《数学分析》56学时中山大学
- 格式:docx
- 大小:15.08 KB
- 文档页数:1
学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
数学专业参考书——学数学的必看标签:math数学2013-03-17 15:36 4659人阅读评论(0) 收藏举报分类:Mathematics(1)首先必须膜拜下数学专业的大牛,必须是人才啊!所以转了下,自己也在慢慢学数学。
学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
2023年能源与环境系统工程专业考研书目能源与环境系统工程专业考研需要阅读的书籍包括:(一)基础专业课1.《数学分析》中山大学出版社涂晓华等编著2.《线性代数及其应用》高等教育出版社 Gilbert Strang著高等教育出版社 CharlesG. Cullen译3.《概率论与数理统计》高等教育出版社吕建林编著4.《大学物理》(上、下册)高等教育出版社吕岩编著5.《工程热力学》清华大学出版社陈新田主编6.《流体力学》清华大学出版社朱国云等主编7.《化工原理》(上、下册)高等教育出版社韦臣瀚等编著8.《化工反应工程》化学工业出版社李燕华等编著9.《传热学》清华大学出版社王定华主编10.《燃烧原理》化学工业出版社蔡姝芳编著11.《环境化学》高等教育出版社梁婧编著12.《环境工程原理》(上、下册)高等教育出版社蔡命政等编著13.《水污染控制工程》中国建筑工业出版社蔡列等编著14.《大气污染控制工程》高等教育出版社任欣编著15.《固体废物处理技术》(上、下册)化学工业出版社詹芬芬等编著(二)专业课1.《能源系统分析与设计》高等教育出版社王泽民主编2.《城市能源规划与管理》高等教育出版社李绪涛编著3.《可再生能源工程原理及应用》清华大学出版社陈建元等主编4.《传统能源系统优化技术》高等教育出版社高杰编著5.《工业节能与资源综合利用》机械工业出版社王力红等编著6.《环境影响评价》(上、下册)高等教育出版社王海波编著7.《环境监测与污染控制》清华大学出版社董国庆等主编8.《环境管理与法规》高等教育出版社刘文然编著9.《农业生态工程》中国农业出版社刘红艳等编著10.《水资源与水环境》高等教育出版社刘凡编著11.《水文学与水能利用》清华大学出版社刘健等主编12.《生物质能源利用技术》中国农业出版社李开所等编著13.《新能源技术及应用》高等教育出版社于海宋号编著以上是2023年能源与环境系统工程专业考研书目,特此列举。
这才是在大学数学系应有的岁月数学专业参考书整理推荐V3.0版(正在撰写中)本文是这个文章的第三个版本,也是最后一个版本,由于时间精力,我不会再重新写这篇文章,最多是在原文上修改部分内容。
文章会注明修改日期,如有转载请注明这个时间。
并且请尽量不要腰斩我的文章,防止读者断章取义。
向指导我大学数学学习的王云峰(数学分析,复变函数),袁进(高等代数),邢志栋(数值代数),温作基(实变函数),曹建荣(微分方程数值解),贾健(数据结构,图形学),方莉(泛函分析,毕业论文),赵宪钟(具体数学),张文鹏(数论),邵勇(泛代数)以及其他没有列出名字的诸位老师致谢。
第0部分:前言关于数学系专业课参考书的帖子很多。
最出名的是复旦大学yjyao(姚一隽?)去巴黎前发表在日月光华BBS站上的《大学数学学习参考书点评》(/bbs/anc?path=/bmt/9/mat/M.984927021.A)(/bbs/viewtopic.php?f=16&t=23)此外还有中国科学技术大学数学系几位学长的建议:《科大学长对数学系学弟学妹的忠告》(/bbs/viewtopic.php?f=16&t=25)《中国科学技术大学数学系教材及参考书目录》(/bbs/viewtopic.php?f=16&t=26)《数学与物理的参考书目》(/bbs/viewtopic.php?f=16&t=24)这几篇文章尤其是前面三篇深深影响了我大学数学的学习,在这里向原作者深深致谢。
另外大家还可以参考《美国数学本科生,研究生基础课程参考书目》(/bbs/viewtopic.php?f=16&t=34)此外,还有我这篇文章的1.0版:几篇零散的分别介绍数学系参考书的帖子。
那样的烂文章居然有人转载,我看了自己都不好意思,故催生出本文章V2.0版数学专业参考书整理推荐(/article.php/706)当然,当时不是这么叫的。
关于实数七个基本定理等价性的证明夏小月中山大学应用数学04级从开始学习数学分析至今,我们共学习了七个实数基本定理,他们分别是:戴德金连续性准则○1单调有界有极限定理○2确界定理○3区间套定理○4Borel 有限覆盖定理○5Bolzano-Weierstrass 定理○6Cauchy 收敛原理○7书上证明各定理的思路是:从出发证明及,并证明、、相互等价,此过程○1○2○3○1○2○3中得到:“单调上升有上界数列的极限即为数列上确界”这一加强结论。
由及此加○2强结论可证出,再由分别证出及,由证出。
○4○4○5○6○6○7下面给出这七个实数基本定理之间相互等价的证明,大概思路如下:⇔⇔⇒⇔⇒⇒⇒①④⑦②⑥②③⑤④详细证明如下:⇒①④已知有区间套满足,。
[]{},n n a b ()lim 0n n n b a →∞-=[][]()11,,n n n n a b a b n ++⊂∀要证存在唯一的,且[]1,nnn r a b ∞=∈lim lim nn n n ba r→∞→∞==记全体上界组成的集合为,。
由,{}n a B \A =B R [][]()11,,n n n n ab a b n ++⊂∀知。
显然,,且,故知121n n a a a b b ≤≤⋅⋅⋅≤≤≤⋅⋅⋅11a -∈A 11b +∈B {}n b ⊂B 不空;由知不漏;,由于不是的上A B 、A =B R \A B 、,a b ∀∈A ∀∈B a {}n a 界,因此存在,使。
而是上界之一,所以,故{}0n n a a ∈0n a a <b {}n a 0n a b ≤,即,故不乱,因此构成实数的一个分划。
0n a a b <≤a b <|A B 由知,存在唯一的r ,,有。
下证,①,a b ∀∈A ∀∈B a b ≤[]1,nnn r a b ∞=∈ 即,n nn a r b ∀≤≤若,使,则,因此,而,与∃N n a r >2n n a r a +<2n a r+∈A 2n a r r +>矛盾。
《泛函分析》课程教学大纲课程编码:171210140课程性质:专业方向限选课程适用专业:统计学专业所需先修课数学分析高等代数实变函数论学时学分:32学时1.5学分编写单位:数学与信息科学系一、课程说明1、课程简介:泛函分析课程是数学与应用数学专业的专业课程,是数学分析的后续课程,是近代数学中的一个重要分支,在古典分析、线性代数、线性微分方程、积分方程、变分学、逼近论等的开展基础上逐渐形成。
其内容已渗透到逼近论、偏微分方程、概率论、最优化理论等各方面.近年来,在工程技术上更是获得了广泛而有效的应用.它的开展受到了数学物理方程和量子力学的推动,后来又整理、概括了经典分析和函数论的许多成果,因此学习泛函分析时需要学生掌握分析、代数、概率论、拓扑学等基本知识,是数理方程、稳定性理论等后续课程的必要基础课程.2、教学目的要求:通过泛函分析的教学,使学生了解和掌握度量空间,赋范线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为学习数学的其它专业课打下扎实的理论基础.3、教学重点难点教学重点:离散度量空间、序列空间、有界空间、可测函数空间的性质、度量空间中极限、稠密集、可分空间的概念、用极限的形式和集合对应关系给出两个重要定理、空间的结构理论,度量收敛;完备度量空间的定义、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和判定向量组的线性相关性、三个定理的内容;有界线性算子与连续线性泛函,算子的范数,经典空间,l p的共地空间、内积空间,施瓦茨不等式,直交投影,希尔伯特空间中的规范正交系,贝塞尔不等式,帕塞瓦尔不等式,同构映射,连续线性泛函,自共朝,本章难点柯西积分定理的证明、刘维尔定理的应用.本章内容第一节复积分的概念及其简单性质1.1复变函数积分的定义1.2复变函数积分的计算问题1.3复变函数积分的基本性质第二节柯西积分定理2.1不定积分2.2柯西积分定理的推广2.3柯西积分定理推广到复围线的情形第三节柯西积分公式及其推论3.1柯西积分公式3.1解析函数的无穷可微性3.2柯西不等式与刘维尔定理3.3摩勒拉定理第四章解析函数的幕级数表示法(8学时)教学目标1、使学生掌握复级数的基本概念及其相关性质,能够深刻认识理解复级数与实级数在概念、性质、定理上的区别与联系;2、使学生理解并掌握解析函数零点的孤立性及唯一性定理.本章重点.1、理解并掌握复级数的基本性质;2、理解并掌握幕级数敛散性的判别,收敛域的求法以及和函数的求法;3、能够熟练掌握并运用直接展法和间接展法,将某些解析函数展成泰勒级数,牢记sin z,cosz,—匚,一匚的展式,并注意展式的可展范围; 1-Z 1 + Z4、深刻理解解析函数零点的孤立性、唯一性定理及最大模定理,并能够综合运用证明有关数学问题.本章难点事级数的和函数在其收敛圆周上的状况、解析函数零点的孤立性、唯一性定理、最大模原理.本章内容第一节复级数的基本性质1.1复数项级数1.2一致收敛的复函数项级数1.3解析函数项级数第二节累级数1.1塞级数的敛散性1.2收敛半径的求法、柯西一阿达玛公式1.3基级数的解析性第三节解析函数的泰勒展式3.1泰勒定理3.2累级数的和函数在其收敛圆周上的状况3.3 一些初等函数的泰勒展式第四节解析函数零点的孤立性、唯一性定理4.1解析函数零点的孤立性4.3最大模原理第五章解析函数的罗朗展式与孤立奇点(6学时)教学目标使学生理解并掌握解析函数的罗朗展式的概念与展法,并注意与泰勒级数进行相关性质的比拟.深刻理解并牢固掌握可去奇点、极点、本性奇点的概念及等价定义.为下一章残数理论的学习打下坚实的基础.本章重点1、理解并掌握解析函数的罗朗展式以及罗朗级数与泰勒级数的关系.熟练掌握解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧;5.理解并深刻认识孤立奇点的三种类型及分类方法,熟练掌握可去奇点、极点、本性奇点的概念及等价定义;6.了解解析函数在无穷远点处的性质.本章难点解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧.本章内容第一节解析函数的罗朗展式1.1双边塞级数1.2解析函数的罗朗展式1.3罗朗级数与泰勒级数的关系1.4解析函数在孤立奇点邻域内的罗朗展式第二节解析函数的孤立奇点2.1孤立奇点的三种类型2.2可去奇点2.3极点2.4本质奇点第六章留数理论及其应用(6学时)教学目标1、使学生理解并掌握留数的定义及留数定理,会利用留数定理求解复积分与实积分,并知晓其内在联系与区别.深刻理解留数定理与柯西积分定理、柯西积分公式之间的关系;2、理解并掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围. 本章重点1、理解并掌握留数的定义及留数的求法;2、深刻理解并熟练掌握留数定理并能够灵活运用留数定理求解复积分3、了解用留数定理计算实积分的理论及基本方法;4、深刻理解并熟练掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围.本章难点留数定理与柯西积分定理、柯西积分公式之间的关系.本章内容第一节留数1.1留数的定义及留数定理1.2留数的求法1.3函数在无穷远点的留数1.4用留数定理计算实积分简介第二节辐角原理及其应用2.1对数留数2.2辐角原理2.3儒歇定理三、使用教材及参考书指定教材:钟玉泉编,复变函数论(第三版),高等教育出版社,2001年.参考书:[1]张锦豪、邱维元编,复变函数论,高等教育出版社,2001年.[2]钟玉泉编,复变函数学习指导书,高等教育出版社,1996年.[3]刚家泰,谭欣欣编,复变函数全程学习指导与解题能力训练,大连理工大学出版社,2001年.共辗算子,巴拿赫空间,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.教学难点:连续映射、空间完备性的证明、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和掌握一些判定定理、Holder不等式和Minkowski不等式的内容;有界线性算子与连续线性泛函;经典空间广〃的共辗空间,各种收敛性之间的各种联系,投影定理,斯捷克洛夫定理,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.5、教学手段及教学方法建议主要以教师讲授为主,适当的时候可以应用多媒体辅助教学.4、考核方式1)考核形式:考查2)开卷笔试3)期末总评成绩评定方法考试:试卷总分值100分,其中平时作业、期中考试及考勤占总评成绩的40%, 期末考查成绩占总评成绩的60%.5、学时分配表本课程的教学包括如下环节:课堂讲授,主要以教师讲授为主,要求学生课下预习;辅导或习题课,师生互动,边讲边练,解决学生学习过程中出现的一些问题;课外作业,通过对作业的批改,使学生加深巩固对所学内容的理解与掌握。
数学与应用数学专业课程设置与简介来源: 理学院时间: 2005年8月2日14:27 点击: 5603数学系数学与应用数学专业(S)四年制教学中共开设相关专业课程26门, 其中专业基础课3门, 包括: 数学分析、高等代数、解析几何;专业课12门, 包括: 常微分方程、中学数学解题研究、中学数学教材分析、数学教育概论、计算方法、初等数论、离散数学、近世代数、实变函数论、复变函数论、概率论、数理统计;专业选修课11门, 包括: 专业英语、泛函分析、点集拓扑、数学实验、数学模型、数学分析选讲、高等代数选讲、线性规划、数学史、数学竞赛教程。
各门课程简介如下:一、数学分析内容简介: 数学分析是数学专业的一门重要的专业基础课程, 是高等数学理论的基础, 也是所有本科专业学生的必修课程, 这门课程的学好与否, 直接影响到后续课程如复变函数、实变函数以与拓扑学等课程的学习。
该课程首先详细介绍了极限理论, 用极限理论作为工具, 讨论了函数, 特别是连续函数的导数与徽分;不定积分与定积分;级数理论;多元函数微分学以与多元函数积分学等理论。
通过这门课的学习, 应该使学生掌握函数的微积分理论的基本理论和基本方法, 能应用这些理论和方法解决分析中提出的理论和实际问题, 为后续课程的学习打下良好的基础。
该课程重点是极限理论和微积分理论, 难点是实数连续性定理与级数理论。
先修课要求:中学数学教材与参考书: 《数学分析讲义》刘玉琏傅沛仁编高等教育出版社二、高等代数内容简介: 高等代数是数学教育专业的一门重要基础课。
高等代数是高等师范院校数学专业一门重要基础课,是中学代数的继续和提高,通过这一课程的教学,可以使学生初步掌握基本的系统的代数知识和抽象的严格的代数方法,以加深对中学数学的理解,并为进一步学习打下基础.本课程的主要内容是多项式理论, 线性代数理论两部分。
多项式理论主要讨论一元多项式和因式分解理论。
线性代数部分包括矩阵、线性空间、线性变换、欧氏空间和二次型等内容。
《数学分析》56学时中山大学
本课程为中山大学邓东皋等老师主讲的数学分析精品课程教学视频,全套课程共56学时,由壹课堂网整理免费共享。
数学分析是综合性大学数学系和统计科学系的一门主干基础课和必修课,本课程的目的是为后继课程提供必要的知识,同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生掌握分析问题和解决问题的思想方法。
本课程不仅对许多后继课程的学习有直接影响,而且对学生基本功的训练与良好素质的培养起着十分重要的作用。