中考数学考点梳理复习测试含解析
- 格式:pdf
- 大小:459.37 KB
- 文档页数:8
第20讲梯形考标要求考查角度1.了解梯形的有关概念与分类,掌握梯形的性质,会进行梯形的有关计算.2.掌握等腰梯形的性质与判定.3.能灵活添加辅助线,把梯形问题转化为三角形、平行四边形的问题来解决.等腰梯形的性质和判定是中考考查的内容,实际问题中往往和特殊三角形、特殊四边形的知识结合在一起综合运用.知识梳理一、梯形的有关概念及分类1.一组对边平行,另一组对边不平行的________叫做梯形.平行的两边叫做______,两底间的________叫做梯形的高.2.________相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形.3.梯形的分类:梯形⎩⎨⎧一般梯形特殊梯形⎩⎪⎨⎪⎧直角梯形等腰梯形4.梯形的面积=12(上底+下底)×高=中位线×高.二、等腰梯形的性质与判定1.性质:(1)等腰梯形的两腰相等,两底平行.(2)等腰梯形同一底上的两个角________.(3)等腰梯形的对角线________.(4)等腰梯形是轴对称图形,过两底中点的直线是它的对称轴.2.判定:(1)两腰相等的梯形是等腰梯形.(2)同一底上的两个角相等的________是等腰梯形.(3)对角线相等的________是等腰梯形.三、梯形的中位线1.定义:连接梯形两腰________的线段叫做梯形的中位线.2.性质:梯形的中位线平行于两底,且等于________的一半.四、梯形问题的解决方法梯形问题常通过――→转化辅助线三角形问题或平行四边形问题来解答,转化时常用的辅助线有:1.平移一腰,即从梯形的一个顶点作另一腰的平行线,把梯形分成一个平行四边形和一个三角形.2.过顶点作高,即从同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个直角三角形.3.平移一条对角线,即从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.4.延长梯形两腰使它们相交于一点,把梯形转化成三角形.5.过一腰中点作辅助线.(1)过此中点作另一腰的平行线,把梯形转化成平行四边形;(2)连接一底的端点与一腰中点,并延长与另一底的延长线相交,把梯形转化成三角形.自主测试1. (2012山东临沂)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,下列结论不一定正确的是( )A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD2. (2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( )A.10 B.4 5 C.10或4 5 D.10或2173.如图,等腰梯形ABCD中,AD∥BC,AB=AD=2,∠B=60°,则BC的长为__________.4. (2012四川内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=__________.5.(2012四川南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.考点一、一般梯形的性质【例1】如图,在梯形ABCD中,AD∥BC,BD=CD,∠BDC=90°,AD=3,BC=8,求AB的长.解:如图,作AE ⊥BC 于点E ,DF ⊥BC 于点F .∴AE ∥DF ,∠AEF =90°.∵AD ∥BC ,∴四边形AEFD 是矩形. ∴EF =AD =3,AE =DF . ∵BD =CD ,DF ⊥BC ,∴DF 是△BDC 边BC 上的中线.∵∠BDC =90°,∴DF =12BC =BF =4.∴AE =4,BE =BF -EF =4-3=1.在Rt△ABE 中,AB 2=AE 2+BE 2,∴AB =42+12=17.方法总结 遇到梯形问题,一般情况下通过作腰或对角线的平行线、高线、连对角线、延长两腰转化为三角形、平行四边形、直角三角形、矩形等问题来解决.触类旁通1如图,在梯形ABCD 中,AD ∥BC ,AB ∥DE ,AF ∥DC ,E ,F 两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由.(2)当AB =DC 时,求证:四边形AEFD 是矩形. 考点二、等腰梯形的性质与判定【例2】 如图,在等腰△ABC 中,点D ,E 分别是两腰AC ,BC 上的点,连接AE ,BD 相交于点O ,∠1=∠2.(1)求证:OD=OE ;(2)求证:四边形ABED 是等腰梯形.分析:(1)根据已知条件可知利用全等三角形证明BD =AE ,根据∠1=∠2可以证明OA =OB ,根据等式性质可知OD =OE ;(2)先证明四边形ABED 是梯形,然后证明两腰相等即可.证明:(1)∵△ABC 是等腰三角形,∴AC =BC . ∴∠BAD =∠ABE .又∵AB =BA ,∠2=∠1, ∴△ABD ≌△BAE ,∴BD =AE . 又∵∠1=∠2,∴OA =OB . ∴BD -OB =AE -OA ,即OD =OE .(2)由(1)知,OD =OE ,∴∠OED =∠ODE .∴∠OED =12(180°-∠DOE ).同理,∠1=12(180°-∠AOB ).∵∠DOE =∠AOB ,∴∠1=∠OED .∴DE ∥AB . ∵AD 不平行于BE , ∴四边形ABED 是梯形.∵AE =BD ,∴梯形ABED 是等腰梯形.方法总结 在证明一个四边形是等腰梯形时,必须先证明它是梯形,然后再通过两腰相等或同一底上的两个角相等,或者是对角线相等来证明梯形是等腰梯形.触类旁通2如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,M ,N 分别为AO ,DO 的中点,四边形BCNM 是等腰梯形吗?为什么?考点三、有关梯形的计算【例3】 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥AC ,∠B =45°,AD =2,BC =42,求DC 的长.分析:由于△ABC 是等腰直角三角形,且BC =42,可得出BC 边上的高.只要通过平移腰CD ,就可与BC 边上的高构成直角三角形,从而求出CD .解:过点A 作AE ∥DC 交BC 于点E ,过点A 作AF ⊥BC 于点F ,如图所示.∵AD ∥BC ,AE ∥DC ,∴四边形AECD 为平行四边形. ∴AE =DC ,AD =EC = 2.又∵AB ⊥AC ,∠B =45°,BC =42, ∴AB =AC =4. ∴AF =BF =2 2.∴EF =BC -BF -EC = 2.在Rt△AFE 中,AE =AF 2+EF 2=(22)2+(2)2=10,即DC =10.方法总结 解决梯形问题作辅助线的方法要结合题目的条件和要证结论的需要灵活运用.若题中已知两对角线的条件,可考虑平移对角线,使两对角线在同一个三角形中;若已知两腰的某些条件,可考虑平移一腰;若已知两底角互余,可平移一腰或延长两腰构成直角三角形;若要求梯形的面积,常作出梯形的高.触类旁通3如图所示,在等腰梯形ABCD 中,AB ∥CD ,AD =BC ,AC ⊥BC ,∠B =60°,BC =2 cm ,则上底DC 的长是__________cm.1.(2012湖南长沙)下列四边形中,对角线一定不相等的是( ) A .正方形 B .矩形 C .等腰梯形 D .直角梯形2. (2012湖南怀化)如图,在等腰梯形ABCD 中,E 为底边BC 的中点,连接AE ,DE .求证:AE =DE .3. 如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAE=45°,坝高BE=20米,汛期来临,为加大水坝的防洪强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡B F 的坡角∠F=30°,求AF 的长度.(结果精确到1米,参考数据2≈1.414,3≈1.732)1.梯形的上底长为5,下底长为9,则梯形的中位线长等于( ) A .6 B .7 C .8 D .102.在等腰梯形ABCD 中,AB ∥CD ,对角线AC 平分∠BAD ,∠B =60°,CD =2 cm ,则梯形ABCD 的面积为( )A .3 3 cm 2B .6 cm 2C .6 3 cm 2D .12 cm 23. 如图,在梯形ABCD 中,AB ∥DC ,∠D=90°,AD=DC=4,AB=1,F 为AD 的中点,则点F 到BC 的距离是( )A .4B .3C .2D .1 4. 如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于O ,∠ABD =30°,AC ⊥BC ,AB =8 cm ,则△COD 的面积为( )A .433 cm 2B .43cm2 C .233 cm 2 D .23cm 25.如图,等腰梯形ABCD中,AD∥BC,AB∥DE,梯形ABCD的周长为26,BE=4,则△DEC 的周长为__________.6.如图,在梯形ABCD中,AB∥DC,∠ADC的平分线与∠BCD的平分线的交点E恰在AB 上.若AD=7 cm,BC=8 cm,则AB的长度是__________ cm.7.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=3,BC=4,则梯形ABCD 的面积是__________.8.如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E,F,AD=4,BC=8,则AE+EF=__________.9.如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E,求证:四边形AECD是等腰梯形.参考答案【知识梳理】一、1.四边形底距离 2.两腰二、1.(2)相等(3)相等 2.(2)梯形(3)梯形三、1.中点 2.两底和导学必备知识自主测试1.C 对于A,∵四边形ABCD是等腰梯形,∴AC=BD,故本选项正确;对于B,∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB,在△ABC和△DCB中,∵⎩⎪⎨⎪⎧AB =DC ,∠ABC =∠DCB ,BC =CB ,∴△ABC ≌△DCB (SAS),∴∠ACB =∠DBC , ∴OB =OC ,故本选项正确;对于C ,∵无法判定BC =BD ,∴∠BCD 与∠BDC 不一定相等,故本选项错误; 对于D ,∵∠ABC =∠DCB ,∠ACB =∠DBC , ∴∠ABD =∠ACD ,故本选项正确.故选C. 2.C 考虑两种情况. ①如图:因为CD=22+42=25, 点D 是斜边AB 的中点, 所以AB=2CD=4 5. ②如图:因为CE=32+42=5,点E 是斜边AB 的中点, 所以AB=2CE=10,故原直角三角形纸片的斜边长是10或4 . 3.4 过点A 作AE ∥CD 交BC 于点E , ∵AD ∥BC ,∴四边形AECD 是平行四边形, ∴AE =CD =2,AD =EC =2.∵∠B =60°,∴BE =AB =AE =2, ∴BC =BE +CE =2+2=4.4.9 过点B 作BE ∥AC ,交DC 的延长线于点E , 则AB =CE ,BE =AC =BD .∵BD ⊥AC ,AB =2,CD =4,∴BD ⊥BE ,DE =6, ∴梯形高为3,∴S 梯形ABCD =(2+4)×3÷2=9. 5.证明:∵CE =CD ,∴∠CDE =∠E .∵AD ∥BC ,∴∠CDE =∠DCB .∴∠E =∠DCB . ∵AB =DC ,∴∠B =∠DCB .∴∠B =∠E . 探究考点方法触类旁通1.解:(1)AD =13BC .理由如下:∵AD ∥BC ,AB ∥DE ,AF ∥DC ,∴四边形ABED 和四边形AFCD 都是平行四边形, ∴AD =BE ,AD =FC .又∵四边形AEFD 是平行四边形,∴AD =EF .∴AD =BE =EF =FC .∴AD =13BC .(2)证明:∵四边形ABED 和四边形AFCD 都是平行四边形,∴DE =AB ,AF =DC . ∵AB =DC ,∴DE =AF .又∵四边形AEFD 是平行四边形, ∴四边形AEFD 是矩形.触类旁通2.解:是等腰梯形.根据三角形中位线定理有,MN ∥AD ∥BC ,且MN ≠BC ,∴四边形BCNM 为梯形.在矩形ABCD 中,AO =DO ,又M ,N 分别是AO ,DO 的中点,∴OM =ON ,∴CM =BN ,∴四边形BCNM 是等腰梯形.触类旁通3.2 ∠CAB =90°-60°=30°,∵等腰梯形ABCD 中,∠BAD =∠B =60°, ∴∠CAD =∠BAD -∠BAC =30°.又∵CD ∥AB ,∴∠DCA =∠CAB =30°=∠DAC . ∴CD =AD =BC =2 cm. 品鉴经典考题 1.D2.证明:∵四边形ABCD 是等腰梯形, ∴AB =DC ,∠B =∠C . ∵E 是BC 的中点, ∴BE =CE .∴△ABE ≌△DCE (SAS). ∴AE =DE .3.解:在Rt△ABE 中,∠BAE =45°,BE =20米,所以AE =20米. 在Rt△FBE 中,∠F =30°,BE =20米,所以EF =BE tan 30°=2033=203(米),即AF =EF -AE =203-20≈14.64≈15(米).所以AF 的长度约为15米. 研习预测试题1.B 2.A 3.C 4.A 5.18 6.15 7.98. 10 如图,过点D作DG ∥AC ,交BC 的延长线于点G.易得四边形ACGD 为平行四边形, ∴CG=AD=4,BG=BC+CG=8+4=12. ∵AC ⊥BD ,AC ∥DG ,∴BD ⊥DG.∵梯形ABCD 是等腰梯形,∴AC=BD=DG. ∴△BDG 为等腰直角三角形.又∵DF ⊥BC ,∴DF=12BG=6.∴AE+EF=DF+AD=6+4=10.9.证明:∵四边形ABCD 是菱形,∠DAB =60°,∴∠CAE =12∠DAB =30°.又∵CE ⊥AC ,∴∠E =60°=∠CBE .∴CE =BC =AD . ∵CD ∥AE ,AE =AB +BE =DC +BE ≠DC , ∴四边形AECD 是等腰梯形.。
中考数学复习考点知识与题型归类解析43---尺规作图一、选择题AB同样长7.(2020台州)如图,已知线段AB,分别以A,B为圆心,大于12为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.8.(2020•衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是(){答案}D{解析} A选项是作出了角平分线和等腰三角形,可以得出内错角相等,从而两直线平行;B选项直接作出了同位角相等,所以可以得出两直线平行;C选项是过点P作出了l 的垂线,然后又作出了与该垂线垂直的直线,所以也作出了直线l的平行线;D选项从作图痕迹来看,不能找到平行线的依据,因此本题选D.9.(2020·贵阳)(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于1DE的长为半径作弧,两弧在∠CBA内交2于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.1C.1 D.22{答案} C.{解析}解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.7.(2020·襄阳)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C{答案}D{解析}由尺规作图可知:AD平分∠BAC,DE⊥AC于点D.∵AD平分∠BAC,DE⊥AC,DB ⊥AB,∴DB=DE.于是Rt△ABD≌Rt△AED(HL),∴AB=AE.∵∠EDC+∠C=90°,∠BAC+∠C=90°,∴∠EDC=∠BAC.从图中不能得到∠DAC=∠C,故选D.8.(2020·深圳)如图,在△ABC中,AB=AC,在AB,AC上分别截取AP,AQ,使AP=AQ,再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2B.3C.4D.5{答案}B{解析}由尺规作图可知AD平分∠BAC;由AB=AC,根据“等腰三角形三线合一”,可得BD=12BC=12×6=3,因此本题选B.6.(2020•湘西州)已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于12OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形{答案}C{解析}本题考查了基本作图以及等腰三角形的判定.依据已知条件即可得到∠ODE=∠OGE,即可得到OD=OG,进而得出△ODG是等腰三角形.如图所示,∵OM平分∠AOB,∴∠AOC =∠BOC,由题可得,DG垂直平分OC,∴∠OED=∠OEG=90°,∴∠ODE=∠OGE,∴OD =OG ,∴△ODG 是等腰三角形,因此本题选 C .( 第6题答图)(2020·包头)12、如图,在Rt ABC 中,90ACB ∠=︒,BC AC >,按以下步骤作图:(1)分别以点,A B 为圆心,以大于12AB 的长为半径作弧,两弧相交于,M N 两点(点M 在AB 的上方);(2)作直线MN 交AB 于点O ,交BC 于点D ;(3)用圆规在射线OM 上截取OE OD .连接,,AD AE BE ,过点O 作OF AC ⊥,垂足为F ,交AD 于点G .下列结论: ①2CD GF =;②222BD CD AC -=;③2BOEAOGSS=;④若6,9AC OF OA =+=,则四边形ADBE 的周长为25.其中正确的结论有( )A .1个B .2个C .3个D .4个{答案}DOGFENMD CBA{解析}由题意可知,直线MN 是线段AB 的垂直平分线,∴点O 是线段AB 的中点,AB ⊥DE.∵∠ACB=90°,OF ⊥AC, ∴OF ∥BC. ∴点G 、F 分别是AD 、AC 的中点.∴CD=2FG.故①正确;又∵OD=OE, ∴四边形ADBE 是菱形.在Rt △AOD 中,12OG AD =.∴22222BD CD AD CD AC -=-=.故②正确;2BOE AOD S S S AOG ∆∆==∆.故③正确;∵OF+OA=9, ∴BC+AB=18.∵222AB AC BC =+, ∴2226AB BC -=, ∴2AB BC -=,∴AB=10,BC=8.在Rt △ACD 中,222AD AC CD =+.设BD=x ,2226(8)x x =+-,解得254x =.∴四边形ADBE 的周长为25.故④正确.故选D.6.(2020·河北) 如4-1,已知∠ABC ,用尺规作它的角平分线. 如图4-2,步骤如下.第一步:以 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP ,射线BP 即为所求.下列正确的是A.a ,b 均无限制B.a >0,b >12DE 的长 C.a 有最小限制,b 无限制 D.a≥0,b <12DE 的长 {答案}B{解析}当a >0时,以B 为圆心以a 为半径的弧才能分别与射线BA,BC 相交于点D,E ;当b >12DE 的长时,以D,E 为圆心以b 为半径的两弧才能相交于点P,故选项B 正确.9.(2020·安顺)如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A.无法确定B.12C.1D.2{答案}C{解析} 由作图过程可知,BG 是∠ABC 的平分线.若GP 取最小值,则GP AB ⊥,所以GP=GC=1.6.(2020·通辽)根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是( )A B C D{答案}B{解析}三角形的内心是三角形角平分线的交点.7.(2020·广西北部湾经济区)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°{答案} B{解析}∵BA=BC,∠B=80°,∴∠A=∠ACB=1(180°﹣80°)=50°,2∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∠ACD=65°,∴∠DCE=12∴∠DCE的度数为65°,因此本题选B.二、填空题13.(2020·新疆)如图,在x轴、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于1AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a-3),则a的2值为________.{答案}3{解析}本题考查了点的坐标的特征以及基本的尺规作图——作一个角的平分线.由作法可知,射线OP是∠AOB的平分线,由“角的内部到角两边的距离相等”得点P(a,2a-3)到x,y轴的距离相等,所以a=2a-3,解得a=3.17.(2020·扬州)如图,在△ABC中,按以下步骤作图:①以点B为圈心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于2DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC= 12,△ABG的面积为18.则△CBG的面积为.(第17题图){答案}27{解析}本题考查了角平分线的性质和三角形面积公式.作GM⊥AB于M,GN⊥AC于N,如图,∵S△ABG12=⨯GM×AB,即1812=⨯GM×8,∴GM29=,∵BD平分∠ABC,GM⊥AB,GN ⊥BC ,∴GN =GM 29=,∴S △CBG 12=⨯ GN ×CB 12=⨯92×12=27..因此本题答案为27.(第17题答图)13.(2020·湖北荆州)已知△ABC ,求作:△ABC 的外接圆.作法:①分别作线段BC ,AC 的垂直平分线EF 和MN ,它们相交于点O ;②以点O 为圆心,OB 的长为半径画圆.如图,⊙O 即为所求.以上作图用到的数学依据有: (只需写一条).{答案}线段垂直平分线的性质,或填“三角形外心的定义”、“圆的定义”、“垂径定理”等与作图相关的正确依据,均不扣分.{解析}本题考查了线段垂直平分线性质、三角形外接圆的定义等知识,解题关键是结合图形读懂作法.我们知道“线段垂直平分线上一点到这条线段两个端点的距离相等”,所以根据①中的作法,可推断出OA=OB=OC ,所以A 、B 、C 三点在同一个圆上,故⊙O 即为所求,据此可填写的依据有“线段垂直平分线的性质”、“不在同一条直线上任意三点确定一个圆”、“圆的定义”等.同时由①知弦AC 、BC 的中垂线一定经过圆心,所以两条中垂线的交点即为圆心,故也可填写“垂径定理”等.18.(2020·天津)如图,在每个小正方形的边长为1的网格中,的顶点均落在格点上,点B 在网格线上,且.(Ⅰ)线段的长等于___________;(Ⅱ)以为直径的半圆与边相交于点D ,若分别为边上的动点,当取得最小值时,请用无刻度...的直尺,在如图所示的网格中,画出点,并简要说明点的位置是如何找到的(不要求证明)_______. {答案}(1(2)详见解析{解析}本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.(1)将AC 放在一个直角三角形,运用勾股定理求解;(2)取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点;连接,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接并延长,与BC 相交于点Q ,则点P ,Q 即ABC ,A C 53AB=AC BC AC ,P Q ,AC BC BP PQ +,P Q ,P Q B 'B C 'B P '为所求.(Ⅰ)如图,在Rt △AEC 中,CE=3,AE=2,则由勾股定理,得;(Ⅱ)如图,取格点M ,N,连接MN ,连接BD 并延长,与MN 相交于点;连接,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接并延长,与BC 相交于点Q ,则点P ,Q 即为所求.(2020·本溪)16.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .=B 'B C 'B P '{答案}5{解析}由作图可知,MN 垂直平分线段AB , ∴AE =EB , 设AE =EB =x , ∵EC =3,AC =2BC , ∴BC =12(x +3),在Rt △BCE 中,∵BE 2=BC 2+EC 2, ∴x 2=32+[12(x +3)]2, 解得,x =5或﹣3(舍弃), ∴BE =5.15.(2020·广东)如题15图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .{答案}45°{解析}本题考查了尺规作图、垂直平分线的性质、等边对等角、菱形的性质、两直线平行同旁内角互补、角的计算,垂直平分线上的点到被平分线段两端点的距离相等,菱形的对角线平分每一组内角与对边平行,由尺规作图可知点E 是线段AB 垂直平分线上的一点,因此有EA =EB ,由等边对等角可得∠A =∠EBA =30°,再由菱形的性质可得:AD ∥BC ,因此∠ABC =180°-∠A =150°,所以1752ABDABC ,故∠EBD =∠ABD -∠EBA =45°,因此本题答案是45°.15.(2020·潍坊)如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α= °.{答案}55{解析}根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠BAF=35°,由线段AB 垂直平分线PQ 可得△AQM 是直角三角形,故可得∠AMQ=55°,最后根据对顶角相等求出α.16.(2020·抚顺本溪辽阳)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .{答案}5{解析}根据尺规作图痕迹,可知MN 是线段AB 的垂直平分线,再结合线段垂直平分线的性质及勾股定理,列方程进行解答.根据题意可知MN 是AB 的垂直平分线,∴BEαQP FED C BAαMQP F ED C BAABCNME=AE,设BC=x,则AC=2BC=2x.∴AE=AC-CE=2x-3,∴BE=AE=2x-3.在Rt△BCE中,BE2=CE2+BC2,即(2x-3) 2=32+x2,解得x1=0(舍),x2=4,∴BE =2x-3=5.20.(2020·毕节)如图,Rt△ABC中,∠BAC=90°,AB=6,sinC=35,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M为圆心,以大于12BM长为半径作弧,两弧相交于点N,射线AN与BC相交于点D,则AD的长为_________.{答案{解析}本题考查尺规作图,相似三角形的性质.解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD平分∠BAC,∴DE=DF.∵∠BAC=90°,∴四边形AEDF是正方形.∴DE∥AC,DF∥AB.∴∠ABC=∠FDC,∠EDB=∠ACD.∴△EBD∽△FDC.∴BEDF =DECF.C∵∠BAC =90°,sin C =35,∴设AB =3k ,BC =5k ,∴AC4k . ∴tan C =34.∴AB AC=34.∵AB =6,∴AC =8. 设正方形AEDF 的边长是x ,∴6x x -=8x x -.解得x =247. ∴AD故答案为715.(2020·海南)如图,在△ABC 中,BC =9,AC =4,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 、N ,作直线M N ,交BC 边于点D ,连接AD ,则△ACD 的周长为_____.{答案}13{解析} 由尺规作图可知M N 是AB 的垂直平分线,∴AD =BD ,故△ACD 的周长为AC +BC =13.C16.(2020·郴州)如图,在矩形ABCD 中,8,4==AB AD .分别以点D B ,为圆心,以大于BD21的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与AB DB DC ,,交于点N O M ,,,则=MN .{答案}2{解析}连接DN ,在矩形ABCD 中,AD =4,AB =8,根据勾股定理可得BD 的长,根据作图过程可得,MN 是BD 的垂直平分线,所以DN =BN ,在Rt △ADN 中,根据勾股定理得DN 的长,在Rt △DON 中,根据勾股定理得ON 的长,进而可得MN 的长. 如图,连接DN ,在矩形ABCD 中,AD =4,AB =8,∴BD ==4,根据作图过程可知:MN 是BD 的垂直平分线,∴DN =BN ,OB =OD =2,∴AN =AB -BN =AB -DN =8-DN ,在Rt △ADN 中,根据勾股定理,得:DN 2=AN 2+AD 2,∴DN 2=(8-DN )2+42,解得DN =5,在Rt △DON 中,根据勾股定理,得:ON ==,∵CD ∥AB ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵OD =OB ,∴△DMO ≌△BNO (AAS ),∴OM =ON =,∴MN =2.故答案为:2.14.(2020·邵阳)如图,线段AB =10cm ,用习尺规作图法按如下步骤作图:(1)过点B 作AB 的垂线,并在垂线上取BC =21AB ,(2)连接AC ,以点C 为圆心,CB 为半径画弧,交AB 于点E ,(3)以点A 为圆心,AE 为半径画弧,交AB 于点D ,即点D 为线段AB 的黄金分割点.则线段AD 的长度约为 cm . (结果保留两位小数,参考数据:2≈1.414,3≈1.732,5≈2.236){答案}6.18{解析}本题考查了尺规作图,勾股定理等知识,根据作图步骤得到相关已知条件是解题关键. 解:由作图得△ABC 为直角三角形,15cm 2CE BC AB ===,AE =AD ,∴AC ==,∴)551AE AC CE =-==cm ,∴)51 6.18AD AE ==≈cm .因此本题答案为6.18.14. (2020•宁夏)如图,在△ABC 中,∠C =84°,分别以点A 、B 为圆心,以大于AB 的长为半径画弧,两弧分别交于点M 、N ,作直线MN 交AC 点D ;以点B 为圆心,适当长为半径画弧,分别交BA 、BC 于点E 、F ,再分别以点E 、F 为圆心,大于EF 的长为半径画弧,两弧交于点P ,作射线BP ,此时射线BP 恰好经过点D ,则∠A = 32 度.【解析】由作图可得,MN是线段AB的垂直平分线,BD是∠ABC的平分线,∴AD=BD,,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∵∠A+∠ABC+∠C=180°,且∠C=84°,∴∠A+2∠ABD=180°﹣∠C,即3∠A=180°﹣84°,∴∠A=32°.故答案为:32.三、解答题22.(2020·绥化)(1)如图7,已知线段AB和点O.利用直尺和圆规作△ABC,使点O是△ABC 的内心(不写作法,保留作图痕迹);(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是______.图#{解析}(1)三角形的内心是内角平分线的交点.利用基本作图“作一个角等于已知角”作出射线AC,BC,从而得到△ABC;(2)若直角三角形的两直角边为a ,b ,斜边为c ,则其内切圆的半径r =12(a +b -c). {答案}解:(1)作法:如图#所示. ①作射线AO ,BO ;②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ; ③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F .同理作出点M ; ④作射线AF ,BM 相交于点C ,则△ABC 即所求.(2)2.提示:AB==10.所求半径=12×(6+8-10)=2.17.(2020·陕西)如图,已知△ABC ,AC >AB ,∠C =45°,请用尺规作图法,在AC 边上求作一点P ,使∠PBC =45°.(保留作图痕迹,不写作法)第17题图{解析}若发现∠PBC =∠C ,由等腰三角形的性质可作BC 的垂直平分线交AC 于P ,点P 为所求;若发现∠PBC =∠C =45°,△PBC 是直角三角形,则可作BP ⊥AC ,垂足为P ,点P 为所求;还可以直接作一个角等于已知角,即在BC 的上方作∠PBC =∠C ,交AC 于P ,点P 为所求.{答案}解:法一:作BC 的垂直平分线交AC 于P ,点P 为所求.如答图①所示:第17题答图①法二:作BP ⊥AC ,垂足为P ,点P 为所求.如答图②所示:第17题答图②法三:在BC 的上方作∠PBC =∠C ,交AC 于P ,点P 为所求.如答图③所示:第17题答图③15.(2020·青岛)已知:△ABC.求作:⊙O,使它经过点B 和点C,并且圆心O 在∠A 的平分线上.{解析}本题考查了角平分线的作图、线段垂直平分线作图、圆的作图. {答案}解:如图所示:24.(2020·无锡)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图;作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=53,BC=2,则⊙O的半径为.{解析}本题考查了角平分线及垂直平分线的作法,还考查了切线性质、相似三角形性质.根据题意作出辅助线,构造出相似三角形是解答此题的关键.{答案}解:(1)①先作BC的垂直平分线分别交AB、BC于M、N;②再作∠ABC的角平分线与线段交点即为O;③以O为圆心,ON为半径画圆.圆O即为所求(2)过点O作OE⊥AB,垂足为E,设ON=OE=r∵BM=53,BC=2,∴BN=1,∴MN=43根据面积法,∴S△BMN =S△BNO+S△BMO∴12×1×43=12×1·r+12×53·r,解得r=12.图2图1AB CCBA20.(2020·北京)已知:如图,△ABC 为锐角三角形,AB =AC ,CD ∥AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP =12BAC . 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP ,线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)EA B C MNOD(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= . ∵AB=AC,∴点B在⊙A上.又∵∠BPC=12∠BAC()(填推理依据)∴∠ABP=12∠BAC.{解析}本题考查了尺规作图以及圆周角与圆心角之间的关系.只要按照作图步骤作图即可.{答案}解:∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半。
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
平行线的判定与性质1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有()A.4对B.8对C.12对ﻩ D.16对3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;ﻬ(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3=.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=度.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是( )A.∠1=∠3ﻩ B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条ﻩB.2条 C.3条D.4条12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是()A.①③ﻩB.②④C.①③④ﻩD.①②③④13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个 C.4个ﻩD.2个14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α= .19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对ﻩ B.5对ﻩC.6对 D.7对21.如图,若AB∥CD,则( )A.∠1=∠2+∠3B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°B.270°ﻩ C.360°ﻩ D.450°23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.平行线的判定与性质参考答案与试题解析1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有 3 个.【考点】平行线的性质;余角和补角.【分析】本题考查互余的概念,和为90度的两个角互为余角,结合图形和平行线的性质作答.【解答】解:AB∥CD,AC⊥BC,则图中与∠CAB互余的角有3个,∠CBA,∠BCD,和∠CBA的对顶角.【点评】此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有( )A.4对ﻩ B.8对 C.12对D.16对【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】每一个“三线八角"基本图形都有两对同旁内角,从对原图形进行分解入手可知同旁内角共有对数.【解答】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;ﻬ直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故选D.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.【考点】平行线的判定与性质.【专题】证明题.【分析】解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角"或作出与AB或CD平行的直线,利用平行线的性质和判定求证.【解答】解:过C点作CG∥AB,过点D作DH∥AB,则CG∥DH,∵∠B=25°,∴∠BCG=25°,∵∠BCD=45°,∴∠GCD=20°,∵CG∥HD,∴∠CDH=20°,∵∠CDE=30°,∴∠HDE=10°∴∠HDE=∠E=10°,∴DH∥EF,∴DH∥AB,∴AB∥EF.【点评】此题考查平行线的判定和性质,辅助线是常见的作法,证明过程注意选用有用的条件作为证明的依据.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.【考点】平行线的性质;垂线.【分析】先运用垂直于同一条直线的两直线平行,得出∠BDF=∠BCE,∠FDE=∠DEC,再根据平行线的性质得出∠DEC=∠ACE,然后利用角平分线等量代换即可得出两角的关系.【解答】解:∠EDF=∠BDF.∵CE⊥AB于E,DF⊥AB于F∴DF∥CE (垂直于同一条直线的两直线平行),∴∠BDF=∠BCE (两直线平行,同位角相等),∠FDE=∠DEC(两直线平行,内错角相等)又∵AC∥ED,∴∠DEC=∠ACE(两直线平行,内错角相等),∵CE是∠ACB的角平分线,∴∠ACE=∠ECB(角平分线的定义),∴∠EDF=∠BDF(等量代换).【点评】本题主要运用了平行线的性质和垂线的性质,解答本题的关键是熟练掌握平行线的性质:两直线平行内错角、同位角相等.ﻬ5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?【考点】平行线的判定与性质.【分析】已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.【解答】解:(1)过E作EF∥AB,则∠B=∠BEF,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,∵∠E=∠BEF+∠DEF=∠B+∠D,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(3)若将点E移至图b所示位置,过E作EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∠E+∠B+∠D=360°;(4)∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B;(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;(6)由以上可知:∠E1+∠E2+…+∠E n=∠B+∠F1+∠F2+…+∠Fn﹣1+∠D;【点评】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=20° .【考点】平行线的性质.【分析】根据对顶角相等求出∠AMF,再求出∠AMN,然后根据两直线平行,内错角相等求解即可.【解答】解:∵∠BME=110°,∴∠AMF=∠BME=110°,∵MN⊥EF于M,∴∠NMF=90°,∴∠AMN=∠AMF﹣∠NMF=110°﹣90°=20°,∵AB∥CD,∴∠MND=∠AMN=20°.故答案为:20°.【点评】本题考查了平行线的性质,对顶角相等的性质,以及垂直的定义,是基础题,熟记性质并准确识图是解题的关键.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3= 65°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1+∠3=90°,∠2﹣∠3=90°,可得∠1+∠2=180°,则可得出a∥b,根据同旁内角互补即可得出答案.【解答】解:∵∠1+∠3=90°,∠2﹣∠3=90°,∴∠1+∠2=180°,∴∠1的对顶角+∠2=180°,∴a∥b,∴∠3+∠4的对顶角=180°,∵∠4=115°,∴∠3=180°﹣∠4=65°,故答案为:65°.【点评】本题考查了平行线的判定与性质,属于基础题,关键是正确理解与运用平行线的判定与性质.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=40度.ﻬ【考点】平行线的性质.【专题】计算题.【分析】过点F作EF∥AB,由平行线的性质可先求出∠3与∠4,再利用平角的定义即可求出∠α.【解答】解:如图,过点F作EF∥AB,∴∠1+∠3=180°.∵∠1=100°,∴∠3=80°.∵AB∥CD,∴CD∥EF,∴∠4+∠2=180°,∵∠2=120°,∴∠4=60°.∴∠α=180°﹣∠3﹣∠4=40°.故应填40.【点评】本题的难点在于用辅助线构造平行线;关键点在于利用平行线的性质进行角的转化.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是 40或140 度.【考点】平行线的性质.【分析】两个角的两边分别平行,则两个角可能是同位角,也可能是同旁内角,所以应分情况讨论.【解答】解:当两个角是同位角时,则另一个角也等于40°;若两个角是同旁内角时,则另一个角是140°.故应填:40或140.【点评】会利用平行线性质求解角的大小,能够分析讨论一些简单的问题.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条 B.2条ﻩ C.3条D.4条【考点】点到直线的距离.【分析】根据从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.画出图形进行判断.【解答】解:在线段AB的两旁可分别画一条满足条件的直线;作线段AB的垂线,将线段AB分成6cm,4cm两部分,所以符合条件的直线l有3条,故选C.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( )A.①③ﻩB.②④ﻩC.①③④ D.①②③④【考点】平行线的判定;对顶角、邻补角.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行).②∵∠3=∠6,∴a∥b(内错角相等,两直线平行).③∵∠4+∠7=180°,∵∠4=∠6(对顶角相等),∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行).④同理得,a∥b(同旁内角互补,两直线平行).故选D.【点评】正确识别“三线八角"中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个C.4个 D.2个【考点】平行线的性质.ﻬ【分析】由AB∥EF得∠FEG=∠1,由EG∥DB可得∠DBG=∠1;设BD与EF相交于点P,由AB∥EF得到∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,又AB∥DC可以得到∠CDB=∠DBG=∠1,由此得到共有5个.【解答】解:∵AB∥EF,∴∠FEG=∠1,∵EG∥DB,∴∠DBG=∠1,设BD与EF相交于点P,∵AB∥EF,∴∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,∵AB∥DC,∴∠CDB=∠DBG=∠1.∴共有5个.故选B.【点评】本题主要利用了由平行得到的内错角相等以及同位角相等,注意不要漏解.14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.【考点】平行线的性质.【专题】探究型.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.【考点】平行线的判定与性质.【专题】证明题.【分析】由已知易得∠1=∠BDC,则AE∥CF,所以∠EBC=∠BCD,又∠BAD=∠BCD,故∠EBC=∠BAD,可得AD∥BC,再用角平分线的定义和平行线的性质求证即可.【解答】证明:∵∠1十∠2=180°,∠1+∠EBD=180°,∴∠2=∠EBD,∴AE∥CF,∴∠FDB=∠DBE,∠BAD=∠ADF,又∵∠BAD=∠BCD,∴∠BCD=∠ADF,∴AD∥BC,∴∠DBC=∠BDA=∠FDB=∠DBE,∴BC平分∠DBE.ﻬ【点评】此题考查了平行线的判定和性质,综合利用了角平分线的定义,要充分利用已知条件.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是垂直.【考点】垂线;平行线.【专题】压轴题;规律型.【分析】a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.根据此规律可求a1与a2002的位置关系是垂直.【解答】解:∵a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.∴(2002﹣1)÷4=500余1,故答案为:垂直.【点评】本题难点在规律的探索,要认真观察即可得出规律.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角24对.【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有3×4=12条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【解答】解:∵平面上4条直线两两相交且无三线共点,∴共有3×4=12条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角12×2=24对.故答案为:24.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.ﻬ18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α=40°.【考点】平行线的性质.【专题】计算题.【分析】过点B作EF∥l1∥l2,再根据平行线的性质不难求得∠α的度数.【解答】解:过点B作EF∥l1∥l2∵EF∥l1∥l2,AB⊥l1∴∠ABF=90°∵∠ABC=130°∴∠FBC=40°∵EF∥l1∥l2∴∠FBC=∠α=40°故答案为:40°【点评】此题主要考查平行线的性质定理:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是40°.【考点】平行线的性质;三角形的外角性质;多边形内角与外角.【专题】计算题.【分析】作辅助线:延长PM、EG交于点K;PM延长线交AB于点L.利用平行线性质进行求解.【解答】解:辅助线延长PM、EG交于点K,PM延长线交AB于点L.如图:∵AB∥CD,∴∠ALM=∠LND=50°;∴∠MKG=∠BFG+∠ALM=80°.∵∠HMN=30°,∴∠HMK=150°;∵∠FGH=90°,∴∠GHM=360°﹣∠HMK﹣∠MKG﹣∠MGH=360°﹣150°﹣80°﹣90°=40°.【点评】考查了平行线的性质的应用.本题综合性较强.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对B.5对 C.6对D.7对【考点】平行线的性质.【分析】可利用平行线内错角相等,同位角相等的性质得出图中相等的角.【解答】解:由DE∥BC,可得∠ADE=∠ABC,∠AED=∠ACB,∠EDC=∠DCB,由GH∥DC,可得∠BDC=∠BGH,∠HGD=∠ADC,∠DCB=∠GHB,∵∠EDC=∠DCB,∠DCB=∠GHB,∴∠EDC=∠BHG,∴题中共有7对相等的角.故选D.【点评】本题主要考查平行线的性质,即同位角相等,内错角相等,所以熟练掌握平行线的性质.21.如图,若AB∥CD,则( )A.∠1=∠2+∠3 B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°【考点】平行线的性质.【分析】先根据平行线的性质由AB∥CD得到∠3=∠4,再根据三角形外角性质得∠1=∠2+∠4,等量代换后得到∠1=∠2+∠3.【解答】解:延长BA交EC于F,如图,∵AB∥CD,∴∠3=∠4,∵∠1=∠2+∠4,∴∠1=∠2+∠3.故选A.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°ﻩB.270°C.360°D.450°【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF的度数即可.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF﹣∠HEF=360°﹣90°=270°.故选B.【点评】本题主要考查了平行线的性质:两直线平行同旁内角互补.23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γﻩB.α+β+γ=180° C.α+β﹣γ=90°ﻩ D.β+γ﹣α=180°【考点】平行线的性质.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.【点评】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.【考点】平行线的性质;三角形的外角性质.【分析】可过点O作OM∥CD,利用内错角相等,再通过转化即可得出结论.【解答】解:∠HOP=∠AGF﹣∠HPO,过点O作OM∥CD,如图,则∠AGF=∠HOM,∠HPO=∠POM,∠HOP=∠HOM﹣∠POM,∴∠HOP=∠AGF﹣∠HPO.【点评】本题主要考查平行线的性质,能够熟练运用平行线的性质求解角之间的关系问题.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α【考点】平行线的判定与性质;多边形内角与外角.【专题】证明题.【分析】此题的关键是过点C作AB的平行线,再利用平行线的性质和判定,得出∠A+∠E=180°,∠B+∠C+∠D=360°,即可证明.【解答】证法1:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图1)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B=∠1,(两直线平行,内错角相等)又∵CF∥ED,∴∠2=∠D,(两直线平行,内错角相等)∴β=∠B+∠C+∠D=∠1+∠BCD+∠2=360°(周角定义)∴β=2α(等量代换)证法2:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图2)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B+∠1=180°,(两直线平行,同旁内角互补)又∵CF∥ED,∴∠2+∠D=180°,(两直线平行,同旁内角互补)∴β=∠B+∠C+∠D=∠B+∠1+∠2+∠D=180°+180°=360°,∴β=2α(等量代换)【点评】此题考查平行线的判定和性质,辅助线的作法很关键,也是常见作法,需掌握.26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?【考点】平行线;相交线.【专题】规律型.【分析】从平行线的角度考虑,先考虑六条直线都平行,再考虑五条、四条,三条,二条直线平行,都不平行作出草图即可看出.ﻬ从画出的图形中归纳规律即可得到答案.【解答】解:(1)如图1所示;交点共有6个,(2)如图2,3.(3)当n=6时,必须有6条直线平行,都与一条直线相交.如图4,当n=21时,必须使7条直线中的每2条直线都相交(即无任何两条直线平行)如图5,当n=15时,如图6,(4)当我们给出较多答案时,从较多的图形中,可以总结出以下规律:①当7条直线都相互平行时,交点个数是0,这是交点最少,②当7条直线每两条均相交时,交点个数为21,这是交点最多.ﻬ【点评】此题主要考查了平行线与相交线,关键是根据一定的规律画出图形,再再根据图形归纳规律.27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质;三角形内角和定理;角平分线的性质;平移的性质.【专题】几何图形问题.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB=∠AOC,代入数据即可得解;(2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣120°=60°,∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠AOC=×60°=30°;(2)∠OBC:∠OFC的值不会发生变化,为1:2,ﻬ∵CB∥OA,∴∠OBC=∠BOA,∵∠FOB=∠AOB,∴∠OBC=∠FOB,∴∠OFC=∠OBC+∠FOB=2∠OBC,∴∠OBC:∠OFC=1:2;(3)当平行移动AB至∠OBA=45°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵∠OEC=∠CBO+∠EOB=x+30°,∠OBA=180°﹣∠A﹣∠AOB=180°﹣120°﹣x=60°﹣x,∴x+30°=60°﹣x,∴x=15°,∴∠OEC=∠OBA=60°﹣15°=45°.【点评】本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.。
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
考点05 分式、分式方程及其应用分式在中考中的考察难度不大,考点多在于分式有意义的条件,以及分式的化简求值。
浙江中考中,分式这个考点的占比并不太大,其中分式的化简求值问题为主要出题类型,出题多以简答题为主;个别城市会同步考察分式方程的简单应用,多以选择填空题为主,有些城市甚至不会出分式的单独考题;而分式方程的应用也和分式方程一样,较少出题,出题也基本是以选择题或者填空题的形式考察,整体难度较小。
但是,分式的化简方法以及分式方程的解法的全面复习对后期辅助几何综合问题中的计算非常重要!考向一、分式有意义的条件考向二、分式的运算法则考向三、分式方程的解法考向四、分式方程的应用考向一:分式有意义的条件1.分式:一般地,如果A,B 表示两个整式,并且B中含有分母,那么式子叫做分式,分式中A叫做分子,B 叫做分母。
最简分式:分子分母中不含有公因式的分式2.分式有意义的条件3.分式值=0需满足的条件【易错警示】1.下列四个式子:,x 2+x ,m ,,其中分式的个数有( )A .1个B .2个C .3个D .4个【分析】根据分式的定义可得.【解答】解:分母上含有字母的式子是分式,题目中所给的式子中只有,两个分母中都含有字母,所以这两个是分式,故选:B .2.若分式无意义,则x 的取值范围是( )A .B .C .D .【分析】根据分式无意义的条件可得2x ﹣1=0,再解即可.【解答】解:由题意得:2x ﹣1=0,解得:x =,若 <故选:C .3.若分式的值为零,则x 的值为( )A .2或﹣2B .2C .﹣2D .1【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:依题意,得x 2﹣4=0,且x +2≠0,解得,x =2.故选:B .4.已知=,则的值为( )A .﹣B .﹣C .D .【分析】先化简,代入数值计算即可.【解答】解:∵,===.故选:C .考向二:分式的运算法则1.分式的基本性质:分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
1 / 20 中考数学复习考点知识与题型专题讲解 专题30 新定义问题 【考查题型】
考查题型一 计算类 典例1.(2021·湖北荆州市·中考真题)若x为实数,在31x的“”中添上一种运算符号(在+,-,×,÷中选择)后,其运算的结果是有理数,则x不可能的是( ) A.31B.31C.23D.13 【答案】C 【分析】 根据题意填上运算符计算即可. 【详解】 A.31310,结果为有理数; B.31312 ,结果为有理数; C.无论填上任何运算符结果都不为有理数; D.31132,结果为有理数; 故选C. 【点睛】 2 / 20
本题考查实数的运算,关键在于牢记运算法则. 变式1-1.(2021·湖北荆州市·中考真题)定义新运算ab,对于任意实数a,b满足1ababab,其中等式右边是通常的加法、减法、乘法运算,例如
43(43)(43)1716,若xkx(k为实数) 是关于x的方程,则它的根的情况是
( ) A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根 【答案】B 【分析】 将xk按照题中的新运算方法展开,可得1xkxkxk,所以xkx可得1xkxkx,化简得:2210xxk,222141145kk,可得
0,即可得出答案.
【详解】 解:根据新运算法则可得:2211xkxkxkxk, 则xkx即为221xkx, 整理得:2210xxk, 则21,1,1abck, 可得:222141145kk
20k,
2455k;
0,
方程有两个不相等的实数根;
故答案选:B. 3 / 20
【点睛】 本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号. 变式1-2.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1abab☆,例如:232314☆.如果21x☆,则x的值是( ). A.1B.1C.0D.2 【答案】C 【分析】 根据题目中给出的新定义运算规则进行运算即可求解. 【详解】 解:由题意知:2211☆xxx, 又21x☆, ∴11x, ∴0x. 故选:C. 【点睛】 本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可. 变式1-3.(2021·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)ababababab例如:31312;545463.则函数(2)(1)yxx的图象大致是( ) 4 / 20
2020年中考数学复习核心考点专题卷专题十二 合情推理与演绎推理本卷共5个大题,17个小题,满分100分,考试时间45分钟. 一、选择题(本大题共5个小题,每小题4分,共20分) 1.如果“盈利5%”记作+5%,那么﹣3%表示( )A .亏损3%B .亏损8%C .盈利2%D .少赚3% 【答案】A【方法点拔】本题虽简单,但隐含着合情推理,“盈利”与“亏损”具有相反意义,由已知“盈利”为正,则类比推理可知“亏损”为负.2.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:b a -,y x -,y x +,b a +,22y x -,22b a -分别对应下列六个字:国、爱、我、中、游、美,现将222222)()(b y x a y x ---因式分解,结果呈现的密码信息可能是( )A .我爱美B .中国游C .爱我中国D .美我中国 【答案】C【方法点拔】对代数式222222)()(b y x a y x ---进行因式分解,对比已知条件中的每一多项式,即可推断出密码信息的含义.这是一种合情推理.3.如图,AB ∥CD ,CE 平分∠BCD ,∠B =36°,则∠DCE 等于( ) A .18° B .36° C .45°D .54°【答案】A【方法点拔】本题应用了平行线的性质定理和角平分线的性质进行推理,经两步推理即可得出结论.属于演绎推理.4.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误..的是( )A .DC=2OEB .OA=OC C .∠BOE=∠OBAD .∠OBE=∠OCE 【答案】D【方法点拔】由平行四边形的性质和三角形中位线定理得出选项A 、B 、C 正确;由OB ≠OC ,得出∠OBE ≠∠OCE ,选项D 错误;即可得出结论.解答过程应用了相关定理性质进行多向、多步推理.5.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…,若∠A =70°,则∠A n 的度数为( )A .1270-nB .n 270C .1270+nD .2270+n【答案】C【方法点拔】本题属于规律探究问题,主要考查合情推理,根据三角形外角的性质及等腰三角形的性质分别求出∠B 1A 2A 1,∠B 2A 3A 2及∠B 3A 4A 3的度数,找出规律即可得出∠A n ﹣1A n B n ﹣1的度数.二、填空题(本大题共5个小题,每小题4分,共20分)6.能够说明x =不成立”的x 的值是 (写出一个即可). 【答案】﹣17.观察一组数:1,1,2,3,5,m …,根据其规律可知这组数中m 表示的数为 . 【答案】88.如图,在△ABC 中,AB =AC =5,BC =8,D 是线段BC 上的动点(不含端点B 、C ).若线段AD 长为正整数,则AD 长为 . 【答案】3或49.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是 .【答案】3310.矩形ABCD 中,AD =2AB =4,点P 在AD 边上,若△PBC 是等腰三角形,则为∠PBC 的度数为 . 【答案】45°或75°或30°三、(本大题共2小题,每小题7分,共14分)11.如图:点C 是AE 的中点,∠A =∠ECD ,AB=CD ,求证:∠B =∠D .【答案】∵点C 是AE 的中点,∴AC =CE ,在△ABC 和△CDE 中,,,.AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE ,∴∠B =∠D .12.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n . (1)第七个三角形数是 ;(2)求x n +x n +1的值. 【答案】(1)28;(2)∵ 1x +2x =1+3=4=22,2x +3x =3+6=9=23,3x +4x =6+10=16=24,4x +5x =10+15=25=25, 5x +6x =15+21=36=26,……∴n x +1n x + =()21n +.四、(本大题共2小题,每小题8分,共16分) 13.已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)根据题意,将x =1代入方程x 2+mx +m ﹣2=0, 得:1+m +m ﹣2=0,解得:m =12; (2)∵△=m 2﹣4×1×(m ﹣2)=m 2﹣4m +8=(m ﹣2)2+4>0, ∴不论m 取何实数,该方程都有两个不相等的实数根.14.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等级.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a 的值为 ,b 的值为 ;(2)在扇形统计图中,八年级所对应的扇形圆心角为 度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】解:(1)由题意和扇形统计图可得,a=200×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=200×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为:28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为:108;(3)由题意可得,2000×200758++=200人,即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.五、(本大题共3小题,每小题10分,共30分)15.在□ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB 的长.【答案】①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB﹣EF=8,∴AB=5;②在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC =BE +CF =2AB +EF =8,∴AB =3;综上所述:AB 的长为3或5.16.如图,在平面直角坐标系中,点B 在x 轴正半轴上,OB 的长度为2m ,以OB 为边向上作等边三角形AOB ,抛物线l :y =ax 2+bx +c 经过点O ,A ,B 三点.(1)当m =2时,a = ,当m =3时,a = ; (2)根据(1)中的结果,猜想a 与m 的关系,并证明你的结论.【答案】解:(1)如图1,∵点B 在x 轴正半轴上,OB 的长度为2m ,∴B (2m ,0), ∵以OB 为边向上作等边三角形AOB , ∴AMm ,OM =m ,∴A (mm ), ∵抛物线l :y =ax 2+bx +c 经过点O ,A ,B 三点∴22(2)200a m bm c am bm c c ⎧⨯++=⎪⎪++=⎨⎪=⎪⎩,∴0a m b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩当m =2时,2a =-,当m =3时,3a =-,故答案为:2-3-; (2)a =. 理由:如图1,∵点B 在x 轴正半轴上,OB 的长度为2m ,∴B (2m ,0), ∵以OB 为边向上作等边三角形AOB , ∴AMm ,OM =m ,∴A (mm ).∵抛物线l :y =ax 2+bx +c 经过点O ,A ,B 三点,∴22(2)200a m bm c am bm c c ⎧⨯++=⎪⎪++=⎨⎪=⎪⎩,∴0a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴a =.17.△ABC 中,∠BAC =90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD右侧作正方形ADEF ,连接CF . 观察猜想如图1,当点D 在线段BC 上时, ①BC 与CF 的位置关系为: .②BC ,CD ,CF 之间的数量关系为: ;(将结论直接写在横线上) 数学思考如图2,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. 拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若已知AB=CD=14BC ,求GE 的长.【答案】观察猜想①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF .在△DAB与△F AC中,AD AFBAD CAF AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△DAB≌△F AC.∴∠ABD=∠ACF.∴∠ACB+∠ACF=90°,即CF⊥BD;故答案为:CF⊥BD;②△DAB≌△F AC,∴CF=BD.∵BC=BD+CD,∴BC=CF+CD.故答案为:BC=CF+CD;数学思考当点D在CB的延长线上时,结论①成立,结论②不成立,②的正确结论是:BC=CD-CF 理由如下:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB与△F AC中,AD AFBAD CAF AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△DAB≌△F AC.∴∠ABD=∠ACF=135°,CF=BD.∴∠DCF=∠ACF-∠ACB=135°-45°=90°.∴CF⊥BD.∵BC= CD-BD,∴BC= CD-CF.拓展延伸解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BCAB=4,AH=12BC=2.∴CD=14BC=1,CH=12BC=2.∴DH=3.由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°.∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°.∴∠ADH=∠DEM.在△ADH与△DEM中,ADH DEMAHD DME AD DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADH≌△DEM.∴EM=DH=3,DM=AH=2.∴CN=EM=3,EN=CM=3.∵∠ABC=45°,∴∠BGC=45°.∴△BCG是等腰直角三角形.∴CG=BC=4.∴GN=1.∴EG。
中考数学复习考点题型专练专题19全等三角形(满分:100分时间:90分钟)班级_________ 姓名_________学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2022·浙江湖州市·中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.D【答案】D【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.【详解】于G.如图,EF为剪痕,过点F作FG EM∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中,EF ==故选:D.2.(2022·黑龙江中考真题)如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A .15B .12.5C .14.5D .17【答案】B【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.3.(2022·青海中考真题)如图,把直角三角形ABO放置在平面直角坐标系中,已知30OAB∠=,B 点的坐标为()0,2,将ABO沿着斜边AB翻折后得到ABC,则点C的坐标是()A.()4B.(2,C.)D.【答案】C【分析】过点C 作CD ⊥y 轴,垂直为D ,首先证明△BOA ≌△BCA ,从而可求得BC 的长,然后再求得∠DCB=30°,接下来,依据在Rt △BCD 中,求得BD 、DC 的长,从而可得到点C 的坐标.【详解】OAB BAC 30∠∠==,BOA BCA 90∠∠==,AB AB =,BOA ∴≌BCA ,OB BC 2∴==,CBA OBA 60∠∠==,过点C 作CD y ⊥轴,垂直为D ,则DCB 30∠=,1DB BC 12∴==,DC BC 2== )C ∴, 故选C .4.(2022·新疆中考真题)如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S D .CD=12BD 【答案】C【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选C .5.(2022·湖南张家界市·中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .1【答案】C【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=,1CD 8213∴=⨯=+, C 90∠︒=,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .6.(2022·山东潍坊市·中考真题)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .7.(2022·山东临沂市·中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .8.(2022·广西河池市·中考真题)如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,BE CF =,则图中与AEB ∠相等的角的个数是()A .1B .2C .3D .4【答案】C【分析】根据正方形的性质,利用SAS 即可证明△ABE ≌△BCF ,再根据全等三角形的性质可得∠BFC=∠AEB ,进一步得到∠DAE=∠AEB ,∠BFC=∠ABF ,从而求解.【详解】证明:∵四边形ABCD 是正方形,∴,,90AB BC AB BC ABE BCF =∠=∠=︒∕∕,在ABE ∆和BCF ∆中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE BCF SAS ∆∆≌,∴BFC AEB ∠=∠,∴BFC ABF ∠=∠,又有EAD AEB ∠=∠故图中与AEB ∠相等的角的个数是3.故选C .9.(2022·四川宜宾市·中考真题)如图,,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C【分析】先证明BCE ACD ≅,得到BE AD =,根据已知条件可得AN BM =,证明△△BCM ACN ≅,得到=60MCN ∠︒,即可得到结果;【详解】∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBMACN ∠=∠, 又∵11,33BM BE AN AD ==, ∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACNSAS ≅, ∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACMACN ACM ∠∠=∠+∠=︒, ∴CMN ∆是等边三角形.故答案选C .10.(2022·广西中考真题)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒【答案】C【分析】利用等腰三角形的性质和基本作图得到CG AB ⊥,则CG 平分ACB ∠,利用A B ∠=∠和三角形内角和计算出ACB ∠,从而得到BCG ∠的度数.【详解】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒, ∴1502BCG ACB ∠=∠=︒. 故选:C . 二、填空题(共5小题,每小题4分,共计20分)11.(2022·广西玉林市·中考真题)如图,将两张对边平行且相等的纸条交叉叠放在一起,则重合部分构成的四边形ABCD_________菱形(是,或不是).【答案】是【分析】 如图(见解析),先根据“两张对边平行且相等的纸条”得出//,//,AB CD AD BC BE DF =,再根据平行四边形的判定可得四边形ABCD 是平行四边形,然后根据三角形全等的判定定理与性质可得AB AD =,最后根据菱形的判定即可得.【详解】如图,过点B 作BE AD ⊥,交DA 延长线于点E ,过点D 作DF AB ⊥,交BA 延长线于点F 由题意得://,//,AB CD AD BC BE DF =∴四边形ABCD 是平行四边形在ABE △和ADF 中,90BAE DAF AEB AFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(AAS)ABE ADF ∴≅AB AD ∴=∴平行四边形ABCD 是菱形故答案为:是.12.(2022·黑龙江鹤岗市·中考真题)如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.【答案】AB ED =,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB =ED 或BC =DF 或AC =EF 或AE =CF 等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC ∆和Rt EDF ∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.13.(2022·辽宁本溪市·中考真题)如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_________.【答案】2【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN //BC ,依据△MNE ≌△DCE (AAS ),即可得到CD=MN=2.【详解】解:∵M ,N 分别是AB 和AC 的中点,∴MN 是△ABC 的中位线,∴MN=12BC=2,MN ∥BC , ∴∠NME=∠D ,∠MNE=∠DCE ,∵点E 是CN 的中点,∴NE=CE ,∴△MNE ≌△DCE (AAS ),故答案为:2.14.(2022·甘肃天水市·中考真题)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可得AG=AF ,GB=DF ,∠BAG =∠DAF ,然后根据正方形的性质和等量代换可得∠GAE =∠F AE ,进而可根据SAS 证明△GAE ≌△F AE ,可得GE=EF ,设BE=x ,则CE 与EF 可用含x 的代数式表示,然后在Rt △CEF 中,由勾股定理可得关于x 的方程,解方程即得答案.【详解】解:∵将△ADF 绕点A 顺时针旋转90︒得到△ABG ,∴AG=AF ,GB=DF ,∠BAG =∠DAF ,∵45EAF ∠=︒,∠BAD =90°,∴∠BAE +∠DAF =45°,∴∠BAE +∠BAG =45°,即∠GAE =45°,∴∠GAE =∠F AE ,又AE=AE ,∴△GAE ≌△F AE (SAS ),设BE=x ,则CE =6-x ,EF=GE=DF+BE =3+x ,∵DF =3,∴CF =3,在Rt △CEF 中,由勾股定理,得:()()222633x x -+=+,解得:x =2,即BE =2.故答案为:2.15.(2022·黑龙江齐齐哈尔市·中考真题)如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是______.(只填一个即可)【答案】AD =AC (∠D =∠C 或∠ABD =∠ABC 等)【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB =∠CAB ,AB =AB ,∴当添加AD =AC 时,可根据“SAS ”判断△ABD ≌△ABC ;当添加∠D =∠C 时,可根据“AAS ”判断△ABD ≌△ABC ;当添加∠ABD =∠ABC 时,可根据“ASA ”判断△ABD ≌△ABC .故答案为AD =AC (∠D =∠C 或∠ABD =∠ABC 等).三、解答题(共5小题,每小题10分,共计50分)16.(2022·柳州市柳林中学中考真题)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC .【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【详解】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).17.(2022·江苏连云港市·中考真题)如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于M 、N .(1)求证:四边形BNDM 是菱形;(2)若24BD =,10MN =,求菱形BNDM 的周长.【答案】(1)见解析;(2)52【分析】(1)先证明BON DOM ≌△△,得到四边形BNDM 为平行四边形,再根据菱形定义证明即可; (2)先根据菱形性质求出OB 、OM 、再根据勾股定理求出BM ,问题的得解.【详解】(1)∵//AD BC ,∴CBD ADB ∠=∠.∵MN 是对角线BD 的垂直平分线,∴OB OD =,MB MD =.在BON △和DOM △中,CBD ADB OB OD BON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BON DOM ASA ≌,∴MD NB =,∴四边形BNDM 为平行四边形.又∵MB MD =,∴四边形BNDM 为菱形.(2)∵四边形BNDM 为菱形,24BD =,10MN =.∴90BOM ︒∠=,1122OB BD ==,152OM MN ==. 在Rt BOM △中,13BM ===.∴菱形BNDM 的周长441352BM ==⨯=.18.(2022·湖南湘西土家族苗族自治州·中考真题)如图,在正方形ABCD 的外侧,作等边角形ADE ,连接BE 、CE .(1)求证:BAE CDE △≌△;(2)求AEB ∠的度数.【答案】(1)见解析;(2)15°.【分析】(1)利用正方形的性质得到AB=CD ,∠BAD=∠CDA ,利用等边三角形的性质得到AE=DE ,∠EAD=∠EDA=60°即可证明;(2)由AB=AD=AE ,得到△ABE 为等腰三角形,进而得到∠ABE=∠AEB ,且∠BAE=90°+60°=150°,再利用三角形内角和定理即可求解.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB=CD ,且∠BAD=∠CDA=90°,∵△ADE 是等边三角形,∴AE=DE ,且∠EAD=∠EDA=60°,∴∠BAE=∠BAD+∠EAD=150°,∠CDE=∠CDA+∠EDA=150°,∴∠BAE=∠CDE ,在△BAE 和△CDE 中:=⎧⎪∠=∠⎨⎪=⎩AB CD BAE CDE AE DE ,∴()△≌△BAE CDE SAS .(2)∵AB=AD ,且AD=AE ,∴△ABE 为等腰三角形,∴∠ABE=∠AEB ,又∠BAE=150°,∴由三角形内角和定理可知:∠AEB=(180°-150°)÷2=15°.故答案为:15°.19.(2022·江苏宿迁市·中考真题)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF=CE .求证:四边形BEDF 是菱形.【答案】见解析【分析】由正方形的性质可得AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE ≌△ADE ,△BFC ≌△DFC ,△ABE ≌△CBF ,可得BE=BF=DE=DF ,可得结论.【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE 和△ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADE (SAS ),∴BE=DE ,同理可得△BFC ≌△DFC ,可得BF=DF ,∵AF=CE ,∴AF-EF=CE-EF ,即AE=CF ,在△ABE 和△CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴BE=BF ,∴BE=BF=DE=DF ,∴四边形BEDF 是菱形.20.(2022·江苏南通市·中考真题)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC .(2)如图②,A 为⊙O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ;③在射线OB 上截取BC =OA ;④连接AC .若AC =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O【分析】(1)根据“AAS “证明△ABE ≌△ACD ,然后根据全等三角形的性质得到结论;(2)连接AB ,如图②,由作法得OA=OB=AB=BC ,先判断△OAB 为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA 的长.【详解】(1)证明:在△ABE 和△ACD 中B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴AB =AC ;(2)解:连接AB ,如图②,由作法得OA =OB =AB =BC ,∴△OAB 为等边三角形,∴∠OAB =∠OBA =60°,∵AB =BC ,∴∠C =∠BAC ,∵∠OBA =∠C+∠BAC ,∴∠C =∠BAC =30°∴∠OAC =90°,在Rt △OAC 中,OA =3AC =3×3即⊙O .。