福建省厦门市第五中学2013-2014学年八年级数学上学期寒假作业2(无答案) 新人教版
- 格式:doc
- 大小:204.95 KB
- 文档页数:4
2023-2024学年福建省厦门市海沧区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的结果是( )A. 0B. 1C. 3D.2.下面所给的交通标志是轴对称图形的是( )A.B.C.D.3.五边形的内角和为( )A.B.C.D.4.下列计算正确的是( )A. B.C.D.5.在中,,的角平分线AD 交BC 于点D ,,,则点D 到AB 的距离是( )A. 3B. 4C. 5D. 76.运用公式直接对整式进行因式分解,则公式中的a 可以是( )A. 3xB. 9xC.D.7.小海、小沧和小康三人在甲、乙、丙三所不同的学校读书,唱歌、阅读、绘画是三人的不同爱好.并且知道:①小海不在甲校读书,小沧在乙校读书;②在甲校读书的同学爱好唱歌,爱好绘画的同学不在丙校读书.根据以上信息,下列选项中正确的是( )A. 小海在乙校读书,爱好阅读 B. 小海在丙校读书,爱好绘画C. 小沧在乙校读书,爱好绘画 D. 小康在甲校读书,爱好阅读8.如图,已知≌,点E 是线段AB 上一点,AC 交DE 于点F ,下列与相等的是( )A.B.C.D.9.为增加学生课外活动空间,某校打算将图一块边长为米的正方形操场进行扩建,扩建后的正方形边长比原来长3米,则扩建后操场面积增大了( )A. 平方米B. 平方米C. 平方米D. 平方米10.如图,,,,若点E,B到直线AC的距离分别为6和3,,则图中阴影部分的面积是( )A. 50B. 44C. 38D. 32二、填空题:本题共6小题,每小题3分,共18分。
11.计算:______;______.12.已知的三边长分别为3,4,x,则x的值可以是______只需写出一个满足条件的x即可13.如图,AB的垂直平分线分别交AB,AC于点D,若,AE::1,则BE的长为______.14.如图,把一长一短的两根木棍的一端固定在一起,摆出,固定住长木棍AB,转动短木棍AC,得到等腰三角形,此时B,C,D三点在同一条直线上,则的度数为______.15.甲乙两地相距n千米,提速前火车从甲地到乙地要用t小时,提速后两地间的行车时间减少了1小时,则提速后火车的速度比提速前的快了______千米/小时.16.在数学上,对于两个正数p和q有三种平均数,算术平均数A、几何平均数G、调和平均数H,其中,调和平均数中的“调和”二字来自于音乐.毕达哥拉斯学派通过研究发现,如果三根琴弦的长度p,H,q满足,再把它们绷得一样紧,并用同样的力弹拨,它们将会分别发出很调和的乐声.我们称p,H,q为一组调和数,而把H称为p和q的调和平均数.若,,则H 的值为______.三、解答题:本题共9小题,共72分。
八年级数学上册参考答案第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2. (1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。
2023八年级数学寒假作业答案3篇2023八年级数学寒假作业答案3篇2023八年级数学寒假作业答案1 一、选择题。
1、假设=0,那么等于A.5B.-5C.3D.-32.当m,n为自然数时,多项式的次数应当是A.mB.nC.m,n中较大的D.m+n3.当x分别等于2或-2时,代数式的值A.相等B.互为相反数C.互为倒数D.互为相反数4.设是一个负数,那么数轴上表示数-的点在.A.原点的左边B.原点的右边B.原点的左边和原点的右边D.无法确定5.以下图形中,表示南偏西60°的射线是.aABCD6.以下图形中,可以折叠成正方体的是7.如图,OB平分∠AOC,OD平分∠EOC,∠1=20°,∠AOE=88°,那么∠3为A.24°B.68°C.28°D.都不对8.某种商品的标价为120元,假设以九折降价出售,相对于进价仍获利20%,那么该商品的进价是.A.95元B.90元C.85元D.80元9.解方程,去分母正确的选项是.A.B.C.D.10.有一些分别标有6,10,14,18的卡片,后一张卡片上的数比前一张卡片上的数大4,小红拿到了相邻的3张卡片,且这些上的数字之和为282,那么小红拿到的3张卡片为A.88,92,96B.100,104,108C.90,94,98D.88,98,106二、填空题.11.-3,-(-1),+(-5),-2.15,0,-中整数有个,正整数有个,负数有个。
12.用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是。
13,假设的值是7,那么代数式的值是。
14.假设│x+2│+(y-3)2=0,那么xy=____.15.一个多项式与的和是,那么这个多项式是。
16.以下图是某几何体分别从正面左面及上面看到的平面图形,那么这个几何体是。
17.一家商店将某种服装按本钱价进步40%标价,又以8.5折优惠卖出,结果每件仍获利12元,假设设每件服装的本钱为x元,那么可列方程。
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1. 如果直线AB 平行于y 轴,则点A 、B 的坐标之间的关系是( ) A.横坐标相等B.纵坐标相等C.横坐标为0D.纵坐标为0 2. 若点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)3. 下列图中不是轴对称图形的是( )4. 如图所示,在平面直角坐标系中,直线y =-与矩形ABCO的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则 △CEF 的面积是( )A .6B .3C .12D . 5. 已知直线 =k -4(k <0)与两坐标轴所围成的三角形面 积等于4,则直线的关系式为( ) A . =- -4 B . =-2 -4 C . =-3 +4 D . =-3 -46. 正比例函数(≠0)的函数值随的增大而增大,则一次函数的图象大致是( )A B C D 7. 在△ABC 中,AC =5,中线AD =4,则AB 边的取值范围是( ) A .1<AB <9 B .3<AB <13 C .5<AB <13 D .9<AB <138. 如图所示,两个全等的等边三角形的边长为1 m ,一个微型机器人 由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走 2 012 m 停下,则这个微型机器人停在( ) A.点A 处 B .点B 处 C.点C 处 D.点E 处 9. 如图所示,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确第4题图第8题图10. 如图所示,是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形11. 数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( )A.60°B.30°C.45°D.50° 12. 以下各命题中,正确的命题是( )(1)等腰三角形的一边长为4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和; (3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5)二、填空题(每小题3分,共24分)13. 已知是整数,点在第二象限,则 _____.14. 如图所示,已知函数和的图象交于点(-2,-5),根据图象可得方程的解是 .15. 如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是 (将你认为正确的结论的序号都填上).第9题图第10题图第11题图第14题图第15题图第16题图16. 如图所示,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2= . 17. 如图所示,已知△ABC 和△BDE 均为等边三角形,连接AD 、CE ,若∠BAD =39°,则∠BCE = 度.18. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P为线段EF 上一个动点,连接BP 、GP ,则△PBG 的周长的最小值是 .19. 小明不慎将一块三角形的玻璃打碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带 去.20. 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .三、解答题(共60分)21.(6分) 如图,在平面网格中每个小正方形的边长为1. (1)线段CD 是线段AB 经过怎样的平移后得到的? (2)线段AC 是线段BD 经过怎样的平移后得到的?22. (6分)已知一次函数的图象经过点A (2,0)与B (0,4).(1)求一次函数的关系式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数的值在-4≤≤4范围内,求相应的的值在什么范围内. 23. (8分) 如图所示,A 、B 分别是轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6. (1)求△COP 的面积; (2)求点A 的坐标及p 的值;(3)若△BOP 与△DOP 的面积相等,求直线BD 的函数关系式.第17题图第21题图第18题图第19题图24. (8分)如图所示,△ABC 是等腰三角形,D ,E 分别是腰AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G .求证:GD =GE .25. (8分)(1)如图(1)所示,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明 理由.(2)园林小路,曲径通幽,如图(2)所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?26. (8分)如图所示,将矩形纸片ABCD 按如下顺序进行折叠:对折,展平,得折痕EF (如图①);沿CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图 ⑤);展平,得折痕GC ′,GH (如图 ⑥). (1)求图 ②中∠BCB ′的大小.(2)图⑥中的△GCC ′是正三角形吗?请说明理由.第23题图AGFCBD E第25题图(1)(2)第24题图第26题图27. (8分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD . (8分)将两个等边28.△ABC和△DEF (DE >AB )如图所示摆放,点D 是BC 上的一点(除B 、C 点外).把△DEF 绕顶点D 顺时针旋转一定的角度,使得边DE 、DF 与△ABC 的边(除BC 边外)分别相交于点M 、N . (1)∠BMD 和∠CDN 相等吗?(2)画出使∠BMD 和∠CDN 相等的所有情况的图形.(3)在(2)题中任选一种图形说明∠BMD 和∠CDN 相等的理由.第27题图第28题图1. A 解析:∵ 直线AB 平行于y 轴,∴ 点A 、B 的坐标之间的关系是横坐标相等.2. B 解析:∵ 点P (13++m m ,)在直角坐标系的x 轴上,∴ ,解得, ∴ 点P 的坐标是(2,0).3. C 解析:由轴对称图形的性质,A 、B 、D 都能找到对称轴,C 找不到对称轴,故选C.4. B 解析:当y =0时,-=0,解得=1, ∴ 点E 的坐标是(1,0),即OE =1. ∵ OC =4,∴ EC =OC -OE =4-1=3. ∵ 点F 的横坐标是4,∴ y =×4-=2,即CF =2. ∴ △CEF 的面积=×CE ×CF =×3×2=3.故选B . 5. B 解析:直线 =k -4(k <0)与两坐标轴的交点坐标为(0,-4), ∵ 直线 =k -4(k <0)与两坐标轴所围成的三角形面积等于4,∴ 4××=4,解得k =-2,则直线的关系式为y =-2 -4. 故选B .6. A 解析:因为正比例函数(≠0)的函数值随的增大而增大,所以,所以答案选A.7. B 解析:如图所示,延长AD 到E ,使DE =AD ,连接BE . 在△ADC 和△EDB 中, ∴ △ADC ≌△EDB (SAS ),∴ AC =BE . ∵ AC =5,AD =4,∴ BE =5,AE =8. 在△ABE 中,AE -BE <AB <AE +BE ,∴ AB 边的取值范围是3<AB <13.故选B.8. C 解析:∵ 两个全等的等边三角形的边长均为1 m , ∴ 机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边 循环运动一圈,即为6 m.∵ 2 012÷6=335……2,即行走了335圈余2 m , ∴ 行走2 012 m 停下时,这个微型机器人停在C 点.故选C .9. B 解析:∵ PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,AP =AP ,∴ △ARP ≌△ASP (HL ),∴ AS =AR ,∠RAP =∠SAP .∵ AQ =PQ ,∴ ∠QP A =∠QAP ,∴ ∠RAP =∠QP A ,∴ QP ∥AR .而在△BPR 和△QPS 中,只满足∠BRP =∠QSP =90°和PR =PS ,找不到第3个条件, ∴ 无法得出△BPR ≌△QPS .故本题仅①和②正确.故选B . 10. D 解析:A.因为此图形是轴对称图形,正确; B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG =CE ,且直线BG ,CE 的交点在AF 上,正确;D.题目中没有60°条件,不能判断是等边三角形,错误.故选D . 11. A 解析:∵ 台球桌四角都是直角,∠3=30°,∴ ∠2=60°.∵ ∠1=∠2,∴ ∠1=60°,故选A .12. D 解析:(1)等腰三角形的一边长为4 cm ,一边长为9 cm ,则三边长可能为9 cm , 9 cm ,4 cm ,或4 cm ,4 cm ,9 cm ,因为4+4<9,所以它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确;(5)如果三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形, 正确.如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C .第7题答图∵AD是角平分线,∴∠1=∠2,∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形.故选D.13. -1 解析:因为点A在第二象限,所以,所以.又因为是整数,所以.14.=-2 解析:已知两直线的交点坐标为(-2,-5),所以方程的解为.15. ①②③解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF.∴AC=AB,∠BAE=∠CAF,BE=CF,∴②正确.∵∠B=∠C,∠BAM=∠CAN,AB=AC,∴△ACN≌△ABM,∴③正确.∵∠1=∠BAE-∠BAC,∠2=∠CAF -∠BAC,又∵∠BAE=∠CAF,∴∠1=∠2,∴①正确.∴题中正确的结论应该是①②③.16. 50°解析:如图,由三角形外角的性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.17. 39 解析:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC =∠EBD=60°,BE=BD.∵∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,∴∠ABD=∠EBC,∴△ABD≌△CBE,∴∠BCE=∠BAD =39°.18. 3 解析:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可.连接AG交EF于M.∵△ABC是等边三角形,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC.又EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,∴P点与E重合时,BP+PG最小,即△PBG的周长最小,最小值是2+1=3.19. 2 解析:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去.只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.20. 20°或120°解析:设两内角的度数为、4.当等腰三角形的顶角为时,+4+4=180°,=20°;当等腰三角形的顶角为4时,4++=180°,=30°,4=120°.因此等腰三角形顶角的度数为20°或120°.21. 解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向左平移3个小格(或向下平移1个小格),再向下平移1个小格(或向左平移3个小格),得到线段AC.22.分析:根据A、B两点可确定一次函数的关系式.解:(1)由题意得20,2, 4,4,a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一次函数的关系式为,函数图象如图所示.(2)∵,-4≤≤4,∴ -4≤≤4,∴0≤≤4.23. 解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.第16题答图第22题答图(2)∵ S △AOP =6,S △COP =2,∴ S △COA =4,∴ OA ×2=4, ∴ OA =4,∴ A (-4,0).∴ S △AOP =×4|p |=6,∴ |p |=3. ∵ 点P 在第一象限,∴ p =3.(3)∵ S △BOP =S △DOP ,且这两个三角形同高,∴ DP =BP ,即P 为BD 的中点. 作PE ⊥轴于点E ,则E (2,0),F (0,3).∴ B (4,0),D (0,6). 设直线BD 的关系式为y =k +b (k ≠0),则解得 ∴ 直线BD 的函数关系式为y =+6.分析:24. 从图形看,GE ,GD 分别属于两个显然不全等的三角形:△GEC 和△GBD .此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证明:过E 作EF ∥AB 且交BC 的延长线于F .在△GBD 及△GEF 中,∠BGD =∠EGF (对顶角相等), ① ∠B =∠F (两直线平行,内错角相等). ②又∠B =∠ACB =∠ECF =∠F ,所以△ECF 是等腰三角形,从而EC =EF .又因为EC =BD ,所以BD =EF . ③由①②③知△GBD ≌△GFE (AAS),所以 GD =GE .25. 解:(1)ABC △与AEG △的面积相等.理由如下:过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 的延长线于N ,则AMC ∠=90ANG ∠= .四边形ABDE 和四边形ACFG 都是正方形, 90,180.BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180,,EAG GAN BAC GAN ∠+∠=∴∠=∠第23题答图FAGCBDEMN第25题答图第24题答图,ACM AGN ∴△≌△ .11··22ABC AEG CM GN S AB CM S AE GN ∴=== △△,, .ABCAEG S S ∴=△△(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和, 这条小路的占地面积为(2)a b +平方米.26. 分析:(1)由折叠的性质知:=BC ,然后在Rt △中,求得cos ∠的值,利用特殊角的三角函数值的知识即可求得∠BCB ′的度数;(2)首先根据题意得:GC 平分∠BCB ′,即可求得∠GCC ′的度数,然后由折叠的性质知:GH 是线段CC ′的对称轴,可得GC ′=GC ,即可得△GCC ′是正三角形. 解:(1)由折叠的性质知: =BC , 在Rt △中,∵ cos ∠=,∴ ∠=60°,即∠BCB ′=60°.(2)根据题意得:GC 平分∠BCB ′,∴ ∠GCB =∠GCB ′=∠BCB ′=30°,∴ ∠GCC ′=∠BCD -∠BCG =60°. 由折叠的性质知:GH 是线段CC ′的对称轴,∴ GC ′=GC ,∴ △GCC ′是正三角形. 27. 分析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可证出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可. 证明:(1)∵ AD ∥BC (已知),∴ ∠ADC =∠ECF (两直线平行,内错角相等). ∵ E 是CD 的中点(已知),∴ DE =EC (中点的定义).∵ 在△ADE 与△FCE 中,∠ADC =∠ECF ,DE =EC ,∠AED =∠CEF , ∴ △ADE ≌△FCE (ASA ),∴ FC =AD (全等三角形的性质).(2)∵ △ADE ≌△FCE ,∴ AE =EF ,AD =CF (全等三角形的对应边相等). 又BE ⊥AE ,∴ BE 是线段AF 的垂直平分线,∴ AB =BF =BC +CF . ∵ AD =CF (已证),∴ AB =BC +AD (等量代换). 28. 分析:(1)根据三角形内角和定理以及外角性质即可得出; (2)根据(1)分类画出图形,即可解答;(3)根据三角形的内角和与平角的定义,即可得出. 解:(1)相等.(2)有四种情况,如下:第28题答图(3)选④证明:∵△ABC和△DEF均为等边三角形,∴∠B=∠EDF=60°,∴∠ADB+∠BMD+∠B=180°,∠EDF+∠ADB+∠CDN=180°,∴∠BMD=∠CDN.。
2024-2025学年福建省厦门市思明区松柏中学八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.(4分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.2.(4分)一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A.1B.1.5C.2D.43.(4分)已知点A(a,2)与点B(3,b)关于y轴对称,则a+2b的值为( )A.﹣7B.7C.﹣1D.14.(4分)用三角尺画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P.则可通过△OMP≌△ONP得到OP平分∠AOB.其中判定△OMP≌△ONP 的方法是( )A.SSS B.ASA C.SAS D.HL5.(4分)下列运算正确的是( )A.(a﹣b)2=a2﹣b2B.a5÷a2=a3C.3a2﹣a2=2D.(a2)3=a56.(4分)等腰三角形的一个角为50°,则它的底角为( )A.50°B.65°C.50°或65°D.80°7.(4分)若一个多边形的内角和为外角和的3倍,则这个多边形为( )A.八边形B.九边形C.十边形D.十二边形8.(4分)若(2x+a)(x﹣3)的积中不含有x的一次项,则a的值为( )A.3B.6C.﹣6D.6或39.(4分)如图在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B,②AC=AF,③CH=HD,④CH=EF,其中正确的有( )A.①②③B.①②③④C.①②④D.②④10.(4分)如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD 的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )A.B.C.a+b D.a二、填空题:(每小题4分,共24分)11.(4分)(1)(ab)2= ;(2)(x+y)(x﹣y)= .12.(4分)等腰三角形有一个角是60°,其中一边长为3,则周长为 .13.(4分)如图,若∠1=∠2,加上一个条件 ,则有△AOC≌△BOC.14.(4分)如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何?请用一句话表示: .15.(4分)若3a×9b=27,则(a+2b)2﹣a﹣2b= .16.(4分)如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,在下列结论中:①∠AOB=90°+∠C;②若AB=4,OD=1,则S△ABO=2;③当∠C=60°时,AF+BE=AB;④若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的结论为 .三、解答题:(本大题有9小题,共86分)17.(8分)计算:(1)(2a4)2+a3•a5;(2).18.(8分)先化简,再求值:(2x﹣y)2﹣x(4x﹣3y),其中x=(3﹣π)0,y=﹣2.19.(8分)如图,C是AB的中点,AD∥CE,AD=CE,求证:CD∥BE.20.(8分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使△PBC的周长最小.(3)△ABC的面积是 .21.(8分)求证:等腰三角形两腰上的中线相等.(要求根据给出的图形写出已知、求证和证明过程.)22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)尺规作图,在BC上求作一点N,使得点N到点A和到点B的距离相等;(2)猜想CN与AN之间有何数量关系,并证明你的猜想.23.(10分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于点D,过B作BF⊥AD,垂足为F,延长BF交AC于点E.(1)求证:△ABE为等腰三角形;(2)已知AC=13,BD=5,求AB的长.24.(12分)【教材呈现】以下是人教版八年级上册数学教材第53页的部分内容.如图1,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的四边形叫做“筝形”.【性质探究】(1)如图1,连接筝形ABCD的对角线AC、BD交于点O,试探究筝形ABCD的性质,并填空:对角线AC、BD的关系是: ;图中∠ADB、∠CDB的大小关系是: ;【概念理解】(2)如图2,在△ABC中,AD⊥BC,垂足为D,△EAB与△DAB关于AB所在的直线对称,△FAC 与△DAC关于AC所在的直线对称,延长EB,FC相交于点G.请写出图中所有的“筝形”,并选择其中一个进行证明;【应用拓展】(3)如图3,在(2)的条件下,连接EF,分别交AB、AC于点M、H.求证:∠BAC=∠FEG.25.(14分)在平面直角坐标系中,A(a,0),B(0,b)(a,b均为正数).(1)若|a﹣3|+(b﹣4)2=0,直接写出A、B两点的坐标;(2)如图1,在(1)的条件下,点C在x轴的负半轴上,AC=BC,点D在BC的延长线上,BA=AD,求CD+CO的值;(3)如图2,在△BAN和△BOM中,BA=BN,BO=BM,∠ABN=∠OBM,射线MO交线段AN于点P.求证:点P为线段AN的中点.2024-2025学年福建省厦门市思明区松柏中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【解答】解:选项A、B、D均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C,不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:C.2.【解答】解:设三角形第三边的长为x,则:5﹣3<x<5+3,即2<x<8,只有选项D符合题意.故选:D.3.【解答】解:∵点A(a,2)与点B(3,b)关于y轴对称,∴a=﹣3,b=2,∴a+2b=﹣3+4=1.故选:D.4.【解答】解:由画法得OM=ON,PM⊥OA,ON⊥OB,∴∠PMO=∠PNO=90°,在Rt△PMO和Rt△PNO,,∴Rt△PMO≌Rt△PNO(HL),∴∠MOP=∠NOP,即OP平分∠AOB.故选:D.5.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,原计算错误,不符合题意;B、a5÷a2=a3,原计算正确,符合题意;C、3a2﹣a2=2a2,原计算错误,不符合题意;D、(a2)3=a6,原计算错误,不符合题意;故选:B.6.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故选:C.7.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)•180°=3×360°,解得:n=8,即这个多边形为八边形.故选:A.8.【解答】解:(2x+a)(x﹣3)=2x2﹣6x+ax﹣3a=2x2+(﹣6+a)x﹣3a,∵积中不含有x的一次项,∴﹣6+a=0,解得:a=6.故选:B.9.【解答】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,∴△ACE≌△AFE(AAS),∴AC=AF,故②正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故④正确;∴CH=CE=EF>HD,故③错误.故正确的结论为①②④.故选:C.10.【解答】解:如图,∵△ABC,△ADE都是等边三角形,∴AB=AC=a,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF=a,BF=b,∴∠ABD=∠CBD=∠ACE=30°,BF⊥AC,∴点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴AM=AC,∵BF⊥AC,∴FM=BF=b,∴△AEF周长的最小值=AF+FE′+AE′=AF+FM=a+b,故选:B.二、填空题:(每小题4分,共24分)11.【解答】解:(1)(ab)2=a2b2.故答案为:a2b2;(2)(x+y)(x﹣y)=x2﹣y2.故答案为:x2﹣y2.12.【解答】解:∵等腰三角形有一个角为60°,∴这个等腰三角形是等边三角形;因此其周长=3×3=9.故答案为:9.13.【解答】解:∠A=∠B,理由是:在△AOC和△BOC中,,∴△AOC≌△BOC(AAS).故答案为:∠A=∠B.14.【解答】解:如图:连接OA、OB、OC,∵EF垂直平分AB,GH垂直平分AC,∴OA=OB,OA=OC即OB=OC,故点O到BC两端的距离相等.15.【解答】解:∵3a•9b=27,3a•32b=333a+2b=33∴a+2b=3,(a+2b)2﹣a﹣2b=(a+2b)2﹣(a+2b)=32﹣3=6.故答案为:6.16.【解答】解:∵∠BAC和∠ABC的平分线AE,BF相交于点O,∴,,∴∠AOB=180°﹣∠OBA﹣∠OAB===,故①错误;过O点作OP⊥AB于P,∵BF平分∠ABC,OD⊥BC,∴OP=OD=1,∵AB=4,∴,故②正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与∠ABC的平分线,∴,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HAO和△FAO中,,∴△HAO≌△FAO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故③正确;作ON⊥AC于N,OM⊥AB于M,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴ON=OM=OD=a,∵AB+AC+BC=2b,∴,故④正确.综上,②③④正确.故答案为:②③④.三、解答题:(本大题有9小题,共86分)17.【解答】解:(1)(2a4)2+a3•a5=4a8+a8=5a8;(2)=﹣2x3+12x2.18.【解答】解:∵x=(3﹣π)0=1,y=﹣2.∴(2x﹣y)2﹣x(4x﹣3y)=4x2﹣4xy+y2﹣4x2+3xy=y2﹣xy,当x=1,y=﹣2时,原式=4﹣1×(﹣2)=6,19.【解答】证明:∵点C为AB中点,∴AC=CB,∵AD∥CE,∴∠A=∠ECB,在△ADC与△ECB中,,∴△ADC≌△ECB(SAS),∴∠ACD=∠CBE,∴CD∥BE.20.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求;(3),答:△ABC的面积为.21.【解答】解:已知:如图,在△ABC中,AB=AC,CD,BE分别是腰AB,AC上的中线.求证:BE=CD.证明:∵在△ABC中,AB=AC,CD,BE分别是腰AB,AC上的中线,∴AD=AE,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴CD=BE,即等腰三角形两腰上的中线相等.22.【解答】解:(1)如图,点N即为所求;(2)结论:CN=2AN.理由如下:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵MN垂直平分线段AB,∴NA=NB,∴∠NAB=∠B=30°,∴∠CAN=120°﹣30°=90°,∴CN=2AN.23.【解答】(1)证明:∵BE⊥AD,∴∠AFE=∠AFB=90°,又∵AD平分∠BAC,∴∠EAF=∠BAF,又∵在△AEF和△ABF中∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°∴∠AEF=∠ABF,∴AE=AB,∴△ABE为等腰三角形;(2)解:连接DE,∵AE=AB,AD平分∠BAC,∴AD垂直平分BE,∴BD=ED,∴∠DEF=∠DBF,∵∠AEF=∠ABF,∴∠AED=∠ABD,又∵∠ABC=2∠C,∴∠AED=2∠C,又∵△CED中,∠AED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴CE=BD.∴AB=AE=AC﹣CE=AC﹣BD=13﹣5=8.24.【解答】(1)解:∵DA=DC,BA=BC,∴BD垂直平分AC,∵AC⊥BD,AD=CD,∴∠ADB=∠CDB,故答案为:BD垂直平分AC;∠ADB=∠CDB;(2)解:图中的“筝形”有:四边形AEBD、四边形ADCF、四边形AEGF;证明四边形AEBD是筝形:由轴对称的性质可知AE=AD,BE=BD;∴四边形AEBD是筝形.同理:AF=AD,CD=CF;∴四边形ADCF是筝形.连接EF,如图2,∵AE=AD,AF=AD,∴AE=AF,∴∠AEF=∠AFE,∵AD⊥BC,∴∠AEG=∠AFG=∠ADB=∠ADC=90°,∴∠GEF=∠GFE,∴EG=FG,∴四边形AEGF是筝形;(3)证明:由轴对称的性质可知:∠CAD=∠CAF,∠BAD=∠BAE,∠ADB=∠AEB=90°,AD=AF=AE,∴∠EAF=∠EAD+∠DAF=2(∠BAD+∠DAC)=2∠BAC,∠AEF=∠AFE,∴∠EAF+2∠AEF=180°,∴2∠BAC+2∠AEF=180°,∴∠BAC+∠AEF=90°,∵∠FEG+∠AEF=90°,∴∠BAC=∠FEG.25.【解答】(1)解:∵|a﹣3|+(b﹣4)2=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴A(3,0 ),B(0,4);(2)解:在x轴上取点M,使得CM=CD,连接BM,在△BCM和△ACD中,,∴△BCM≌△ACD(SAS),∴BM=AD=AB,又∵BO⊥AO,∴OA=OM,∴CD+CO=CM+CO=MO=OA=3;(3)证明:连接MN,过点N作NC∥OA交MP的延长线于点C,设∠AOC=∠C=α,则∠BOM=90°﹣α,∵∠ABN=∠OBM,∴∠ABO=∠NBM,∵AB=BN,OB=BM,∴△BMN≌△BOA(SAS),∴OA=MN,∠BMN=∠BOA=90°,∵∠BMO=∠BOM=90°﹣α,∴∠CMN=∠C=α,∴MN=CN=OA,∵CN∥OA,∴∠C=∠AOC,∠OAP=∠CNP,∴△OAP≌△CNP(ASA),∴NP=AP.。
2014—2015学年度八年级数学(上)第11至第14章检测题(满分:120分 考试时间:100分钟)班级: 座号: 姓名:一.选择题(每题3分,共36分): 1.图中是轴对称图形.....的是 ( )2.下列各式从左到右的变形中,是因式分解的为( ).A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(3. 下列命题中,真命题的个数是( )①全等三角形的周长相等 ②全等三角形的对应角相等 ③全等三角形的面积相等 ④面积相等的两个三角形全等A .4B .3C .2D .14. 如图1,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为 ( ) A .40° B .35° C .30° D .25°图 1 图25、161-⎪⎭⎫ ⎝⎛,()02-,()23-这三个数按从小到大的顺序排列为( )A .()()213612-∠⎪⎭⎫ ⎝⎛∠-- B .()()2013261-∠-∠⎪⎭⎫ ⎝⎛-C .()()1026123-⎪⎭⎫ ⎝⎛∠-∠-D .()()1206132-⎪⎭⎫ ⎝⎛∠-∠-6.如图2,ΔABC 与ΔA 'B 'C '关于直线l 对称,则∠B 的度数为 ( )A .30°B .50°C .90°D .100°7.多项式44332236189x a x a x a --各项的公因式是( )A .22x aB .33x a C .229x a D .449x a8.医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表为A. 41043.0-⨯B. 41043.0⨯C. 5103.4-⨯D. 5103.4⨯ ( ) 9.因式分解:2718x x +-的结果为( )A .(1)(18)x x -+B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+ 10..、.等腰三角形一边长等于..........4.,一边长....9.,它的周长是...... ( )..A .17B .22C .17或22D .13 11.计算24-的结果是( ).A .8-B .18-C .116-D .11612.以长为3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,能构成三角形的情况有A...1.种.B...2.种.C...3.种.D...4.种.二.填空题(每题4分,共28分):13.约分:12122++-x x x = .14.因式分解:ax +ay= . 15.计算23)3(x -=_________.16.已知一个多边形的内角和等于900°,则这个多边形的边数是 _________ . 17.如图3, 如图ΔABE ΔDCE AE=2cm,BE=1.2cm A=≌,,∠25°, ∠B =48°,那么DE= cm ,∠C = °.18.已知: 如图4, AC 、BD 相交于点O , ∠A =∠D , 请你再补充一个条件,使△AOB ≌△DOC , 你补充的条件是 _______ _ ____.图 3图4 三. 解答题(共56分)19.分解下列因式: (1) x 4-x 3y (6分) (2) x 2+xy -6y 2(6分)20.(1)|3|)12()21(01-+---(6分) (2)23y z 2y z z 2y --+-+()()()(6分)21. 先化简,再求值:22x 4x 4x x 1x 4x 2x 2-+--÷-++() ,其中x =-3. (8分)22.已知:如图,C 、D 在AB 上,且AC=BD ,AE ∥FB ,DE ∥FC. 求证:AE=BF 。
2022—2023学年度八年级数学(上册)寒假作业【每日一练】第一天一、单选题1.下列给定的三条线段中,不能组成三角形的是( )A .3,6,7B .5,12,14C .4,5,9D .1,√2,√32.已知三角形两边长分别为7、10,那么第三边的长可以是( )A .2B .3C .17D .53.在△ABC 中,三边长分别为a 、b 、c ,且a >b >c ,若b =8,c =3,则a 的取值范围是( )A .3<a <8B .5<a <11C .6<a <10D .8<a <114.如图,AD 是△ABC 的中线,则下列结论正确的是( )A .AB =AC B .BD =CD C .BD =AD D .AC =AD5.下列各图中,正确画出AC 边上的高的是( )A .B .C .D .6.如图,△ABC 的面积为12,点D ,E ,F 分别为BC ,AD ,CE 的中点,则阴影部分的面积为( )二、填空题7.在△ABC 中,AB=6,BC=8,则AC 的长x 的取值范围是 。
8.如图,ΔABC中,点E在AD上,且点E是ΔABC的重心,若SΔABC=18,则SΔDEC等于。
9.如图,AD是△ABC的中线,AE是△ABD的中线,若CE=9cm,则BC=cm.三、解答题10.如图,在△ABC中,AD△BC于D,AE平分△DAC,△BAC=80°,△B=60°,求△DAE的度数.11.如图,在△ABC中,CF,BE分别是AB,AC边上的中线.已知AE=2,AF=3,且△ABC的周长为15,BC边上的高为3.96,求△ABC的面积.12.已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.2022—2023学年度八年级数学(上册)寒假作业【每日一练】第二天一、单选题1.下列图形具有稳定性的是()A.B.C.D.2.在平面直角坐标系xOy中,点A(−1,0),点B(2,0),点C在y轴上,若三角形ABC的面积为3,则点C的坐标是()A.(0,−1)B.(0,1)C.(0,1)或(0,−1)D.(0,2)或(0,−2)3.下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部4.如图,直线AB△CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()A.变大B.变小C.不变D.无法确定5.如图,△ABC中AB边上的高是()A.线段AD B.线段AC C.线段CD D.线段BC 6.如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()二、填空题7.工人师傅做门时,常用木条固定长方形门框,使其不变形,这种做法的根据是 .8.已知点 A(a ,4) ,B 点在x 轴上,A 、B 与坐标原点围成的三角形面积为2,则B 点坐标为 .9.已知,在△ABC 中,△B=48°,△C=68°,AD 是BC 边上的高,AE 平分△BAC ,则△DAE 的度数为 .10.已知,AD 为△ABC 的中线,且AB =10,AC =8,则△ABD 与△ACD 的周长之差为 .三、解答题11.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,求∠CED 的度数.12.如图,△ABC 中,AD 、AE 分别是边BC 上的中线和高,AE =4,S △ABD =10,求BC ,CD 的长.13.已知AD 为△ABC 的中线,AB=5 cm ,且△ACD 的周长比△ABD 的周长少2 cm ,求AC 的长度.2022—2023学年度八年级数学(上册)寒假作业【每日一练】第三天一、单选题1.在△ABC中,△A=50°,△B=70°,则△C的度数是()A.40°B.60°C.80°D.100°2.若三角形三个角的度数比为3:3:4,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.两个矩形的位置如图所示,若∠1=120°,则∠2的度数为()A.30°B.15°C.60°D.45°4.如下图,∠A=70°,BP、CP分别平分△ABC和△ACB,则△P的度数是()A.125°B.115°C.110°D.35°5.如图,在△ABC中,D是BC延长线上一点,△B=50°,△ACD=120°,则△A=()A.50°B.60°C.70°D.80°二、填空题6.△ABC中,∠A=50°,BD、CE是它的两条高,直线BD、CE交于O,则∠DOE的度数为.7.△ABC中,已知△A=50°,△B=60°,则△C的外角的度数是.8.在△ABC中,∠ABC=50°,∠BAC=70°,点D在线段BC上,过点D作BC的垂线交直线AB于F,交直线AC于E,则∠CEF为度.三、解答题9.如图,△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ABD和∠CDB的度数.10.如图,在△ABC中,CD为△ACB的角平分线,DE△BC,△A=65°,△B =35°,求△EDC的度数.11.如图,点D在AB上,点E在AC上,BE,CD相交于点O.已知△A=50°,△BOD=70°,△C=30°,求△B的度数.2022—2023学年度八年级数学(上册)寒假作业【每日一练】第四天一、单选题1.若从n边形的一个顶点出发,可以画出4条对角线,则n的值是()A.4B.5C.6D.72.过一个多边形一个顶点的所有对角线,把这个多边形分成5个三角形,这个多边形是()A.5B.6C.7D.83.十边形中过其中一个顶点有()条对角线.A.7B.8C.9D.104.八边形的外角和是()A.360°B.720°C.1080°D.1440°5.n 边形的每个外角都为15°,则边数n 为()A.20B.22C.24D.266.若一个多边形的内角和是外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形二、填空题7.一个n边形的每个外角都是60°,则这个n边形的内角和是.8.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是边形.9.从一个多边形的一个顶点出发共可作10条对角线,则这个多边形共有对角线的条数为.10.从一个多边形的一个顶点出发可以引3条对角线,这个多边形的边数是.三、解答题11.已知从n边形的一个顶点出发共有4条对角线,该n边形的周长为56,且各边长是连续的自然数,求这个多边形的各边长.比一个四边形的内角和多90°,那么这个多边12.若一个多边形的内角和的14形的边数是多少?13.如图所示,在五边形ABCDE中,AE△DE,垂足为点E,△D=150°,△A=△B,△B-△C=60°,求△A的度数。
DEAFBC最新人教版八年级数学上册精编题汇总(完整版含答案)第一单元 《全等三角形》测试题一、选择题(24分)1.用尺规作已知角的平分线的理论依据是( )A .SASB .AASC .SSSD .ASA 2.三角形中到三边距离相等的点是( )A .三条边的垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点3. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 84.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°4题图 5题图 6题图5.如图,在Rt △AEB 和Rt △AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠E =∠F =90°,∠EAC =∠FAB ,AE =AF .给出下列结论:①∠B =∠C ;②CD =DN ;③BE =CF ;④△CAN ≌△ABM .其中正确的结论是( ) A .①③④B .②③④C .①②③D .①②④6.如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下面四个结论:①DA 平分∠EDF ;②AE=AF ;③AD 上的点到B ,C 两点的距离相等;④到AE ,AF 的距离相等的点到DE ,DF 的距离也相等.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 7.已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE=3cm ,则点D 到AC 的距 离是( )A.2cmB.3cmC.4cmD.6cm8.下列说法:①角的内部任意一点到角的两边的距离相等;•②到角的两边 距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边 的距离相等;④△ABC 中∠BAC 的平分线上任意一点到三角形的三边的距离 相等,其中正确的( )A .1个B .2个C .3个D .4个二、填空题(30分)9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是28 cm 2,AB=20cm ,AC=8cm ,则DE 的长为_________ cm .10. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.AB CEM FD NEF C B AD11. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.12. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.9题图 11题图 12题图13. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A=∠C ,则∠D 的对应角是__________,图中相等的线段有__________.13题图 14题图 15题图 14. 如图所示,已知△ABC ≌△DEF ,AB =4cm ,BC =6cm ,AC =5cm ,CF =2cm ,∠A =70°,∠B =65°,则∠D =__________,∠F =__________,DE =__________,BE =__________.15.如图,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,需添加一个条件是__________(只要求写一个条件).16. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 .17.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 18.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .三、解答题19.(6分)已知:如图,∠1=∠2,∠C =∠D ,求证:AC =AD.17题图18题图20.(8分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ;(2)BO =DO .21.(8分)如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,AD =BD .(1)求证:AC =BE ;(2)求∠B 的度数。
2013-2014学年八年级[上]数学期末试一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.53.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.5.(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()223二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________.12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.13.(2013•枣庄)若,,则a+b的值为_________.14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=_________.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=_________.16.(2013•盐城)使分式的值为零的条件是x=_________.17.(2013•南京)使式子1+有意义的x的取值范围是_________.18.(2012•茂名)若分式的值为0,则a的值是_________.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE ⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC 上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C 运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB= _________;如图3,若∠ACD=120°,则∠AFB=_________;(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.2013-2014学年八年级[上]数学期末考试试卷参考答案与试题解析一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角应相等时,角必须是两边的夹角.2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()考点:角平分线的性质;全等三角形的判定与性质.专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三形的面积转化为另外的三角形的面积来求.3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△D ≌△DAC.4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()8.(2013•烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(﹣3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可解答:解:A、3a+2a=5a,原式计算错误,故本选项错误;B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、(a+2)2=a2+4a+4,原式计算错误,故本选项错误;故选B.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.9.(2012•西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.10.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,再利用完全平方公式进行二次分解即可.解答:解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分要彻底.二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.考点:轴对称-最短路线问题;含30度角的直角三角形;翻折变换(折叠问题).专题:压轴题.分析:连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时BPE的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,先求出BC和BE长,代入求出即可.解答:12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.点评:本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.13.(2013•枣庄)若,,则a+b的值为.考点:平方差公式.专题:计算题.分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=3.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=3(a﹣2b)2.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再其他方法进行因式分解,注意因式分解要彻底.16.(2013•盐城)使分式的值为零的条件是x=﹣1.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0两个条件缺一不可.17.(2013•南京)使式子1+有意义的x的取值范围是x≠1.考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.(2012•茂名)若分式的值为0,则a的值是3.考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.解答:∴,解得a=3.故答案为:3.点评:本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:.考点:最简分式.专题:开放型.分析:在这几个式子中任意选一个作分母,任意另选一个作分子,就可以组成分式.因而可以写出的分式有很个,把分式的分子分母分别分解因式,然后进行约分即可.解答:解:==,故填:.点评:本题主要考查分式的定义,分母中含有字母的有理式就是分式.并且考查了分式的化简,首先要把分子分母分解因式,然后进行约分.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是.考点:最简分式.分析:首先将分子、分母均乘以100,若不是最简分式,则一定要约分成最简分式.本题特别注意分子、分母的一项都要乘以100.解答:解:分子、分母都乘以100得,,约分得,.点评:解题的关键是正确运用分式的基本性质.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化乘法,最后约分;化简求值题要将原式化为最简后再代值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.考点:分式的化简求值;解二元一次方程组.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.解答:23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).考点:因式分解-运用公式法.专题:规律型.分析:(1)利用平方差公式,将(2n+1)2﹣(2n﹣1)2化简,可得结论;(2)理解完全平方数的概念,通过计算找出规律.解答:解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)又n为非零的自然数,∴a n是8的倍数.(4分)这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)说明:第一步用完全平方公式展开各(1),正确化简(1分).(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)n为一个完全平方数的2倍时,a n为完全平方数(8分)说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).点评:本题考查了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考查了同学们探究发现的能力.24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:(1)过点D作DM⊥AB于M,DN⊥AC于N,根据角平分线上的点到角的两边的距离相等可得DM=D 再根据∠AED+∠AFD=180°,平角的定义得∠AFD+∠DFN=180°,可以推出∠DFN=∠AED,然后利用角边定理证明△DME与△DNF全等,根据全等三角形对应边相等即可证明;(2)不一定成立,若DE、DF在点D到角的两边的垂线段上或垂线段与点A的两侧,则成立,若是同则不成立.解答:解:(1)DE=DF.25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题;动点型.分析:(1))由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP 则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQ 是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,当点P、Q运动时,线段DE的长度不会改变.解答:解:(1)∵△ABC是边长为6的等边三角形,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.点评:本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅线构造出全等三角形是解答此题的关键.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°,∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.点评:此题考查了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.考点:翻折变换(折叠问题).分析:(1)由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边比例,即可求得AM的长,即可得点M运动的时间;(2)分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.解答:解:(1)∵Rt△ABC中,∠C=90°,CM⊥AB,28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;如图3,若∠ACD=120°,则∠AFB=60°;(2)如图4,若∠ACD=α,则∠AFB=180°﹣α(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.1.生活如意,事业高升。
福建省厦门第六中学2024-2025学年八年级上学期期中质量检测数学试卷一、单选题1.52的含义是()A .22222++++B .22222⨯⨯⨯⨯C .55⨯D .25⨯2.如图,ABC CDA △△≌,则B ∠的对应角是()A .CAD ∠B .D ∠C .ACD ∠D .ACB ∠3.已知△ABC 的三个内角度数之比为3∶4∶5,则此三角形是()三角形.A .锐角B .钝角C .直角D .不能确定4.若一个正多边形的每一个外角为30︒,则这个多边形的内角和为()A .1440︒B .1620︒C .1800︒D .1980°5.如图,BD AB BD CD ⊥⊥,,添加条件后能用“HL ”判定ABD CDB △≌△是()A .AD CB =B .AB CD =C .A C ∠=∠D .AD BC ∥6.ABC V 的周长是14,5AB AC ==,AD BC ⊥,则BD 等于()A .1B .2C .3D .47.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ;②分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内交于一点C ;③画射线OC ,射线OC 就是∠AOB 的角平分线.A .ASAB .SASC .SSSD .AAS8.下列计算正确的是()A .()23133x x x x--=-+B .()231124a a a ⎛⎫-⋅-= ⎪⎝⎭C .()()221121a a a a -+=--D .()()223222ab a b a b-⋅=9.如图,点P 是AOB ∠内部一点,点P 关于OA ,OB 的对称点分别是H ,G ,直线HG 交OA ,OB 于点C ,D ,若HOG 的周长是15,且30AOB ∠=︒,则HG 的长为()A .152B .154C .52D .510.如图,在四边形ABCD 中,,BC AD CD AD ⊥∥,P 是CD 边上的一动点,要使PA PB +的值最小,则点P 应满足的条件是()A .PA PB =B .PC PD=C .90APB ∠=︒D .BPC APD∠=∠二、填空题11.计算:(1)2225a b ba +=;(2)412x ⎛⎫= ⎪⎝⎭;(3)()32a -=;(4)202520241((4)4-⨯-=.12.已知等腰三角形的周长为20,其中一边的长为6,则底边的长为.13.如图,ABC V 中,90C ∠=︒,AD 平分BAC ∠,52AB CD ==,,则ABD △的面积是14.如图,在ABC V 中,2B C ∠=∠,点E 为边AC 的中点,DE AC ⊥,交BC 于点D ,若5AB =,13BC =,则B 的长为.15.阅读以下内容:2(1)(1)1x x x -+=-,23(1)(1)1x x x x -++=-,324(1)(1)1x x x x x -+++=-,根据这一规律,计算:23452023202412222222+++++++-= .16.如图,在Rt ABC △中,90ACB ∠=︒,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:①AB MG =;②BEH AFN S S =△△;③过点B 作BI EH ⊥于点I ,延长IB 交AC 于点J ,则AJ CJ =;④MH HE =.其中正确的结论有(只填写序号).三、解答题17.化简(1)()2321x x x⋅-+(2)()()()222321x x x x x -+-+-18.解方程组:34225x y x y +=⎧⎨-=⎩.19.已知:如图,P 是AOB ∠平分线上的一点,PC OA PD OB ⊥⊥,垂足分别为C ,D .求证:(1)OC OD=(2)OP 是CD 的垂直平分线20.如图,一张长方形硬纸片ABCD ,长B 为()2254m a b +,宽B 为46m a ,在它的四个角上分别剪去一个边长为32m a 的小正方形(阴影部分所示),然后折成一个无盖的盒子,请你求出折成无盖盒子所用硬纸片的面积;21.如图所示,已知ABC ∠.(1)尺规作图:过A 作BC 的平行线B ,使得D ,C 在直线B 的异侧;(2)设点E 在BC 边上,在题(1)的射线B 上取点F ,使得BE AF =,问:E ,F 到直线B 距离是否相等?说出你的理由.22.如图,AB AC =,AE AD =,CAB EAD ∠∠α==.(1)证明:AEC ADB △≌△;(2)若90α= ,判断B 与C 的数量及位置关系并证明.23.观察下列等式:3721⨯=;1317221⨯=;2327621⨯=;33371221⨯=;43472021⨯=…从这些计算结果中,你能发现什么?(1)利用以上规律直接写出计算结果:9397⨯=____;(2)更一般的,有两个两位数的因数,设它们的十位数字均为a ,这两个因数可以表示为103a +和107a +.则用含a 的代数式表示上述速算规律:()()103107a a ++=______;(3)善于思考的小兮通过计算得出下列等式:2228616⨯=,34361224⨯=85857225⨯=,69614209⨯=…上述材料也蕴含着某种速算规律.类比题(2),设有两个两位数的因数,其十位数字均为a ,个位数分别为b 和______(用含b 的式子表达),试用含a ,b 的等式表示小兮发现的速算规律,并证明该等式.24.甲、乙两个长方形,它们的边长如图所示,面积分别1S ,2S (m 为正整数).(1)写出1S 与2S 的大小关系:1S ____2S .(填“>”“<”或“=”);(2)若122025S S -≤,求满足这个不等式的m 的最大值;(3)设有4块长方形甲,3块长方形乙,以及两块面积分别为3S ,4S 的矩形恰好拼成一个矩形图案,如图所示.问:是否存在m ,使得342S S =,若存在,请求出m 的值;若不存在,请说明理由.25.(1)如图,在Rt ABC △和Rt CDE △中,已知90ACD B E ∠=∠=∠=︒,AC CD =,B ,C ,E 三点在一条直线上,5AB =, 6.5DE =,则BE 的长度为____.(2)如图,在ABC V 中,90A ∠=︒,点D ,E 分别在AB ,BC 上,且90CDE ∠=︒,DE DC =,2DCA B ∠=∠.求证:2BE AD =.(3)如图,在四边形ABCD 中,45ABC CAB ADC ∠=∠=∠=︒,AC BC =,ACD 面积为12,且CD 的长为6,则BCD △的面积.。
八年级数学寒假作业
班级 座号 姓名 一、选择题(本大题有7小题,每小题3分,共21分) 1.下列各式:
2b a -,x x 3+,πy +5,b a b a -+,)(1
y x m
-中,是分式的共有( ) A .1个 B .2个 C .3个 D .4个
2.下列图形是轴对称图形的有( )
A . 2个
B .3个
C . 4个
D . 5个
3.下列计算正确的是( )
A .3x 2·2x 3=6x 6
B .(-2a )2=-2a 2
C .y 3÷y 3=y 1
D .(-m 3)2 = m 6
4. 如图,ABC ∆与'''A B C ∆关于直线a 对称,且'78A ∠=︒,'48C ∠=︒, 则∠B 的度数为( )
A. 48° B . 54° C . 74° D . 78°
5.点(—2,4)关于x 轴对称的点的坐标是( )
A(-2,-4) B(-2,4) C(2,—4) D(2,4) 6.如图,在△ABC 中,C ∠=90°,AE 平分BAC ∠,
6CE =,则点E 到AB 的距离DE 是( )
A .9
B .8
C .7
D .6
7.如图,∠ACB =900
,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,
AD =2.5cm ,DE =1.7cm ,则BE =( )
A 、1cm
B 、0.8cm
C 、4.2cm
D 、1.5cm 二、填空题(本大题有10小题,每小题3分,共30分)
8.计算:(1)4
2
3
-82x y x y ÷()
= ;(2))4)(3-+x x (= ;(3)2
)3(y x += . 9.分解因式:x x 93
-=__________.
10.如图,AB 、CD 相交于点O ,且AO OB =,观察图形,
只需补充一个条件 ,则有AOC ∆≌BOD ∆.
第10题图
第4题图
A
第7题图
11.三角形的三边长分别为5,x ,8,则x 的取值范围是___ _____. 12.若2
-6+x x m 是一个完全平方式,则m 的值是 . 13.如图1,在△ABC 中,AB =AC ,AD ⊥BC ,BC =4, 则BD = .
14.在△ABC 中,∠C =900
,∠ABC 的平分线BD 交AC 于点D ,
若点D 到AB 边的距离为5cm ,则DC = cm. 15.如图,等腰△ABC 中,AB=AC=10, AB 的垂直平分线DE
交AC 于E ,交AB 于D ,BC=6,则△C EB 的周长为__________. 16.已知a 2
+b 2
=13,ab=6,则a+b 的值是________.
17.如图,在直角三角形纸片ABC 中,∠ACB =900
,∠B =300
,
将纸片折叠,使AC 落在斜边AB 上,落点为E ,折痕为AD . 连结CE 交AD 于点F ,若AF =2 cm ,则BD = cm
三、解答题(本大题有9小题,共69分) 18.(本题每小题5分,共15分) (1
)计算:|1|326125.02210
3
2
-+⎪⎪⎭
⎫ ⎝⎛-+⨯-⎪⎭
⎫ ⎝⎛- (2)计算:(a-5)(a+5)-(a-5)2
(3)如右图,已知AB=AC ,90B C ∠=∠=︒,求证:ABD ∆≌ACD ∆.
19.(5分)先化简代数式 20. (5分)如图,在平面直角坐标系xoy 中,
2
-x 2
)2x 1-2-x 1(
÷+, A(1,2),B(3,1),C(-2,-1).在图中作出ABC △
然后请你自取一个x 的值代入求值。
关于y 轴的对称图形111A B C △,并写出点111A B C ,,的坐标(直接
写答案).
第15题图
图1
D C
B
A
F
E
D
C
B
A
21. (5分)一个正方形的边长增加5cm ,它的面积增加了45cm 2
,求这个正方形原来的边长.
22.(本题满分6分)如图,ABC ∆中,6AC BC ==,CE 平分ACB ∠,DE ∥BC (1)求证:DE DC =; (2)若2=AE ,求ABC ∆周长.
23.(7分)以下是记者与驻军工程指挥官的一段对话:记者:“你们是用9天完成4800米长的大坝加固任务的?” 指挥官:“是的。
我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍。
” 通过这段对话,请你求出该地驻军原来每天加固的米数。
24.(本题满分8分)如图, 等边ABC ∆中,AB=8, 中线BD =34,延长BC 至E ,使CE CD =. (1)求∠DBC 的度数,(2)求证⊿DBE 是等腰三角形, (3)求⊿DBE 的面积.
25.(8分)定义:把a+b 与a-b 称作互为共轭式.制造共轭式是个好方法,
例如:已知31
=+
a
a ,求a ; ∵9121222
=++=⎪⎭⎫ ⎝
⎛+a a a a ,即7122
=+a a
∴5121222
=+-=⎪⎭⎫ ⎝⎛-a a a a ,即51±=-a a , 联立⎪⎪⎩
⎪⎪⎨⎧
±=-=+5
131a a a
a ,解得253±=a
运用上述解法,解决下列问题:
(1)a +b =2, ab =0.5,则a 的值是______; (2) ,3,2=+-=-c b a ab ac 求b c -的值.
26.(本题满分10分)如图,AB 两村之间有一条宽为200米的小河,以一河岸线为X 轴建立如图平面直角坐标系,测得A 村和B 村两点的坐标分别为A (0,300),B (400,-300),现要在河上造一座桥MN,要求MN ⊥X 轴. (1)如果a ,b ,c 分别是Rt △ABC 的三条边,∠C=90°则a 2
+b 2
=c 2。
求证:腰长为a 的等腰直角三形的斜边的长为a 2.
(2)求当点N 运动到原点O 时,记L 0=AM+MN+BN ,求L 0 的值。
(3)设N (x ,0)是x 轴上的一个动点,当AM+MN+BN 最小时,画出图形,求出点N 的坐标;此时记L=AM+MN+BN,
并求出L 0 –L 的值。