数学必修四课件 1.3 三角函数的诱导公式 第1课时
- 格式:ppt
- 大小:893.00 KB
- 文档页数:29
三角函数的诱导公式第一课时诱导公式(一)预习课本P23~25,思考并完成以下问题(1)π±α,-α的终边与α的终边有怎样的对称关系?(2)诱导公式的内容是什么?(3)诱导公式1~4有哪些结构特征?[新知初探]1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称. 如图所示.(2)公式:sin(π-α)=sin_α. cos(π-α)=-cos_α. tan(π-α)=-tan_α.4.α+k ·2π(k ∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)诱导公式中角α是任意角.( )(2)公式sin(-α)=-sin α,α是锐角才成立.( ) (3)公式tan(π+α)=tan α中,α=π2不成立.( )答案:(1)× (2)× (3)√ 2.已知cos(π+θ)=36,则cos θ=( ) A .36 B .-36 C .336D .-336答案:B3.若sin(π+α)=13,则sin α等于( )A .13B .-13C .3D .-3答案:B4.已知tan α=4,则tan(π-α)=________. 答案:-4[典例] 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6.[解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32. (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1. (3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.利用诱导公式解决给角求值问题的步骤[活学活用] 求下列各式的值:(1)cos(-120°)sin(-150°)+tan 855°; (2)sin4π3·cos 19π6·tan 21π4. 解:(1)原式=cos 120°(-sin 150°)+tan 855°=-cos(180°-60°)sin(180°-30°)+tan(135°+2×360°) =cos 60°sin 30°+tan 135° =cos 60°sin 30°+tan(180°-45°) =cos 60°sin 30°-tan 45°=12×12-1=-34.(2)原式=sin 4π3·cos ⎝⎛⎭⎫2π+7π6·tan ⎝⎛⎭⎫4π+5π4 =sin4π3·cos 7π6·tan 5π4=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π+π6·tan ⎝⎛⎭⎫π+π4 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·tan π4=⎛ ⎝⎭-×⎛ ⎝⎭-×1=34.[典例] 化简:(1)-α+α-α;(2)+αα--180°-α-α-. [解] (1)-α+α-α=cos α+αsin α=cos α·tan αsin α=sin αsin α=1.(2)原式=×360°+α×360°-α°+α-°+α=sin α-α-cos α·sin α=cos α-cos α=-1.[活学活用] 化简下列各式: (1)α+2α+α+3-α-;(2)k π-αk --α]k ++αk π+α(k ∈Z).解:(1)原式=-cos α·sin 2α-tan α·cos 3α=tan 2 αtan α=tan α .(2)当k =2n (n ∈Z)时, 原式=n π-αn --α]n ++αn π+α=-α-π-α+αα=-sin α-cos α-sin α·cos α=-1; 当k =2n +1(n ∈Z)时, 原式=n +-αn +1--α]n +1++αn ++α]=-ααsin α+α=sin α·cos αsin α-cos α=-1.综上,原式=-1.[[解] 因为cos ⎝⎛⎭⎫5π6+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α=-33. [一题多变]1.[变设问]在本例条件下,求: (1)cos ⎝⎛⎭⎫α-13π6的值; (2)sin 2⎝⎛⎭⎫α-π6的值. 解:(1)cos ⎝⎛⎭⎫α-13π6=cos ⎝⎛⎭⎫13π6-α=cos ⎝⎛⎭⎫π6-α=33. (2)sin 2⎝⎛⎭⎫α-π6=sin 2⎣⎡⎦⎤-⎝⎛⎭⎫π6-α=sin 2⎝⎛⎭⎫π6-α=1-cos 2⎝⎛⎭⎫π6-α=1-2⎝⎭=23. 2.[变条件]若将本例中条件“cos ⎝⎛⎭⎫π6-α=33”改为“sin ⎝⎛⎭⎫α-π6=33,α∈⎝⎛⎭⎫2π3,7π6”,则结论如何?解:因为α∈⎝⎛⎭⎫2π3,7π6,则α-π6∈⎝⎛⎭⎫π2,π. cos ⎝⎛⎭⎫5π6+α=-cos ⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫α-π6 =1-sin 2⎝⎛⎭⎫α-π6= 1-13=63. 3.[变条件,变设问]tan ⎝⎛⎭⎫π6-α=33,求tan ⎝⎛⎭⎫5π6+α. 解:tan ⎝⎛⎭⎫5π6+α=-tan ⎣⎡⎦⎤π-⎝⎛⎭⎫5π6+α =-tan ⎝⎛⎭⎫π6-α=-33.层级一 学业水平达标1.sin 600°的值是( ) A .12B .-12C .32D .-32解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32. 2.若sin(π+α)=-12,则sin(4π-α)的值是( )A .12B .-12C .-32D .32解析:选B 由题知,sin α=12,所以sin(4π-α)=-sin α=-12.3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C .55 D .255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A .13B .-13C .233D .-233解析:选B ∵tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α =-tan ⎝⎛⎭⎫π3-α, ∴tan ⎝⎛⎭⎫2π3+α=-13. 5.设tan(5π+α)=m ,则α+++α-α-cos+α的值等于( )A .m +1m -1B .m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=tan[4π+(π+α)] =tan(π+α)=tan α,∴tan α=m , ∴原式=+α-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1,故选A. 6.求值:(1)cos 29π6=______;(2)tan(-855°)=______. 解析:(1)cos29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.答案:(1)-32(2)1 7.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0, 所以cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 答案:2558.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213.答案:12139.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 23π6;(3)tan 37π6. 解:(1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+4π3=sin 4π3 =sin ⎝⎛⎭⎫π+π3=-sin π3=-32. (2)cos 23π6=cos ⎝⎛⎭⎫4π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. (3)tan 37π6=tan ⎝⎛⎭⎫6π+π6=tan π6=33. 10.若cos α=23,α是第四象限角,求sin α-2+sin -α-3cos α-3cos -α-cos -π-αcos α-4的值.解:由已知cos α=23,α是第四象限角得sin α=-53,故α-+-α-α--α--π-αα-=sin α-sin αcos α-cos α+cos 2α=52. 层级二 应试能力达标1.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A .45B .-45C .±45D .35解析:选B ∵cos(π-α)=-cos α,∴cos α=35.∵α是第一象限角,∴sin α>0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.∴sin(-2π-α)=sin(-α)=-sin α=-45.2.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 015)=5,则f (2 016)等于( )A .4B .3C .-5D .5解析:选C ∵f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=-a sin α-b cos β=5,∴f (2 016)=a sin(2 016π+α)+b cos(2 016π+β)=a sin α+b cos β=-5.3.若α,β的终边关于y 轴对称,则下列等式成立的是( ) A .sin α=sin β B .cos α=cos β C .tan α=tan βD .sin α=-sin β解析:选A 法一:∵α,β的终边关于y 轴对称, ∴α+β=π+2k π或α+β=-π+2k π,k ∈Z , ∴α=2k π+π-β或α=2k π-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等,设为r ,则sin α=sin β=yr .4.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3; ④cos ⎣⎡⎦⎤n +-π6;⑤sin ⎣⎡⎦⎤n --π3. 其中n ∈Z ,则函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:选C ①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3;③中,sin ⎝⎛⎭⎫2n π+π3=sin π3;④中,cos ⎣⎡⎦⎤n +-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎡⎦⎤n --π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 5.化简:-sin 495°+-的值是________.解析:原式=°+225°°+135°-°+360°=cos 225°sin 135°-sin 210°=°+45°°-45°-°+30°=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-26.已知f (x )=⎩⎪⎨⎪⎧sin πx , x <0,f x --1, x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析:因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52. 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案:-2 7.计算与化简 (1)-θ-θ-θ-cos θ+θ;(2)sin 420°cos 330°+sin(-690°)cos(-660°). 解:(1)原式=-θ-θ-θ-cos θ+θ=tan θsin θcos θcos θsin θ=tan θ.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°) =sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1.8.已知1+θ+1-θ-=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2-θ-的值.解:由1+θ+720°1-θ-360°=3+22,得(4+22)tan θ=2+22, 所以tan θ=2+224+22=22,故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2-θ-=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ =1+22+2×⎝⎛⎭⎫222=2+22.。
.三角函数的诱导公式第一课时三角函数的诱导公式(一)[提出问题]问题:锐角α的终边与π+α角的终边位置关系如何?它们与单位圆的交点的位置关系如何?任意角α与π+α呢?提示:无论α是锐角还是任意角,π+α与α的终边互为反向延长线,它们与单位圆的交点关于原点对称.问题:任意角α与-α的终边有怎样的位置关系?它们与单位圆的交点有怎样的位置关系?试用三角函数的定义验证-α与α的三角函数值的关系.提示:α与-α的终边关于轴对称,它们与单位圆的交点与关于轴对称,设的坐标为(,),则的坐标为(,-).(-α)=-=-α,(-α)==α,(-α)=-=-α.问题:任意角α与π-α的终边有何位置关系?它们与单位圆的交点的位置关系怎样?试用三角函数定义验证α与π-α的各三角函数值的关系.提示:α与π-α的终边关于轴对称,如图所示,设(,)是α的终边与单位圆的交点,则π-α与单位圆的交点为′(-,),,′关于轴对称,由三角函数定义知,(π-α)==α,(π-α)=-=-α,(π-α)==-α.[导入新知].诱导公式二+π角()α与角原点的终边关于α对称.如图所示.+(π公式:()α)α-=.+(π.)αα-=+π(αα).=.诱导公式三()角-α与角α的终边关于轴对称.如图所示.-(公式:.α())-α=-(α=).α)(-α.=α-.诱导公式四()角π-α与角α的终边关于轴对称.如图所示.(π公式:()-αα=.)α(π-)=α.-α-)(π.=α-[化解疑难]对诱导公式一~四的理解()公式两边的三角函数名称应一致.()符号由将α看成锐角时α所在象限的三角函数值的符号决定.但应注意,将α看成锐角只是为了公式记忆的方便,事实上α可以是任意角.[例]()(-°);() °;().[解]()(-°)=-°=-(×°+°)=-°=-(°-°)=-°=-;。