牛顿运动定律知识点总结
- 格式:docx
- 大小:10.94 KB
- 文档页数:2
高一物理牛顿运动定律知识点1第一节伽利略理想实验与牛顿第一定律伽利略的理想实验(见P76、77,以及单摆实验)牛顿第一定律1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
物体的运动并不需要力来维持。
2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。
3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。
4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。
第二、三节影响加速度的因素/探究物体运动与受力的关系加速度与物体所受合力、物体质量的关系(实验设计见B书P93)高一物理牛顿运动定律知识点2第四节牛顿第二定律牛顿第二定律1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
2.a=k F/m(k=1)→F=ma3.k的数值等于使单位质量的物体产生单位加速度时力的大小。
国际单位制中k=1。
4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。
5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。
6.牛顿第二定律特性:1)矢量性:加速度与合外力任意时刻方向相同2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。
3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。
4)独立性:力的独立作用原理:不同方向的合力产生不同方向的加速度,彼此不受对方影响。
5)同体性:研究对象的统一性。
高一物理牛顿运动定律知识点3第五节牛顿第二定律的应用解题思路:物体的受力情况?牛顿第二定律?a?运动学公式?物体的运动情况第六节超重与失重超重和失重1.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重>物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重高一物理牛顿运动定律知识点4牛顿第三定律1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。
牛顿第一定律1.历史上对力和运动关系的认识过程:①亚里士多德的观点:力是维持物体运动的原因。
②伽利略的想实验:否定了亚里士多德的观点,他指出:如果没有摩擦,一旦物体具有某一速度,物体将保持这个速度继续运动下去。
③笛卡儿的结论:如果没有加速或减速的原因,运动物体将保持原来的速度一直运动下去。
④牛顿的总结:牛顿第一定律2.伽利略的“理想斜面实验”程序内容:①(事实) 两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面②(推论) 如果没有摩擦,小球将上升到释放的高度。
③(推论) 减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度。
④(推论) 继续减小第二个斜面的倾角,最后使它成水平,小球沿水平面做持续的匀速直线运动。
⑤(推断) 物体在水平面上做匀速运动时并不需要外力来维持。
此实验揭示了力与运动的关系:①力不是..维持物体运动的原因,而是..改变物体运动状态的原因,物体的运动并不需要力来维持。
②同时说出了一切物体都有一种属性(运动状态保持不变....的属性)只有受力时运动状态才改变。
这种运动状态保持不变....的属性就称作惯性。
即:一切物体具都有保持..原来匀速直线运动状态或静止状态的性质,这就是惯性。
3.对惯性的理解要点:①惯性是物体的固有属性,即:保持原来运动状态不变的属性,不能克服,只能利用。
与物体的受力情况及运动状态无关。
任何物体,无论处于什么状态,不论任何时候,任何情况下都具有惯性。
②惯性不是力,惯性是物体的一属性(即保持原来运动不变的属性)。
不能说“受到惯性”和“惯性作用”。
力是物体对物体的作用,惯性和力是两个绝然不同的概念。
③物体的运动状态并不需要力来维持,因此惯性不是维持运动状态的力.④惯性的大小:体现在运动状态改变的难易程度,(即是保持原来运动状态的体领强弱),,其大小由质量来决定。
质量是惯性大小的唯一量度。
质量大,运动状态较难改变,即惯性大。
⑤惯性与惯性定律的区别:惯性:是.保持原来运动状态不变的属性..惯性定律:(牛顿第一定律)反映..物体在一定条件下(即不受外力或合外力为零)的运动规律....牛顿在《自然哲学的数学原理》中提出了三条运动定律(称为牛顿三大定律)奠定了力学基础4.牛顿第一定律内容:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止。
理论力学快速知识点总结一、牛顿运动定律牛顿三定律是经典力学的基石,它包括三个定律:1. 牛顿第一定律:当物体处于静止或匀速直线运动时,它会保持这种状态,除非受到外力的作用。
2. 牛顿第二定律:物体的加速度与作用力成正比,且与物体的质量成反比。
它的数学表达式为F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力都是相等的,方向相反。
二、运动的描述在力学中,需要描述物体的运动状态。
常用的描述方法包括:1. 位移和速度:位移是指物体从一个位置到另一个位置的变化,速度是位移随时间的变化率。
速度的数学定义为v=Δx/Δt,其中Δx表示位移的变化量,Δt表示时间的变化量。
2. 加速度:加速度是速度随时间的变化率。
加速度的数学定义为a=Δv/Δt,其中Δv表示速度的变化量,Δt表示时间的变化量。
3. 动量:动量是描述物体运动状态的物理量,它与物体的质量和速度有关。
动量的数学定义为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
三、牛顿运动定律的应用牛顿运动定律是力学中最基本的规律,它可以应用于各种不同的情况,包括:1. 自由落体运动:自由落体是指物体只受重力作用,不受其他力的影响。
根据牛顿第二定律,自由落体的加速度为g≈9.8m/s^2。
2. 斜抛运动:斜抛运动是指物体同时具有水平和竖直方向的运动。
根据牛顿第二定律,斜抛运动可以分解为水平和竖直方向的分量运动。
3. 圆周运动:圆周运动是指物体沿着圆形轨道运动。
根据牛顿第二定律,圆周运动的向心力由向心加速度和物体质量决定。
四、能量和动量守恒定律能量和动量是物体运动的重要物理量,它们遵循守恒定律。
1. 能量守恒定律:能量守恒定律表明,在一个封闭系统中,能量的总量是不变的。
这意味着能量可以在不同形式之间转化,但总量保持不变。
2. 动量守恒定律:动量守恒定律表明,在一个封闭系统中,动量的总量是不变的。
高中物理牛顿运动定律知识点汇总牛顿运动定律是高中物理的核心内容,是毋庸置疑的难点和重点知识结构核心知识牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
1.明确物体具有惯性一切物体总保持匀速直线运动状态或静止状态”,揭示了一切物体都具有惯性,即物体具有保持原来匀速直线运动状态或静止状态的性质,叫做惯性。
量度物体惯性大小的物理量是质量。
2.明确力的含义1“除非作用在它上面的力迫使它改变这种状态”,说明力的作用是改变物体的运动状态。
当物体受到的合外力为零时,物体就保持原来的状态(静止或匀速),若受到合外力,其状态一定发生变化。
牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。
公式:F=ma1.瞬时性牛顿第二定律表明了物体的加速率与物体所受合外力的瞬时对应关系,即加速率随着力的产生而产生、消逝而消逝、变革而变革。
2.矢量性F=ma是一个矢量方程,任一瞬时,a的方向均与合外力的方向保持一致。
3.同体性F=ma中F、m、a必须对应同一个物体或同一个体系。
牛顿第三定律两物体之间的感化力与反感化力总是大小相等,方向相反,感化在同一条直线上。
区分一对作用力反作用力和一对平衡力共同点:大小相等、方向相反、作用在同一条直线上。
不同点:1.感化力反感化力感化在两个不同物体上,而平衡力感化在同一个物体上;2.感化力反感化力一定是同种性质的力,而平衡力大概是不同性质的力;3.感化力反感化力一定是同时产生同时消逝的,而平衡力中的一个消逝后,另一个大概仍然存在。
2超重和失重1.超重物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象称为超重。
物体对支持物的压力大小等于物体受到的支持力,则以物体为研究对象,物体受到的支持力大于物体受到的重力,合外力向上,物体具有向上的加速度,如图甲所示。
N-G=ma2.失重物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象称为失重。
高三物理知识点总结高中物理的学习在高三阶段达到了一个综合和深化的程度,对于高三学生来说,系统地梳理和掌握物理知识点至关重要。
以下是对高三物理知识点的全面总结。
一、力学1、牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
表达式为 F = ma 。
牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
2、超重与失重超重:当物体具有向上的加速度时,物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
失重:当物体具有向下的加速度时,物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
3、共点力的平衡平衡状态:物体处于静止或匀速直线运动的状态。
平衡条件:合外力为零,即 F 合= 0 。
4、机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
表达式: E k1 + E p1 = E k2 + E p2 。
5、动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
表达式: m 1 v 1 + m 2 v 2 = m 1 v 1' + m 2 v 2' 。
二、热学1、分子动理论物质是由大量分子组成的。
分子永不停息地做无规则运动。
分子间存在相互作用力。
2、热力学定律热力学第一定律:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
表达式为△ U = Q + W 。
热力学第二定律:热量不能自发地从低温物体传到高温物体;不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
三、电学1、电场电场强度:描述电场强弱和方向的物理量,定义式为E =F /q 。
电场线:形象地描述电场的假想曲线,电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。
牛顿运动定律与动量守恒知识点总结在物理学的世界中,牛顿运动定律和动量守恒定律是极其重要的基础理论,它们为我们理解物体的运动和相互作用提供了关键的框架。
接下来,让我们深入探讨一下这两个重要的知识点。
一、牛顿运动定律牛顿第一定律,也被称为惯性定律,它指出:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
这意味着,如果一个物体没有受到力的作用,它要么静止不动,要么以恒定的速度直线运动。
惯性是物体保持原有运动状态的性质,质量越大,惯性越大。
比如,一辆重型卡车比一辆小型汽车更难改变其运动状态,就是因为卡车的质量更大,惯性更大。
牛顿第二定律是整个牛顿运动定律的核心,其表达式为 F = ma ,其中 F 表示作用在物体上的合力,m 是物体的质量,a 是物体的加速度。
这一定律告诉我们,当一个力作用在物体上时,物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
举个例子,如果我们用更大的力推一个箱子,箱子的加速度就会更大;而如果箱子的质量很大,要使它获得相同的加速度,就需要施加更大的力。
牛顿第三定律指出:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,且作用在同一条直线上。
比如,当你站在地面上时,你对地面施加一个向下的压力,而地面同时对你施加一个向上的支持力,这两个力大小相等、方向相反。
二、动量守恒定律动量是一个与物体的速度和质量相关的物理量,其定义为p =mv ,其中 p 表示动量,m 是物体的质量,v 是物体的速度。
动量守恒定律表明:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
这一定律在许多实际情况中都有着广泛的应用。
例如,在一个光滑水平面上的两个相互碰撞的物体。
在碰撞前,两个物体的总动量是一定的。
在碰撞过程中,虽然它们之间会相互施加力,导致各自的速度发生变化,但由于系统没有受到外力的作用,碰撞后的总动量仍然与碰撞前相同。
再比如,火箭发射的过程。
牛顿运动定律知识点总结一、第一定律(惯性定律)牛顿的第一定律也被称为惯性定律,它阐明了物体在没有受到外力作用时将保持匀速直线运动或静止状态。
具体表述为:“任何物体继续自身的静止状态或匀速直线运动状态,直到有外力迫使它产生状态改变”。
这一定律的提出是对亚里士多德提出的有关力学的错误观点的彻底推翻,它极大地推动了力学领域的进步。
第一定律的精髓在于“惯性”,物体因为具有惯性而能够保持自身原有的运动状态。
比如,一个静止的物体不会自发地开始运动,一个匀速直线运动的物体不会自发地停下来或改变运动的速度和方向。
这是因为物体对外界的作用力表现出了惯性,保持自身运动状态的原理方程式为F=ma,其中的m称为惯性质量,a称为加速度,F为受到的外力。
二、第二定律(运动定律)牛顿的第二定律也被称为运动定律,它指出了物体受到外力作用时将产生加速度的规律。
具体表述为:“物体所受的合外力作用与物体的质量乘积等于物体的加速度”。
也就是说,当物体受到外力作用时,它将产生加速度,而加速度的大小和方向与物体所受外力的大小和方向成正比。
第二定律可用一个简单的方程式来表示:F=ma。
在这个方程中,F表示受到的外力,m 表示物体的质量,a表示产生的加速度。
这个方程式揭示了物体在外力作用下产生加速度的规律,对于我们理解物体的运动提供了重要的理论基础。
第二定律还可以进一步拓展为牛顿的运动方程:F=dp/dt,即外力等于动量随时间变化的速率。
这个公式揭示了外力与物体的动量之间的关系,动量是物体在运动中的一个重要物理量,它对于描述物体在运动中的运动状态和动力学过程起到了至关重要的作用。
三、第三定律(作用与反作用定律)牛顿的第三定律也被称为作用与反作用定律,它阐明了物体之间相互作用的规律。
具体表述为:“任何物体对另一物体施加一力,另一物体必对第一个物体施加大小相等、方向相反的力,且作用在同一条直线上”。
这个定律的提出对于描述物体间相互作用的规律提供了重要的理论依据。
牛顿运动定律与动量守恒知识点总结一、牛顿运动定律(一)牛顿第一定律(惯性定律)任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
理解这一定律时,要注意“惯性”这一概念。
惯性是物体保持原有运动状态的性质,质量是惯性大小的唯一量度。
质量越大,惯性越大,物体的运动状态就越难改变。
例如,一辆重型卡车和一辆小汽车,在相同的外力作用下,重型卡车的运动状态改变更困难,就是因为它的质量大,惯性大。
(二)牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
其表达式为 F = ma。
这一定律揭示了力与运动的关系。
当合外力为零时,加速度为零,物体将保持匀速直线运动或静止状态;当合外力不为零时,物体将产生加速度。
比如,用力推一个静止的箱子,推力越大,箱子的加速度就越大;箱子的质量越大,相同推力下产生的加速度就越小。
(三)牛顿第三定律两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
作用力与反作用力具有同时性、同性质、异体性等特点。
比如,人在地面上行走,脚对地面有向后的摩擦力,地面就对脚有向前的摩擦力,使人能够向前移动。
二、动量守恒定律(一)动量动量是物体的质量与速度的乘积,即 p = mv。
动量是矢量,其方向与速度的方向相同。
(二)动量守恒定律如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
例如,在光滑水平面上,两个质量分别为 m1 和 m2 的小球,速度分别为 v1 和 v2 ,它们发生碰撞后,速度分别变为 v1' 和 v2' 。
根据动量守恒定律,有 m1v1 + m2v2 = m1v1' + m2v2' 。
(三)动量守恒定律的适用条件1、系统不受外力或所受外力的合力为零。
2、系统所受内力远远大于外力,如爆炸、碰撞等过程。
3、系统在某一方向上所受合力为零,则在该方向上动量守恒。
牛顿运动定律知识点的总结大全牛顿运动定律必背知识点1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)定律说明了任何物体都有惯性。
(3)不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2.惯性:物体保持匀速直线运动状态或静止状态的性质。
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能"利用"惯性而不能"克服"惯性。
(2)质量是物体惯性大小的量度。
3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
(2)对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(3)牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。