������
=-������12
−
1 2
������.
所以当 x=4 时,y'=-116 − 14=-156,
故曲线在点 P
4,-
7 4
处的切线方程为 y+74=-156(x-4),即
5x+16y+8=0.
探究一
探究二
思维辨析
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 AYIJIEHUO
D当堂检测 ANGTANG JIANCE
(ΔΔ������������++24)2=-1.
答案:(1)C (2)-1
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 AYIJIEHUO
D当堂检测 ANGTANG JIANCE
2.导数的几何意义
函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0,f(x0))处的切线的 斜率.函数y=f(x)在x0处切线的斜率反映了导数的几何意义.
【例2】 (1)已知曲线y=2x3上一点A(1,2),则点A处的切线的斜率
等于( )
A.0 B.2 C.4 D.6
(2)求曲线 y=1������ −
������上一点 P
4,-
7 4
处的切线方程.
分析(1)利用导数几何意义,只需求出函数在x=1处的导数值,即得 图像在点A处的切线的斜率;(2)利用导数几何意义求出图像在点P 处的切线的斜率,再根据直线方程的点斜式求得直线方程.
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 AYIJIEHUO
D当堂检测 ANGTANG JIANCE
1.导数的概念