轴左边可得:a , b 同号,所以b > 0 .所以直线y=ax+b 不经过第四象限.【解答】 解:•••抛物线的开口向上,••• a > 0,•• •对称轴在y 轴左边,HE【考点】简单组合体的三视图. 【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】 解:从左边看第一层是两个小正方形,第二层左边是一个小正方形, 故选:A. 7. 2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到其中4640万用科学记数法可表示为() A. 0.464 X 109 B. 4.64 X 108C. 4.64 X 107 D. 46.4 X 1064640万人次, 【考点】科学记数法一表示较大的数.【分析】先把4 640万表示为用个表示的数,进而用科学记数法表示成a X 10n 即可.【解答】 解:4 640 万=46 400 000=4.64 X 107.故选C. &已知:如图为二次函数 y=ax 2+bx+c 的图象,则一次函数 y=ax+b 的图象不经过( ) B .a, b 同号,即b>0,•••直线y=ax+b不经过第四象限, 故选D.9•如图,△ ABC内接于。
2019年四川省阿坝州中考数学试卷(解析版)一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.12.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×1093.如图所示的几何体的俯视图是()A.B.C.D.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.45.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,956.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x7.方程﹣=0的解为()A.2B.4C.5D.68.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm29.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共9小题)11.分解因式:x2﹣4=.12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为.13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为度.三.解答题(共9小题)15.(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.16.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.17.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE =1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)18.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.19.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.20.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.B卷21.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为.22.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是.23.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.24.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=.25.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故选:A.2.2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为2.35×108.故选:C.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】俯视图就是从几何体的上面看到的图形,从上面看得到的是两个横着排列的小正方形,因此可得选项C是正确的.【解答】解:根据俯视图的意义可知,从上面看到的是选项C的图形,故选:C.4.如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.4【分析】利用平行线分线段成比例定理即可解决问题.【解答】解:∵DE∥BC,∴=,又∵AD=2,DB=1,AE=4,∴=,∴EC=2,故选:B.5.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,95【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为89,93,94,95,96,96,97,所以这组数据的众数为96分,中位数为95(分),故选:D.6.下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x【分析】根据同底数幂的乘除法法则、幂的乘方的性质,以及合并同类项法则进行计算.【解答】解:A、x10÷x2=x8,故此选项不合题意;B、x2•x3=x5,故此选项符合题意;C、(x2)3=x6,故此选项不合题意;D、x6和x不是同类项,不能合并,故此选项不合题意;故选:B.7.方程﹣=0的解为()A.2B.4C.5D.6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣x+4=0,解得:x=6,经检验x=6是分式方程的解,故选:D.8.如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm2【分析】将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故=12π.故选:C.9.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.10.二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先由二次函数的图象确定b、c的符号,再求出一次函数的图象所过的象限,即可得出答案.【解答】解:由图象可知:∵对称轴在y轴右侧,∴对称轴x=﹣>0,∴b>0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∴一次函数y=bx+c的图象过一、二、三象限,不经过第四象限.故选:D.二.填空题(共9小题)11.分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为(3,﹣2).【分析】直接利用关于原点对称点的性质分析得出答案.【解答】解:点P(﹣3,2)关于原点O中心对称的点P'的坐标为:(3,﹣2).故答案为:(3,﹣2).13.如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为6.【分析】连接OA,根据勾股定理的推论得到OM⊥AB,根据勾股定理求出AM,得到答案.【解答】解:连接OA,∵M为弦AB的中点,∴OM⊥AB,∴AM===3,∴AB=2AM=6,故答案为:6.14.矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为70度.【分析】根据矩形的性质和直角三角形的性质可得∠AEB=55°,根据翻折变换的性质得到∠AEF=110°,再根据平行线的性质即可求解.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵∠ABE=35°,∴∠AEB=55°,由翻折变换可得∠AEF=110°,∴∠BFE=70°.故答案为:70.三.解答题15(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.【分析】(1)直接利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案;(2)首先将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:(1)(π﹣2019)0+|﹣1|+2cos45°=1+﹣1+2×=1+﹣1+=2;(2)(1+)÷=•=x+1.16.已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.【分析】根据判别式的意义得到△=(﹣2)2+4(k+1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2+4(k+1)>0,解得k>﹣2.17.小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE =1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)【分析】根据题意可得四边形ABED是矩形,再根据特殊角三角函数值即可求出CD的长,进而可求这棵树大约有多高.【解答】解:根据题意可知:∠ABE=90°,AB∥DE,AB=DE=1.75m,∴四边形ABED是矩形,∴AD=BE=6m,∠CDA=90°,在Rt△ACD中,∠CAD=30°,∴CD=AD•tan30°=6×=2(m),∴CD+DE=2+1.75≈5.2(m).答:这棵树大约有5.2m高.18.某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)根据C等级的人数除以该组频率进而得出该年级的学生数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案,从而补全统计图;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【解答】解:(1)该年级学生共有的人数是:105÷0.35=300(人);(2)a==0.25,b=300×0.4=120(人),补图如下:(3)根据题意画图如下:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.【分析】(1)把B点坐标代入y=﹣2x+b中求出b得到一次函数解析式,把B点坐标代入y=中求出k 得到反比例函数解析式;(2)先利用一次函数解析式得到C点坐标为(7,0),再解方程组得A(1,12),然后根据三角形面积公式计算△AOC的面积.【解答】解:(1)把B(6,2)代入y=﹣2x+b得﹣12+b=2,解得b=14,∴一次函数解析式为y=﹣2x+14,把B(6,2)代入y=得k=6×2=12,∴反比例函数解析式为y=(x>0);(2)当y=0时,﹣2x+14=0,解得x=7,∴C点坐标为(7,0),解方程组得或,∴A(1,12),∴△AOC的面积=×7×12=42.20.如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质得到∠HCO=90°,于是得到结论;(2)设BD=BH=x,得到BH=2x,根据相似三角形的性质得到CH==,由三角函数的定义即可得到结论.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴BH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.21.已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为9.【分析】由点A在直线y=﹣3x+5上,利用一次函数图象上点的坐标特征可得出3a+b=5,将其代入6a+2b ﹣1=2(3a+b)﹣1中即可求出结论.【解答】解:∵点A(a,b)在直线y=﹣3x+5上,∴b=﹣3a+5,∴3a+b=5,∴6a+2b﹣1=2(3a+b)﹣1=9.故答案为:9.22.口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是30.【分析】设黑球有2x个,则白球为3x个,根据概率公式得到:即可求解.【解答】解:设黑球有2x个,则白球为3x个,根据题意得:,解得:x=10,∴白球有:3x=30,故答案为:30.23.如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.【分析】由正方形的性质得出AB=BC=CD=AD=4,∠D=∠A=∠B=90°,由勾股定理得出BE=3,同理DF=3,得出AE=AF=1,则△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=;作EH⊥CF于H,由△CEF的面积=CF×EH,求出EH的长即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠D=∠A=∠B=90°,∴BE===3,同理DF=3,∴AE=AF=1,∴△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=4×4﹣×1×1﹣2××4×3=;作EH⊥CF于H,如图:∵△CEF的面积=CF×EH=3.5,∴EH==,即点E到CF的距离为;故答案为:;.24.我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=﹣1.【分析】根据题意先计算出前五个数,发现每4个数一个循环,进而可求第2019个数的值.【解答】解:S1=1;S2=1+=1+1=2;S3=1﹣S2=1﹣2=﹣1;S4=1+=1+(﹣1)=0;S5=1﹣S4=1﹣0=1;…发现规律:每4个数一个循环,所以2019÷4=504…3,所以按此规律,S2019=﹣1.故答案为:﹣1.25.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为 4.8.【分析】当CP与A'B'垂直时,CP有最小值,即为直角三角形斜边上的高,由勾股定理求出CP长即可.【解答】解:当CP与A'B'垂直时,CP有最小值,如图,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∴A'B'=AB=10,由旋转的性质知B'C=BC=6,A'C=AC=8,∵S△A'B'C=×B'C×A'C=×A'B'×CP,∴CP==4.8.故答案为:4.8.26.某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)当每件商品的售价为64元时,该商品每天的销售数量为200﹣10×(64﹣60)=160(件);(2)设每件商品的售价为x元,销售该商品每天获得的利润为W,则W=(x﹣50)[200﹣10(x﹣60)]=﹣10x2+1300x﹣4000=﹣10(x﹣65)2+2250,∵a=﹣10,∴当x=65时,W取得最大值,最大值为2250,答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.27.如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.【分析】(1)由“AAS”可证△ABC≌△FBD,可得AB=BF;(2)由全等三角形的性质可得AC=DF,S△ABC=S△FBD,由角平分线的性质可求解;(3)由直角三角形的性质可求解.【解答】解:(1)∵∠ABC=∠AED=90°,∴∠A+∠ACB=90°,∠A+∠ADE=90°,∴∠ACB=∠ADE,且BC=BD,∠ABC=∠DBF=90°,∴△ABC≌△FBD(AAS)∴AB=BF;(2)如图,过点B作BG⊥AC于点G,作BH⊥DF于点H,∵△ABC≌△FBD,∴AC=DF,S△ABC=S△FBD,∴AC×BG=×DF×BH,∴BG=BH,且BG⊥AC,BH⊥DF,∴∠AEB=∠DEB=45°,(3)如图,过点B作BN⊥AC于N,∵∠BEA=45°,∴∠EBN=∠BEN=45°,∴BN=EN,∴BE=BN,∵∠A=60°,∴sin∠A==,∴AB=BN,∴BF=BN,∴=.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP 的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.【分析】(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A、O的坐标代入上式,即可求解;(2)OAQP为菱形时,则OA=AQ,则点Q与点A关于函数对称轴对称,故点P和点A关于x轴对称,即可求解;(3)延长HM交直线OP于点R,利用解直角三角形的方法求解点M的坐标,即可求解.【解答】解:(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A的坐标代入得,y=a(x﹣2)2﹣4,将O的坐标代入上式并解得:a=1,故抛物线的表达式为y=x2﹣4x;(2)点A(2,﹣4),则抛物线的对称轴为x=2,OAQP为菱形时,则OA=AQ,则点Q(抛物线与x轴的右侧交点)与点A关于函数对称轴对称,故点P和点A关于x轴对称,故点P(2,4);(3)存在,理由:过点M分别作x轴、PO的垂线,垂足分别为H、G,延长HM交直线OP于点R,点M到直线OP的距离与其到x轴的距离相等,则GH=MH,tan∠POH==2,则tan∠ORH=,设GM=MH=m,则GR=2m,则RM=m,RH=RM+MH=m+m,tan∠ORH==,则OH=RH=m,故点M(m,m),设直线OM的表达式为y=sx,将点M坐标代入上式并解得:s==,故直线OM的表达式为y=x.。
四川省阿坝藏族羌族自治州数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·仙居模拟) 下列各式计算正确的是()A . 3a3+2a2=5a6B .C .D .2. (2分) (2019九上·南岸期末) 如图,空心圆柱在指定方向上的主视图是()A .B .C .D .3. (2分)(2018·湛江模拟) 如图,若a∥b,∠1=58°,则∠2的度数是()A . 58°B . 112°C . 122°D . 142°4. (2分)(2014·常州) 下列运算正确的是()A . a•a3=a3B . (ab)3=a3bC . (a3)2=a6D . a8÷a4=a25. (2分)若关于x的一元二次方程kx2+2x-1=0有实数根,则k的取值范围是()A . k>-1B . k≥-1C . k>-1且k≠0D . k≥-1且k≠06. (2分)等腰三角形一个角等于50°,则它的底角是()A . 80°B . 50C . 65°D . 50°或65°7. (2分)下列不是代数式的是()A . (x+y)(x-y)B . c=0C . m+nD . 999n+99m8. (2分) (2018八下·深圳期中) 如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F 是CD上的动点,满足AE+CF=a,△BEF的周长最小值是()A .B .C .D .9. (2分) (2017八下·重庆期末) 结合函数y=-2x的图象回答,当x<-1时,y的取值范围()A . y<2B . y>2C . y≥D . y≤10. (2分)如图已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点, DC是⊙O的切线,C是切点,连结AC,若∠CAB=30° ,则BD的长为()A . RB . RC . 2RD . R二、填空题 (共8题;共10分)11. (1分)若分式有意义,则实数x的取值范围是________12. (1分) (2018七上·洪山期中) 已知数轴上有A、B、C三个点对应的数分别是a、b、c,满足|a+24|+|b+10|+(c﹣10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在返回过程中,当t=________秒时,P、Q两点之间的距离为2.13. (1分)(2017·十堰) 如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=________.14. (1分)已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数根,则b的值是________.15. (2分)(2018·吉林模拟) ⊙ 的半径为,弦,弦,则度数为________.16. (1分)(2017·雅安模拟) 若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是________.17. (2分) (2016九上·黔西南期中) 如图所示,在同一坐标系中,作出①y=3x2②y= x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)________18. (1分)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是________.三、解答题 (共9题;共63分)19. (10分)(2017·邵阳模拟) 计算:•3tan60°+ + .20. (5分) (2015七下·深圳期中) 已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)21. (2分)(2016·安徽模拟) 在一次课外实践活动中,老师要求同学们利用测角仪和皮尺估测教学楼AB 的高度.同学们在教学楼的正前方D处用高为1米的测角仪测的教学楼顶端A的仰角为30°,然后他们向教学楼方向前进30米到达E处,又测得A的仰角为60°,则教学楼高度AB是多少米?(精确到0.1米,参考数据 =1.732)22. (2分) (2019八下·温州期中) 如图,矩形OABC中,点A,C分别在x轴,y轴的正半轴上,OA=4,OC=2.点P(m,0)是射线OA上的动点,E为PC中点,作□OEAF,EF交OA于G.(1)写出点E,F的坐标(用含m的代数式表示):E(________,________),F(________,________).(2)当线段EF取最小值时,m的值为________;此时□OEAF的周长为________.(3)①当□OEAF是矩形时,求m的值.②将△OEF沿EF翻折到△O′EF,若△O′EF与△AEF重叠部分的面积为1时,m的值为________23. (2分)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是________ ;(2)请你帮学校估算此次活动共种多少棵树.24. (15分)(2017·南山模拟) 如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?25. (10分)(2016·贵阳) 如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x >0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.26. (2分) (2019九上·东港月考) 某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?27. (15分)(2017·北仑模拟) 定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为________;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为________;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共63分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、。
2019年全国各地中考数学真题汇编(四川专版)三角形参考答案与试题解析一.选择题(共6小题)1.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.2.(2019•广元)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB =10,AC=8,则BD的长为()A.2B.4C.2D.4.8解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28B.24C.21D.14解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.4.(2019•乐山)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.5.(2019•巴中)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC 于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:9解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.6.(2019•宜宾)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.二.填空题(共10小题)7.(2019•自贡)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.8.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.9.(2019•广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是8+4.解:如图,连接AD,设AC与BD交于点O,解:如图,连接AM,由题意得:CA=CD,∠ACD=60°∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=CD=2,∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD•sin60°=,∴BD=+∴BD2=(+)2=8+4,故答案为8+410.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.11.(2019•眉山)如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,将△ABC绕点A逆时针旋转得到△ADE,使得点D落在AC上,则tan∠ECD的值为.解:在Rt△ABC中,由勾股定理可得AC=13.根据旋转性质可得AE=13,AD=5,DE=12,∴CD=8.在Rt△CED中,tan∠ECD==.故答案为.12.(2019•广安)等腰三角形的两边长分别为6cm,13cm,其周长为32cm.解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.13.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.14.(2019•凉山州)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.15.(2019•达州)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.解:∵▱ABCD的对角线AC、BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点,∵点E是AB的中点,∴AB=2BE,BC=2OE,∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16,故答案为16.16.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.三.解答题(共18小题)17.(2019•攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.18.(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.19.(2019•广元)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.证明:∵∠BAC=90°,∴∠DAF=90°,∵点E,F分别是边BC,AC的中点,∴AF=FC,BE=EC,FE是△ABC的中位线,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=90°,∴∠DAF=∠EFC,∵AD=AB,∴AD=FE,在△ADF和△FEC中,,∴△ADF≌△FEC(SAS),∴DF=EC,∴DF=BE.20.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.21.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠DAE=45°,∴DE=20×sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD===;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE==40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD==50,∴小岛C,D之间的距离为50nmile.22.(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD 于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.23.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方同.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE=BE,BC=2BE,设BE=x,则CE=x,AE=BE+AB=x+90,∴x=x+90,解得:x=45+45,∴BC=2x=90+90;答:B,C两处之间的距离为(90+90)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE=x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为=3+(小时);答:海监船追到可疑船只所用的时间为(3+)小时.24.(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)解:过A作AH⊥BC于H,过E作EH⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.25.(2019•南充)如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.(1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD∥BC,∴∠AOD=∠OBC,在△AOD与△OBC中,,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD∥BC,∴∠DOC=∠OCB=35°.26.(2019•眉山)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.解:在Rt△DEC中,∵i==,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵=tan∠ADG,∴=,解得:x=50+30.答:楼AB的高度为(50+30)米.27.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.28.(2019•宜宾)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)解:设AM=x米,在Rt△AFM中,∠AFM=45°,∴FM=AM=x,在Rt△AEM中,tan∠AEM=,则EM==x,由题意得,FM﹣EM=EF,即x﹣x=40,解得,x=60+20,∴AB=AM+MB=61+20,答:该建筑物的高度AB为(61+20)米.29.(2019•巴中)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE ⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.30.(2019•广安)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°=DE,设DE=x米,则DG=x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC=x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.31.(2019•达州)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE===≈1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB=≈0.6(m),答:AB的长约为0.6m.32.(2019•巴中)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D 位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.33.(2019•资阳)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)解:(1)由题意得,∠CAB=30°,∠ACB=90°,BC=20,∴AB=2BC=40海里,答:渔船B航行的距离是40海里;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,则四边形AEBC和四边形BEHG是矩形,∴BE=GH=AC=20,AE=BC=20,设BG=EH=x,∴AH=x+20,由题意得,∠BDG=60°,∠ADH=45°,∴x,DH=AH,∴20+x=x+20,解得:x=20,∴BG=20,AH=20+20,∴BD==40,AD=AH=20+20,答:中国渔政船此时到外国渔船B的距离是40海里,到外国渔船A的距离是(20+20)海里.34.(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.。
四川省阿坝藏族羌族自治州中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分)(2019·本溪模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (3分)估计的值是在()A . 3和4之间B . 4和5之间C . 5和6之间D . 6和7之间3. (3分) (2017八下·泰兴期末) 将分式中的m、n都扩大为原来的3倍,则分式的值()A . 不变B . 扩大3倍C . 扩大6倍D . 扩大9倍4. (3分)(2018·龙东) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A . 平均分是91B . 中位数是90C . 众数是94D . 极差是205. (3分)(2016·鄂州) 一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A .B .C .D .6. (3分)(2017·宜城模拟) 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A .B .C .D .7. (3分) (2019八下·宁明期中) 已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为()A . 11B . 17C . 19D . 17或198. (3分)若当x=2时,反比例函数y=(k1≠0)与y=k2x(k2≠0)的值相等,则k1与k2的比是()A . 1:4B . 2:1C . 4:1D . 1:2二、填空题(本大题共10小题,每小题3分,共30分) (共9题;共27分)9. (3分)(2013·绵阳) 因式分解:x2y4﹣x4y2=________.10. (3分) (2019七上·顺德期末) 对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数优等品数优等品率当越大时,优等品率趋近于概率________.(精确到)11. (3分) (2016九上·盐城开学考) 方程x(x+4)=﹣3(x+4)的解是________.12. (3分)计算:(﹣)﹣2﹣|1﹣|+4cos45°=________.13. (3分) (2019七下·十堰期末) 如图,有一条平直的等宽纸带按图折叠时,则图中∠α=________14. (3分) (2017九上·满洲里期末) 有一个边长为3的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是________.15. (3分) (2019八下·嘉陵期中) 如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为________.16. (3分) (2018九上·吴兴期末) 如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,则点A从开始到结束所经过的路径长为(结果保留π)________ .17. (3分)(2018·凉州) 如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为________.三、解答题(本大题共有10小题,共96分) (共10题;共96分)18. (8分) (2017九上·潮阳月考) 计算:19. (8分)(2016·江都模拟) 计算下列各题(1)计算:(﹣π)0﹣6tan30°+()﹣2+|1+ |.(2)解不等式组,并写出它的所有整数解.20. (8.0分)(2011·南宁) 南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1:5.请结合图中相关的数据回答下列问题:(1) A组的人数是多少?本次调查的样本容量是多少?(2)求出C组的人数并补全直方图.(3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.21. (8分)(2012·温州) 一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22. (10分) (2017八下·鹤壁期中) 甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.23. (10分)(2018·潍坊) 如图1,在中,于点的垂直平分线交于点 ,交于点 ,,.(1)如图2,作于点 ,交于点 ,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点 ,求周长的最小值.(2)如图3.延长交于点.过点作 ,过边上的动点作 ,并与交于点 ,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.24. (10分)(2020·北京模拟) 如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sinF=时,求OF的长.25. (10.0分)(2017·静安模拟) 已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.26. (12分)(2017·西华模拟) 如图,抛物线y=ax2+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.27. (12分)(2018·赣州模拟) 如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB= ,OB= ,反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.参考答案一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题(本大题共10小题,每小题3分,共30分) (共9题;共27分) 9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题(本大题共有10小题,共96分) (共10题;共96分)18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。
2019年四川省阿坝州中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出代号为A,B,C,D的四个选项中,只有一项是符合题目要求的.1.(3分)下列各数当中,最小的数是()A.﹣2B.﹣1C.0D.12.(3分)2018年,共享单车用户规模约达235000000,用科学记数法表示235000000为()A.2.35×106B.2.35×107C.2.35×108D.2.35×1093.(3分)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)如图,△ABC中,DE∥BC,AD=2,DB=1,AE=4,则EC的长度为()A.1B.2C.3D.45.(3分)在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93,94,95,96,96,97.这组数据的众数和中位数分别是()A.95,95B.96,96C.95,96D.96,956.(3分)下列计算结果是x5的为()A.x10÷x2B.x2•x3C.(x2)3D.x6﹣x7.(3分)方程﹣=0的解为()A.2B.4C.5D.68.(3分)如图,扇形的半径为6cm,圆心角为120°,则该扇形的面积为()A.6πcm2B.9πcm2C.12πcm2D.18πcm29.(3分)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC10.(3分)二次函数y=﹣x2+bx+c的图象如图所示,则直线y=bx+c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:本大题共4小题,每小题4分,共16分,把答案直接填写在答题卡上对应题号后面的横线上. 11.(4分)分解因式:x2﹣4=.12.(4分)在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为.13.(4分)如图,在半径为5的⊙O中,M为弦AB的中点,若OM=4,则AB的长为.14.(4分)矩形ABCD中,E为AD边上一点,将矩形沿BE翻折后,点A的对应点为A',延长EA'交BC于点F,若∠ABE=35°,则∠BFE的大小为度.三、解答题:本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.15.(12分)(1)计算:(π﹣2019)0+|﹣1|+2cos45°;(2)计算:(1+)÷.16.(6分)已知关于x的一元二次方程x2﹣2x﹣(k+1)=0有两个不相等的实数根,求k的取值范围.17.(8分)小丽用两锐角分别为30°和60°的三角尺测量一棵树的高度.如图,已知∠CAD=30°,AB=DE=1.75m,BE=6m,那么这棵树大约有多高?(结果精确到0.1m,≈1.732)18.(8分)某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.成绩等级频数频率A75aB b0.4C1050.35请结合图表信息,解答下列问题:(1)该年级学生共有多少人?(2)求表中a,b的值,并补全条形统计图;(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,已知一次函数y=﹣2x+b的图象与反比例函数y=(x>0)的图象交于点A和点B(6,2),与x轴交于点C.(1)分别求一次函数和反比例函数的解析式:(2)求△AOC的面积.20.(10分)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.一、填空题:本大题共5个小题,每小题4分,共20分.把答案直接填写在答题卡上对应题号后面的横线上. 21.(4分)已知点A(a,b)在直线y=﹣3x+5上,则6a+2b﹣1的值为.22.(4分)口袋中有除颜色外无其它差别的黑白两种小球,黑球与白球的个数比为2:3,放入10个同样的黑球后,摸出黑球的概率为,则口袋中白球的个数是.23.(4分)如图,正方形的边长为4,点E,F分别在AB和AD上,CE=CF=5,则△CEF的面积为,点E到CF的距离为.24.(4分)我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4,…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时,S n=1+),按此规律,S2019=.25.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为.二、解答题:本大题共3小顺,北30分,解应写出必要的文字说明、证明过程或算步骤.26.(8分)某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.27.(10分)如图,Rt△ABC中,∠ABC=90°,D为AB延长线上一点,BD=BC,过点D作DE⊥AC于点E,交BC于点F,连接BE,CD.(1)求证:AB=BF;(2)求∠AEB的度数;(3)当∠A=60°时,求的值.28.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点O,顶点为A(2,﹣4).(1)求抛物线的函数解析式;(2)设点P为抛物线y=ax2+bx+c的对称轴上的一点,点Q在该抛物线上,当四边形OAQP为菱形时,求出点P的坐标;(3)在(2)的条件下,抛物线y=ax2+bx+c在第一象限的图象上是否存在一点M,使得点M到直线OP的距离与其到x轴的距离相等?若存在,求出直线OM的函数解析式;若不存在,请说明理由.2019年四川省阿坝州中考数学试卷参考答案一、选择题:本大题共10小题,每小题3分,共30分.每小题给出代号为A,B,C,D的四个选项中,只有一项是符合题目要求的.1.解:如图所示,,故选:A.2.解:将235000000用科学记数法表示为2.35×108.故选:C.3.解:根据俯视图的意义可知,从上面看到的是选项C的图形,故选:C.4.解:∵DE∥BC,∴=,又∵AD=2,DB=1,AE=4,∴=,∴EC=2,故选:B.5.解:将数据重新排列为89,93,94,95,96,96,97,所以这组数据的众数为96分,中位数为95(分),故选:D.6.解:A、x10÷x2=x8,故此选项不合题意;B、x2•x3=x5,故此选项符合题意;C、(x2)3=x6,故此选项不合题意;D、x6和x不是同类项,不能合并,故此选项不合题意;故选:B.7.解:去分母得:2﹣x+4=0,解得:x=6,经检验x=6是分式方程的解,故选:D.8.解:由题意得,n=120°,R=6cm,故=12π.故选:C.9.解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.10.解:由图象可知:∵对称轴在y轴右侧,∴对称轴x=﹣>0,∴b>0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∴一次函数y=bx+c的图象过一、二、三象限,不经过第四象限.故选:D.二、填空题:本大题共4小题,每小题4分,共16分,把答案直接填写在答题卡上对应题号后面的横线上. 11.解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.解:点P(﹣3,2)关于原点O中心对称的点P'的坐标为:(3,﹣2).故答案为:(3,﹣2).13.解:连接OA,∵M为弦AB的中点,∴OM⊥AB,∴AM===3,故答案为:6.14.解:∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵∠ABE=35°,∴∠AEB=55°,由翻折变换可得∠AEF=110°,∴∠BFE=70°.故答案为:70.三、解答题:本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.15.解:(1)(π﹣2019)0+|﹣1|+2cos45°=1+﹣1+2×=1+﹣1+=2;(2)(1+)÷=•=x+1.16.解:根据题意得△=(﹣2)2+4(k+1)>0,解得k>﹣2.17.解:根据题意可知:∠ABE=90°,AB∥DE,AB=DE=1.75m,∴四边形ABED是矩形,∠CDA=90°,在Rt△ACD中,∠CAD=30°,∴CD=AD•tan30°=6×=2(m),∴CD+DE=2+1.75≈5.2(m).答:这棵树大约有5.2m高.18.解:(1)该年级学生共有的人数是:105÷0.35=300(人);(2)a==0.25,b=300×0.4=120(人),补图如下:(3)根据题意画图如下:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.解:(1)把B(6,2)代入y=﹣2x+b得﹣12+b=2,解得b=14,∴一次函数解析式为y=﹣2x+14,把B(6,2)代入y=得k=6×2=12,∴反比例函数解析式为y=(x>0);(2)当y=0时,﹣2x+14=0,解得x=7,∴C点坐标为(7,0),解方程组得或,∴A(1,12),∴△AOC的面积=×7×12=42.20.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴BH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.一、填空题:本大题共5个小题,每小题4分,共20分.把答案直接填写在答题卡上对应题号后面的横线上. 21.解:∵点A(a,b)在直线y=﹣3x+5上,∴b=﹣3a+5,∴3a+b=5,∴6a+2b﹣1=2(3a+b)﹣1=9.故答案为:9.22.解:设黑球有2x个,则白球为3x个,根据题意得:,解得:x=10,∴白球有:3x=30,故答案为:30.23.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠D=∠A=∠B=90°,∴BE===3,同理DF=3,∴AE=AF=1,∴△CEF的面积=正方形ABCD的面积﹣△AEF的面积﹣△BCE的面积﹣△CDF的面积=4×4﹣×1×1﹣2××4×3=;作EH⊥CF于H,如图:∵△CEF的面积=CF×EH=3.5,∴EH==,即点E到CF的距离为;故答案为:;.24.解:S1=1;S2=1+=1+1=2;S3=1﹣S2=1﹣2=﹣1;S4=1+=1+(﹣1)=0;S5=1﹣S4=1﹣0=1;…发现规律:每4个数一个循环,所以2019÷4=504…3,所以按此规律,S2019=﹣1.故答案为:﹣1.25.解:当CP与A'B'垂直时,CP有最小值,如图,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∴A'B'=AB=10,由旋转的性质知B'C=BC=6,A'C=AC=8,∵S△A'B'C=×B'C×A'C=×A'B'×CP,∴CP==4.8.故答案为:4.8.二、解答题:本大题共3小顺,北30分,解应写出必要的文字说明、证明过程或算步骤.26.解:(1)当每件商品的售价为64元时,该商品每天的销售数量为200﹣10×(64﹣60)=160(件);(2)设每件商品的售价为x元,销售该商品每天获得的利润为W,则W=(x﹣50)[200﹣10(x﹣60)]=﹣10x2+1300x﹣4000=﹣10(x﹣65)2+2250,∵a=﹣10,∴当x=65时,W取得最大值,最大值为2250,答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.27.解:(1)∵∠ABC=∠AED=90°,∴∠A+∠ACB=90°,∠A+∠ADE=90°,∴∠ACB=∠ADE,且BC=BD,∠ABC=∠DBF=90°,∴△ABC≌△FBD(AAS)∴AB=BF;(2)如图,过点B作BG⊥AC于点G,作BH⊥DF于点H,∵△ABC≌△FBD,∴AC=DF,S△ABC=S△FBD,∴AC×BG=×DF×BH,∴BG=BH,且BG⊥AC,BH⊥DF,∴∠AEB=∠DEB=45°,(3)如图,过点B作BN⊥AC于N,∵∠BEA=45°,∴∠EBN=∠BEN=45°,∴BN=EN,∴BE=BN,∵∠A=60°,∴sin∠A==,∴AB=BN,∴BF=BN,∴=.28.解:(1)设抛物线的表达式为y=a(x﹣h)2+k,将点A的坐标代入得,y=a(x﹣2)2﹣4,将O的坐标代入上式并解得:a=1,故抛物线的表达式为y=x2﹣4x;(2)点A(2,﹣4),则抛物线的对称轴为x=2,OAQP为菱形时,则OA=AQ,则点Q(抛物线与x轴的右侧交点)与点A关于函数对称轴对称,故点P和点A关于x轴对称,故点P(2,4);(3)存在,理由:过点M分别作x轴、PO的垂线,垂足分别为H、G,延长HM交直线OP于点R,点M到直线OP的距离与其到x轴的距离相等,则GH=MH,tan∠POH==2,则tan∠ORH=,设GM=MH=m,则GR=2m,则RM=m,RH=RM+MH=m+m,tan∠ORH==,则OH=RH=m,故点M(m,m),设直线OM的表达式为y=sx,将点M坐标代入上式并解得:s==,故直线OM的表达式为y=x.。