2018年北京市平谷区中考二模数学试卷及答案
- 格式:doc
- 大小:778.43 KB
- 文档页数:22
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ; (2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形; ②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xxy yx2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标. (2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.2018房山二模28. 已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(-12,32),M(0,-1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为 5 ,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线443y x=-+与x轴,y轴分别交于点A,B. 若线段AB上存在⊙D的“关联点”,求m的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=. 已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数; (2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”. (1)当⊙M 半径为2,点M 和点O 重合时,○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围; (2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.2018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点1,2A ⎛⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”);(2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 .(2)点D 在直线+3y =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP ,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y 上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围; (2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直”表示.线)的距离叫做“弦中距”,用符号“d中以(3,0)W-为圆心,半径为2的圆上.(1)已知弦MN长度为2.①如图1:当MN∥x轴时,直接写出到原点O的d的长度;中的取值范围.②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的d中(2)已知点(5,0)y x=-,求到直线2=-的dy xM-,点N为⊙W上的一动点,有直线2中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果a ≤PQ,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在11(,0)2-P,21(2P,3P 中,正方形ABCD 的“关联点”有 ; (2)已知点E 的横坐标是m ,若点E在直线=y 上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线1=+y 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.代数综合题2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018房山二模26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D . (1)当1h =-时,求点D 的坐标; (2)当1x ≤≤≤1-≤1时,求函数的最小值m .(用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D 是抛物线223y ax ax a =--()0a >的顶点,抛物线与x轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.x2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.反比例综合题2018昌平二模22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ). (1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.x2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.2018东城二模22. 已知函数1y x =的图象与函数()0y kx k =≠的图象交于点(),P m n .(1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.2018房山二模22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2y x=-相交于 点A (m ,2).(1)求直线y kx m =+的表达式; (2)直线y kx m =+与双曲线2y x=-的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标 .2018丰台二模22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数ky x=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.2018海淀二模22.已知直线l 过点(2,2)P ,且与函数(0)ky x x=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长; (3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x -2交于点A (a ,1). (1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数()0ky k x=≠的图象于点N (x 1,y 2),结合函数的图象,直接写出12y y -的取值范围.2018石景山二模22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .2018西城二模23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m xmy 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点(2,2)M . (1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数ky x=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接写出a 的取值范围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数ky x=(x >0)的图象与直线21y x =+交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交函数ky x=(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数; ②若ky x=(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).2018朝阳二模25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,D 是线段AB 上一动点,射线DE ⊥BC 于点E ,∠EDF = °,射线DF 与射线AC 交于点F .设B ,E 两点间的距离为x cm ,E ,F 两点间的距离为y cm .图1 图2(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.2018东城二模25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点, 根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.2018房山二模25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值则m的值为;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质.2018丰台二模25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:Array(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.2018海淀二模25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
1东城.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2西城. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.3海淀.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.4朝阳.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.5丰台.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D .(1)当1h =-时,求点D 的坐标;(2)当1x -≤≤≤11x -≤≤≤1时,求函数的最小值m . (用含h 的代数式表示m )。
解四边形综合题2018昌平二模21.如图,已知△ACB 中,∠ACB =90°,CE 是△ACB 的中线,分别过点A 、点C 作CE 和AB 的平行线,交于点D .(1)求证:四边形ADCE 是菱形;(2)若CE=4,且∠DAE =60°,求△ACB 的面积.2018朝阳二模22. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE . (1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.2018东城二模DECBA21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF .(1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.2018房山二模21. 已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC . (1)求证:四边形ABCD 是菱形;(2)如果∠BDC =30°,DE =2,EC =3,求CD 的长.2018丰台二模21.如图,BD 是△ABC 的角平分线,过点D 作DE ∥BC 交AB 于点E ,DF ∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形;B(2)如果∠A = 90°,∠C = 30°,BD = 12,求菱形BEDF 的面积.2018海淀二模21.如图,在四边形ABCD 中,AB CD , BD 交AC 于G ,E 是BD 的中点,连接AE 并延长,交CD于点F ,F 恰好是CD 的中点. (1)求BGGD的值; (2)若CE EB ,求证:四边形ABCF 是矩形.2018平谷二模22.如图,已知□ABCD ,延长AB 到E 使BE =AB ,连接BD ,ED ,EC ,若ED =AD . (1)求证:四边形BECD 是矩形;(2)连接AC ,若AD=4,CD= 2,求AC 的长.F DECB AE G FA B CD2018石景山二模21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE . (1)求证:DEC BEC ∠=∠;(2)若8AB =,BC =CE 的长.2018西城二模21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.ACD2018怀柔二模20.如图,四边形ABCD 是边长为2的菱形,E ,F 分别是AB ,AD 的中点,连接EF ,EC ,将△FAE 绕点F 旋转180°得到△FDM .(1)补全图形并证明:EF ⊥AC ; (2)若∠B =60°,求△EMC 的面积.2018顺义二模22.如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC . (1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A=30 ,DC EC 的长.2018门头沟二模21.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BF=BE.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.。
函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,D 是线段AB 上一动点,射线DE ⊥BC 于点E ,∠EDF = °,射线DF 与射线AC 交于点F .设B ,E 两点间的距离为x cm ,E ,F 两点间的距离为y cm .(2)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 为等边三角形时,BE 的长度约为 cm.图1 图225. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x= 时,y有最小值.由此,小强确定篱笆长至少为米.25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值则m 的值为 ;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质 .25.数学活动课上,老师提出问题:如图,有一张长4dm ,宽3dm 的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大. 下面是探究过程,请补充完整:(1)设小正方形的边长为x dm ,体积为y dm 3,根据长方体的体积公式得到y 和x 的关系式: ;(2)确定自变量x 的取值范围是 ; (3)列出y 与x 的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm 时,盒子的体积最大,最大值约为 dm 3.25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
北京市平谷区2018年中考模拟试卷2018.5一、选择题(本题共16分,每小题2分)1.风和日丽春光好,又是一年舞筝时。
放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是..轴对称图形的是A.B.C.D.2.下面四幅图中,用量角器测得∠AOB度数是40°的图是A.B.C.D.3.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是A.0 B.1 C.3 D.54.下图可以折叠成的几何体是A.三棱柱B.圆柱C.四棱柱D.圆锥5.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如右图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为A. B. C. D.6.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是A.3 B.4 C.6 D.127.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S 和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟8.中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③B.②③C.②④D.③④二、填空题(本题共16分,每小题2分)9x 的取值范围是 .10.林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为 (结果精确到0.01).11.计算:23222333m n ++++⨯⨯⨯个个= .12.如图,测量小玻璃管口径的量具ABC 上,AB 的长为10毫米,AC 被分为60等份,如果小管口中DE 正好对着量具上20份处(DE ∥AB ),那么小管口径DE 的长是_________毫米.13.已知:24a a +=,则代数式()()()2122a a a a +-+-的值是 . 14.如图,AB 是⊙O 的直径,AB ⊥弦CD 于点E ,若AB =10,CD =8,则BE = .15.如图,在平面直角坐标系xOy 中,△OCD 可以看作是△ABO 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO 得到△OCD 的过程: .16.下面是“作已知角的角平分线”的尺规作图过程.请回答:该尺规作图的依据是 . 三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:(1112sin 603-⎛⎫-+-︒ ⎪⎝⎭π.18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解....19.如图,在△ABC 中,AB=AC ,点D 是BC 边上一点,EF 垂直平分CD ,交AC 于点E ,交BC 于点F ,连结DE ,求证:DE ∥AB .20.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x +1交于点A (1,a ). (1)求a ,k 的值;(2)连结OA ,点P 是函数()0ky k x=≠上一点,且满足OP=OA ,直接写出点P 的坐标(点A 除外).22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整. 收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲 91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91 乙 84 93 66 69 76 87 77 82 85 8890886788919668975988整理、描述数据按如下数据段整理、描述这两组数据分析数据两组数据的平均数、中位数、众数、方差如下表:的值是 .得出结论a 若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b 可以推断出 学校学生的数学水平较高,理由为. (至少从两个不同的角度说明推断的合理性)24.如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB =2∠C ; (2)若AB =6,3cos 5B,求DE 的长.25.如图,在△ABC 中,∠C =60°,BC =3厘米,AC =4厘米,点P 从点B 出发,沿B →C →A 以每秒1厘米的速度匀速运动到点A .设点P 的运动时间为x 秒,B 、P 两点间的距离为y 厘米.小新根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:经测量m 的值是 (保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC 中画出点P 所在的位置.26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2. (1)求b 的值; (2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.27.在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF . (1)补全图1;(2)如图1,当∠BAC =90°时,①求证:BE=DE ;②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系.28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙OP 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.图1BB 图2北京市平谷区2018年中考统一练习(一)数学试卷参考答案及评分标准 2018.04二、填空题(本题共16分,每小题2分) 9.x ≥2;10.0.88; 11.23n m +;12.103;13.8;14.2;15.答案不唯一,如:将△ABO 沿x 轴向下翻折,在沿x 轴向左平移2个单位长度得到△OCD . 16.答案不唯一:到线段两端点距离相等的点在线段的垂直平分线上;等腰三角形三线合一.三、解答题(本题共68分,第17-22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分) 解答应写出文字说明、演算步骤或证明过程. 17.解:(1112sin 603-⎛⎫-+--︒ ⎪⎝⎭π=3112--········································································· 4 =1 ···································································································· 5 18.解:3(1)4553 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. (1)解不等式②,得 x >-1. ....................................................................... 3 ∴原不等式组的解集为12x -<≤. ....................................................... 4 ∴适合原不等式组的整数解为0,1,2. ...................................................... 5 19.证明:∵AB=AC , ∴∠B =∠C . ................................................................................. 1 ∵EF 垂直平分CD , ∴ED=EC . ................................................................................... 2 ∴∠EDC =∠C . ............................................................................. 3 ∴∠EDC =∠B . ............................................................................. 4 ∴DF ∥AB . . (5)20.解:(1)∵关于x 的一元二次方程有两个不相等的实数根.∴()2Δ2410k =--> (1)=8-4k >0. ∴2k < ··················································································· 2 (2)∵k 为正整数, ∴k =1. ··················································································· 3 解方程220x x +=,得120,2x x ==-. ········································· 5 21.解:(1)∵直线y =x +1经过点A (1,a ),∴a =2. ····················································································· 1 ∴A (1,2).∵函数()0ky k x=≠的图象经过点A (1,2), ∴k =2. (2)(2)点P 的坐标(2,1),(-1,-2),(-2,-1). ......................................... 5 22.(1)证明:∵BF 平分∠ABC , ∴∠ABF =∠CBF . .. (1)∵□ABCD ,∴AD ∥BC .∴∠AFB =∠CBF .∴∠ABF =∠AFB .∴AB=AF .∵AE ⊥BF ,∴∠ABF +∠BAO =∠CBF +∠BEO =90°. ∴∠BAO =∠BEO . ∴AB=BE . ∴AF=BE .∴四边形ABEF 是平行四边形. ∴□ABEF 是菱形. (2)(2)解:∵AD=BC ,AF=BE ,∴DF=CE . ∴BE =2CE . ∵AB =4,∴BE =4. ∴CE =2.过点A 作AG ⊥BC 于点G . (3)∵∠ABC =60°,AB=BE , ∴△ABE 是等边三角形. ∴BG=GE =2. ∴AF=CG =4. (4)∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=∴CF= (5) (2)分析数据经统计,表格中m的值是88 . (3)得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300 . (4)b 答案不唯一,理由须支撑推断结论. (7)24.(1)证明:∵AC是⊙O的切线,∴∠BAC=90°. (1)∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC, (2)∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C. (3)(2)解:连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB= 6,3 cos5B=,∴BD=185. (4)在Rt△ABC中,AB=6,3 cos5B=,∴BC=10.∵点E是BC边的中点,∴BE=5. (5)∴75DE=. (6)25.解:(1)3.0;························ (1)(2)如图所示; (4)(3)如图 (5)26.解:(1)∵抛物线223y x bx =-+-的对称轴为直线x =2, ∴b =2. ················································· 1 (2)①∴抛物线的表达式为243y x x =-+-. ∵A (x 1,y ),B (x 2 ,y ), ∴直线AB 平行x 轴.∵213x x -=, ∴AB =3.∵对称轴为x =2,∴AC =12. ············································· 2 ∴当12x =时,54y m ==-. (3)②当y =m =-4时,0≤x ≤5时,41y -≤≤; (4)当y =m =-2时,0≤x ≤5 时,24y -≤≤; (5)∴m 的取值范围为42m -≤≤-. (6)27.解:(1)补全图1; (1)B(2)①延长AE ,交BC 于点H . ················· 2 ∵AB=AC , AE 平分∠BAC ,∴AH ⊥BC 于H ,BH=HC .∵CD ⊥BC 于点C , ∴EH ∥CD . ∴BE=DE . (3)②延长FE ,交AB 于点G .由AB=AC ,得∠ABC =∠ACB . 由EF ∥BC ,得∠AGF =∠AFG . 得AG=AF .由等腰三角形三线合一得GE=E F . ·· (4)BB由∠GEB =∠FED ,可证△BEG ≌△DEF .可得∠ABE =∠FDE . (5)从而可证得DF ∥AB . ························ 6 (3)tan 2DF αAE =. (7)28.解:(1)60;·························································································· 1 (2)∵以CD 为边的“坐标菱形”为正方形,∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ........................................ 3 ∴直线CD 的表达式为1y x =+或3y x =-+. .. (5)(3)15m ≤≤或51m -≤≤-. (7)。
解四边形综合题2018昌平二模21.如图,已知△ACB 中,∠ACB =90°,CE 是△ACB 的中线,分别过点A 、点C 作CE 和AB 的平行线,交于点D .(1)求证:四边形ADCE 是菱形;(2)若CE=4,且∠DAE =60°,求△ACB 的面积.2018朝阳二模22. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.DECBA2018东城二模21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.2018房山二模21. 已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC . (1)求证:四边形ABCD 是菱形;(2)如果∠BDC =30°,DE =2,EC =3,求CD 的长.B2018丰台二模21.如图,BD 是△ABC 的角平分线,过点D 作DE ∥BC 交AB 于点E ,DF ∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形; (2)如果∠A = 90°,∠C = 30°,BD = 12,求菱形BEDF 的面积.2018海淀二模21.如图,在四边形ABCD 中,ABCD , BD 交AC 于G ,E 是BD 的中点,连接AE并延长,交CD 于点F ,F 恰好是CD 的中点. (1)求BGGD的值; (2)若CE EB ,求证:四边形ABCF 是矩形.F DEB AEGFABCD2018平谷二模22.如图,已知□ABCD ,延长AB 到E 使BE =AB ,连接BD ,ED ,EC ,若ED =AD . (1)求证:四边形BECD 是矩形;(2)连接AC ,若AD=4,CD= 2,求AC 的长.2018石景山二模21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE .(1)求证:DEC BEC ∠=∠;(2)若8AB =,BC =CE 的长.EA2018西城二模21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.2018怀柔二模20.如图,四边形ABCD 是边长为2的菱形,E ,F 分别是AB ,AD 的中点,连接EF ,EC ,将△FAE 绕点F 旋转180°得到△FDM . (1)补全图形并证明:EF ⊥AC ; (2)若∠B =60°,求△EMC 的面积.A BCDE 2018顺义二模22.如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC . (1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30 ,DC,求EC 的长.2018门头沟二模21.如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BF =BE .(1)求证:四边形BDEF 为平行四边形;(2)当∠C =45°,BD =2时,求D ,F 两点间的距离.。
2023-2024学年北京市平谷区中考二模数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.据国家能源网消息,截至2023年12月31日,国家能源集团2023年度发电量首次突破万亿千瓦时,其中1200000000000用科学记数法表示为()A. B. C. D.2.下列几何体中,主视图为三角形的是()A. B. C. D.3.一副三角板如图所示摆放,直线,则的度数是()A. B. C. D.4.若,则下列结论不正确的是()A. B. C. D.5.如果正多边形的每个外角都等于,则它的边数为()A.5B.6C.7D.86.布袋中有三个除颜色外其余均相同的小球,小球颜色两红一白,从中随机同时抽取两个小球,则抽到的两个小球颜色恰好相同的概率是()A. B. C. D.7.若关于x的一元二次方程有两个实数根,则k的取值范围为()A. B. C. D.8.如图,正方形ABCD中,点E为CD边上的点点E不与点C、D重合,以CE为边作正方形CEFG,连接AF,设,,,给出下面三个结论:①;②;③;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.若代数式有意义,则实数x的取值范围是__________.10.分解因式:__________.11.方程的解为__________.12.如图,点A、B分别是反比例函数的图象上两点,分别过点A、B向坐标轴作垂线,四边形ACEG的面积记作,四边形BFDG的面积记作,则__________填>、<或13.某中学共有1000名学生,为了解这1000名学生参加志愿者服务的时长情况,从中随机抽取了100名学生进行访问,获得了他们的志愿者服务时长单位:小时,数据整理如下:志愿者服务时长学生人数102023201512根据以上数据,估计这1000名学生的志愿者服务时长不小于300小时的学生的人数为__________名.14.如图,正方形ABCD的边长为3,点E为AD边的中点,连接、,BD与CE相交于点F,则DF 的长为__________.15.如图,PA,PB分别与相切于A,B两点,C是优弧AB上的一个动点,若,则__________16.某校航模小组的同学正在为即将开始的航模比赛做最后的准备.已知准备工作共有A,B,C,D,E,F,G,H,M,N十项工序,准备工作完成过程需要满足以下要求:只能在A、B、C工序均完成后才能完成;只能在C、D、E工序均完成后才能完成;其余每项工序相互独立,之间没有干扰;一项工序只能由一名学生完成,此工序完成后该学生才能进行其他工序.各项工序所需时间如下表所示:工序A B C DEFGHMN所需时间/分钟1815166758323在不考虑其他因素的前提下,若由若干名学生合作完成准备工作,则至少需要__________分钟才能全部完成;若要在最短的时间内合作完成准备工作,则最少需要__________名学生共同参与.三、解答题:本题共12小题,共96分。
2017年北京市中考数学分类25题圆顺义25.如图,在Rt△ABC中,∠CA B=90 ,以AB为直径的⊙O交BC于点D,点E是AC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)点P是BD上一点,连接AP,DP,若BD:CD=4:1,求sin∠APD的值.EB房山25.如图,△ ABC 中,AC=BC=a,AB=b.以BC为直径作⊙O交AB于点 D,交 AC 于点E,过点D作⊙O的切线MN,交CB的延长线于点M,交 AC 于点N.(1)求证:MN⊥AC;(2)连接BE,写出求BE长的思路.丰台26.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E .(1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.平谷25.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是BF 的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E . (1)求证:AE ⊥DE ;(2)若∠BAF=60°,AF=4,求CE 的长.石景山25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C 作⊙O的切线交DE的延长线于点H.(1)求证:HC HF(2)若⊙O的半径为5,点F是BC的中点,tan HCF m∠=,写出求线段BC长的思路.朝阳25.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O过D、A、B三点,OD∥BC.(1)求证:直线BC是⊙O的切线;(2)OD,AB相交于点E,若AB=AC,OD=r,写出求AE长的思路.西城25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H . (1)求证:BE 平分∠ABC ;(2)连接OD ,若BH =BD =2,求OD 的长.海淀25.如图,AB 是⊙O 的直径,BC 为弦,D 为AC 的中点,AC ,BD 相交于E 点,过点A 作⊙O 的切线交BD 的延长线于P 点. (1)求证:∠PAC =2∠CBE ;(2)若PD =m ,∠CBE =α,请写出求线段CE 长的思路.东城25.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.通州24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB .(1)求证:AD ⊥PC ;(2)连接BC ,如果∠ABC =60°,BC =2,求线段PC 的长.PA昌平25.如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA怀柔25.如图,AB 是⊙O 的直径,CD 为⊙O 的弦,过点B 作⊙O 的切线,交AD 的延长线于点E ,连接AC 并延长,过点E 作EG ⊥AC 的延长线于点G ,并且∠GCD = ∠GAB . (1)求证:AC BD ;AEE A(2)若AB =10,sin ∠ADC =35,求AG 的长.2017年北京市中考数学二模分类25题圆答案顺义25.(1)证明:连接OD ,AD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∴∠ADC =90°.∵点E 是AC 的中点,∴12DE AC CE ==. ∴∠C =∠1.∵OB =OD ,∴∠B =∠2.在Rt △ABC 中,∵∠CAB =90°,∴∠C +∠B =90°.∴∠1+∠2=90°. ∴∠ODE =180°-(∠1+∠2)=90°.∴OD ⊥DE . ∴DE 是⊙O 的切线.(2)解:设BD =4x ,CD =x ,则BC =5x . 由△ABC ∽△DAC ,得AC BCCD AC=.∴55AC x x x ===.∴sin 55AC B BC x ===.∵∠APD=∠B ,∴sin sin 5APD B ∠==.房山25. (1)证明:连接 OD ,CD .∵BC 是⊙O 的直径,∴∠BDC =90°,即CD ⊥AB321oEDC A∵AC =BC , ∴D 是AB 的中点又∵BC 是⊙O 的直径,即O 为 BC 的中点 ∴OD ∥AC ,∠MDO =∠MNC ∵MN 是⊙O 的切线,切点为D∴OD ⊥MN 即∠MDO =90°=∠MNC ∴MN ⊥AC (2) 由BC 是⊙O 的直径,可得∠BEC =90°; 由CD ⊥AB ,在 Rt △ACD 中,AD 、AC 的长可知, 用勾股定理可求CD 的长;由AB ⋅CD =2S △ABC =AC ⋅BE ,可得BE 的长 .丰台26.(1)证明:连接OC ,∵DE 与⊙O 切于点C ,∴OC ⊥DE .∵AD ⊥DE ,∴OC ∥AD .∴∠2=∠3.∵OA =OC ,∴∠1=∠3.∴∠1=∠2,即AC 平分∠DAB . (2)解:∵AB =4,B 是OE 的中点,∴OB =BE =2,OC =2.∵CF ⊥OE ,∴∠CFO = 90º,∵∠COF = ∠EOC ,∠OCE = ∠CFO ,∴△OCE ∽△OFC ,∴OEOC OCOF =,∴OF =1.∴CF =3.平谷25.(1)证明:连接OC .∵DE 切⊙O 于C ,∴OC ⊥DE 于C .∵点C 是BF 的中点,∴∠BAC =∠EAC .∵OC=OA ,∴∠BAC =∠OCA .∴∠EAC =∠OCA∴OC ∥AE .∴AE ⊥DE 于E .(2)连接BF .∵AB 是⊙O 直径,∴∠BFA =∠AEC =∠ECO =90°. ∴四边形CEFG 是矩形.即CO ⊥BF 于G . ∴BG=GF=CE .∵∠BAE =60°,AF =4,∴BF =CE =石景山25.(1)证明:连接OC ,如图1.∵CH 是⊙O 的切线, ∴2190∠+∠=°. ∵DE ⊥AB , ∴3490∠+∠=°.∵OB OC =,∴14∠=∠.∴23∠=∠. 又∵53∠=∠∴25∠=∠. ∴HC HF =. (2)求解思路如下: 思路一:连接OF ,如图2.① OF 过圆心且点F 是BC 的中点,由垂径定理可得2BC CF =,90OFC ∠=°; ② 由6∠与1∠互余,2∠与1∠互余可得62∠=∠,从而可知tan 6m ∠=;图1③ 在Rt OFC △中,由tan 6CF m OF∠==,可设OF x =,CF mx =,由勾股定 理,得222()5x mx +=,可解得x 的值;④ 由22BC CF mx ==,可求BC 的长.思路二:连接AC ,如图3.① 由AB 是⊙O 的直径,可得ACB △是直角三角形,知6∠与4∠互余, 又DE ⊥AB 可知3∠与4∠互余,得63∠=∠;② 由63∠=∠,32∠=∠,可得62∠=∠,从而可知tan 6m ∠=;③ 在Rt ACB △中,由tan 6BCm AC ∠==,可设AC x =,BC mx =,由勾股定理,得222()10x mx +=,可解得x 的值; ④ 由BC mx =,可求BC 的长.朝阳25.(1)证明:连接OB .∵∠A =45°, ∴∠DOB =90°. ∵OD ∥BC ,∴∠DOB +∠CBO =180°. ∴∠CBO =90°.∴ 直线BC 是⊙O 的切线. (2)求解思路如下:如图,延长BO 交⊙O 于点F ,连接AF .①由AB =AC ,∠BAC =45°,可得∠ABC =67.5°,∠ABF =22.5°; ②在Rt △EOB 中,由OB =r ,可求BE 的长;③由BF 是直径,可得∠FAB =90°,在Rt △FAB 中,由BF =2r , 可求AB 的长,进而可求AE 的长.西城25(1)∵AB 是⊙O 的直径∴ ∠ACB = 90°∵OE ∥BC ∴ OE ⊥AC ∴ 弧AE =弧EC .∴ ∠1= ∠2 .∴BE 平分∠ABC .H图2 图3(2)BD是⊙O的切线,∴∠ABD = 90°.∵∠ACB = 90°,BH=BD=2,∴∠BDH=∠3.∴∠CBD =∠2.∴∠1= ∠2=∠CBD.∴∠CBD=30°.∠ADB=60°.在Rt△ABD中,∠ADB=90°,∴AB=OB.在Rt△OBD中,222OD OB BD=+,∴OD.海淀25.(1)证明:∵D为AC的中点,∴∠CBA=2∠CBE.∵AB是⊙O的直径,∴∠ACB=90°,∴∠1+∠CBA=90°.∴∠1+2∠CBE =90°.∵AP是⊙O的切线,∴∠PAB=∠1+∠PAC=90°.∴∠PAC =2∠CBE.(2)思路:①连接AD,由D是AC的中点,∠2=∠CBE,由∠ACB=∠PAB=90°,得∠P=∠3=∠4,故AP=AE;②由AB是⊙O的直径,可得∠ADB=90°;由AP=AE,得PE=2PD=2m,∠5=12∠PAC =∠CBE=α③在Rt△PAD中,由PD=m,∠5=α,可求PA的长;④在Rt△PAB中,由PA的长和∠2=α,可求BP的长;由BE PB PE=-可求BE的长;⑤在Rt△BCE中,由BE的长和CBEα∠=,可求CE的长.东城25.(1)证明:连接OD.∵CD是⊙O切线,∴∠ODC=90°.即∠ODB+∠BDC=90°.∵AB为⊙O的直径,∴∠ADB=90°.即∠ODB+∠ADO=90°.∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A.∴∠BDC=∠A.(2)∵CE⊥AE,∴∠E=∠ADB=90°.∴DB∥EC.∴∠DCE=∠BDC.∵∠BD C=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED.∴EC2=DE•AE.∴16=2(2+AD).∴AD=6.通州24.(1)①连接OC,OC//AD②AD⊥PC(2)32昌平25.(1)证明:∵AB为⊙O的直径∴∠ADB=90°∴∠A+∠DBA=90°∵弧BD=弧BD错误!未指定书签。
OBACD
平谷区2018初三数学统练二 考 生 须 知 1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个....是符合题意的.
1.25的绝对值是 A.52 B.52 C.25 D.25 2.打开百度搜索栏,输入“数学学习法”,百度为你找到的相关信息约有12 000 000条, 将12 000 000用科学记数法表示为 A.1.2×107 B. 61.210 C.61210 D.71210 3.一个正多边形的一个外角是40°,这个正多边形的边数是 A.10 B.9 C.8 D.5 4.有分别写数字1、2、3、4、5的五张卡片,除数字不同外其它均相同,从中任意抽取一张,那么抽到的数是奇数的概率是 A.51 B.52 C.53 D.54
5.如图,AB∥CD,O为CD上一点,且∠AOB=90°,
若∠B=33°,则∠AOC的度数是 A.33° B.60° C.67° D.57°
6.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S甲,20.55S乙,20.50S丙 20.45S丁,则射箭成绩最稳定的是 A.甲 B.乙 C.丙 D.丁 7. 如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为.
8. 如图,扇形OAB的半径OA=6,圆心角∠AOB=90°,C是»AB上不同于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点H在线段DE上,且EH=32DE.设EC的长为x,△CEH的面积
为y,下面表示y与x的函数关系式的图象可能是 BDOCA
A. B.
C. D. 二、填空题(本题共16分,每小题4分) 9.分解因式:339abab . 10.直线过点(0,-1),且y随x的增大而减小.写出一个满足条件的一次函数解析式._________________. 11.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB的度数为__________.
12.如图,□ABCD的面积为16,对角线交于点O;以AB、AO为邻边做□AOC1B,对角线交于点O1;以AB、AO1为邻边做□AO1C2B,对角线交于点O2;…;依此类推.则□AOC1B的面积为_______;□AO4C5B的面积为_______;□AOnCn+1B的面积为___________.
C2
C1
O2
O1
O
C
AB
D12题图 DBE
AC
xyO
三、解答题(本题共30分,每小题5分) 13.如图,AD平分∠BAC,AD=AC,E为AD上一点,且AE=AB,连结BD、CE.
求证:BD=CE.
14.计算:101201412tan603 . 15.求不等式组2(2)43251xxxx<的整数解. 16.已知a2+2a=3,求代数式22(1)(2)aaa的值.
17.已知一次函数ykxb(0)k与反比例函数(0)mymx 的图象交于(23)(6)ABn,、,两点. (1)求一次函数和反比例函数的解析式; (2)P是y轴上一点,且12ABPS,直接写出P点坐标. AD
CB
18.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,求A型、B型两种机器人每小时分别搬运多少化工原料?
四、解答题(本题共20分,每小题5分) 19.如图,在四边形ABCD中,对角线BD平分∠ABC,
∠A=120°, ∠C=60°,AB=5,AD=3. (1)求证:AD=DC; (2)求四边形ABCD的周长. DEFCB
AO
20.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD
为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF; (2)若CF=1,cosB=35,求⊙O的半径.
21.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整; (2)本次抽样调查的样本容量是____________; (3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.
22. 如图1,若点A、B在直线l同侧,在直线l上找一点P,使AP+BP的值最小,做法是:作点B关于直线l的对称点B′,连接AB′,与直线l的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值. (1)如图2,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法是:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,这点就是所
求的点P,故BP+PE的最小值为 ; (2)如图3,已知⊙O的直径CD为2,AC的度数为60°,点B是AC
的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为 ; (3)如图4,点P是四边形ABCD内一点,BP=m,ABC,分别在边AB、BC上作出点M、N,使PMN的周长最小,求出这个最小值(用含
m、的代数式表示).
图4PD
CBA图3图2图1ODCBAPDECBA
lP
B'
BA
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x的一元二次方程210xmxm. (1)求证:无论m取任何实数时,方程总有实数根; 备用图Oxy(2)关于x的二次函数211yxmxm的图象1C经过2(168)kkk,
和2(568)kkk,两点.
①求这个二次函数的解析式; ②把①中的抛物线1C沿x轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C.设抛物线2C交x轴于M、N两点(点M在点N的左侧),点P(a,b)为抛物线2C在x轴上方部分图象上的一个动点.当∠MPN≤45°时,直接写出a的取值范围.
24.(1)如图1,在四边形ABCD中,∠B=∠C=90°,E为BC上一点,且CE=AB,BE=CD,连结AE、DE、AD,则△ADE的形状是图2图1EDCBA
AB
C
_________________________. (2)如图2,在90ABCA中,,D、E分别为AB、AC上的点,连结BE、CD,两线交于点P. ①当BD=AC,CE=AD时,在图中补全图形,猜想BPD的度数并给予证明. ②当3BDCEACAD时, BPD的度数____________________.
25.定义:任何一个一次函数ypxq,取出它的一次项系数p和常数项q,有序数组][qp,为其特征数.例如:y=2x+5的特征数是]52[,,同理,ab,,c为二次函数2yaxbxc的特征数。 (1)直接写出二次函数xxy52的特征数是:_______________。 (2)若特征数是21m,的一次函数为正比例函数,求m的值; (3)以y轴为对称轴的二次函数抛2yaxbxc的图象经过A(2,m)、B(n,1)两点(其中m﹥0,n<0),连结OA、OB、AB,得到OA⊥
OB,10AOBS△,求二次函数2yaxbxc的特征数. DBE
AC
平谷区2018-2014初三数学统练二参考答案5 一、选择题(本题共32分,每小题4分) 1.C ; 2.A; 3.B; 4.C; 5.D; 6.D; 7.B; 8.A.
二、填空题(本题共16分,每小题4分) 9.(3)(3)ababab; 10.1xy(答案不唯一); 11.25°; 12.8;n+11816()222n;或.(第1个空1分,第二个空1分,
第三个空2分) 三、解答题(本题共30分,每小题5分) 13. (本小题满分5分)
证明:∵AD平分∠BAC,∴∠BAD=∠CAE.-------------- --------------1分 在△BAD和△EAC中
ABAEBADEACADAC ∴△BAD≌△EAC-------------------------------------------------------
------4分 ∴BD=CE.---------------------------------------------------
---------------5分 14.(本小题满分5分) 解:101201412tan603