泵浦激光器
- 格式:doc
- 大小:67.50 KB
- 文档页数:4
激光器怎么产生不同波长
激光器产生不同波长的方法主要有以下几种:
1. 调谐激光器(Tunable laser):通过改变激光腔中的某些元素或结构,例如可调谐镜片或光栅,可以实现对激光器输出波长的调谐。
2. 多模激光器(Multimode laser):利用激光腔中的多个纵模,不同纵模对应不同的波长。
通过适当调整激光腔的尺寸和结构,可以实现对多模激光器输出波长的选择。
3. 泵浦激光器(Pump laser):通过改变泵浦源的波长,可以改变激光器的输出波长。
例如,利用不同波长的激光二极管作为泵浦源,可以实现对激光器输出波长的选择。
4. 频率倍增激光器(Frequency-doubled laser):通过将激光器的输出波长经过非线性光学晶体的倍频作用,可以将激光器的波长调整为原始波长的一半。
以上方法主要适用于固体激光器、气体激光器和半导体激光器等类型的激光器。
不同的激光器类型和具体结构会影响不同波长的产生方法。
光纤激光器泵浦源国内外研究进展一、引言光纤激光器泵浦源是激光器的重要组成部分,它是通过泵浦光源将能量传递给激光介质,从而实现激光器的激发和放大。
光纤激光器泵浦源在激光技术应用中具有广泛的用途,包括通信、医疗、材料加工等领域。
本文将对光纤激光器泵浦源的国内外研究进展进行全面、详细、完整且深入地探讨。
二、国内光纤激光器泵浦源研究进展2.1 传统泵浦源• 2.1.1 氙灯泵浦源• 2.1.2 二极管泵浦源• 2.1.3 激光二极管泵浦源2.2 高效泵浦源• 2.2.1 锐利激光泵浦源• 2.2.2 外腔激光泵浦源• 2.2.3 共振器激光泵浦源2.3 小型化泵浦源• 2.3.1 光纤型泵浦源• 2.3.2 集成型泵浦源• 2.3.3 微型泵浦源2.4 其他新型泵浦源• 2.4.1 飞秒激光泵浦源• 2.4.2 高功率泵浦源• 2.4.3 纳秒脉冲泵浦源三、国外光纤激光器泵浦源研究进展3.1 欧洲研究进展• 3.1.1 德国泵浦源研究• 3.1.2 英国泵浦源研究• 3.1.3 法国泵浦源研究3.2 美国研究进展• 3.2.1 斯坦福大学泵浦源研究• 3.2.2 麻省理工学院泵浦源研究• 3.2.3 加州大学泵浦源研究3.3 亚洲研究进展• 3.3.1 日本泵浦源研究• 3.3.2 韩国泵浦源研究• 3.3.3 中国台湾泵浦源研究四、光纤激光器泵浦源的应用领域4.1 通信领域• 4.1.1 光纤通信泵浦源• 4.1.2 光纤放大器泵浦源• 4.1.3 光纤激光器泵浦源4.2 医疗领域• 4.2.1 激光治疗泵浦源• 4.2.2 光动力疗法泵浦源• 4.2.3 激光手术泵浦源4.3 材料加工领域• 4.3.1 激光切割泵浦源• 4.3.2 激光焊接泵浦源• 4.3.3 激光打标泵浦源五、结论本文全面、详细、完整且深入地探讨了光纤激光器泵浦源的国内外研究进展。
通过对传统、高效、小型化和其他新型泵浦源的研究进行总结,可以看出光纤激光器泵浦源的发展方向。
激光器主要有:工作物质、谐振腔、泵浦源组成。
工作物质主要提供粒子数反转。
泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。
E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。
激光产生必须有能提供光学正反馈的谐振腔。
处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。
光的倍频是一种最常用的扩展波段的非线性光学方法。
激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。
当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。
单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。
电极化强度产生的极化场发射出次级电磁辐射。
当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。
P=ε0χE在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。
当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:P=αE+βE2+γE3+⋯式中α,β,γ,…均为与物质有关的系数,且逐次减小。
考虑电场的平方项E=E0cosωtP(2)=βE2=βE02cos2ωt=βE02(1+cos2ωt)出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。
倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:η=I2ωω∝βL2Iωsin2(Δkl/2)式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。
980nm泵浦激光器规格书
本规格书主要介绍了980nm泵浦激光器的各项性能指标,包括激光器型号、输出功率、波长、输出稳定性、寿命、光学特性、冷却方式、防护等级、操作条件、安全规范、附件与配件以及厂家与质保等方面的内容。
以下是具体的规格参数:
1. 激光器型号:980nm泵浦激光器,型号为XXX。
2. 输出功率:该激光器输出功率稳定,可在不同条件下实现连续或脉冲输出,最大输出功率为XXX W。
3. 波长:该激光器中心波长为980nm,光谱带宽窄,波长稳定性好。
4. 输出稳定性:该激光器采用先进的控制系统,可以实现高精度的功率和波长控制,输出稳定性优于±1%。
5. 寿命:该激光器的理论寿命可达XX小时以上,实际寿命取决于使用环境和维护情况。
6. 光学特性:该激光器具有优秀的光学性能,光束质量好,发散角小,光斑椭圆度高等特点。
7. 冷却方式:该激光器采用水冷方式进行冷却,确保长时间稳定运行。
8. 防护等级:该激光器的防护等级为IP54,具有较好的防尘、防水性能。
9. 操作条件:该激光器可在温度为-10℃至+50℃、相对湿度为10%至90%的环境下正常工作。
10. 安全规范:该激光器符合CE、FDA等安全规范要求,使用安全可靠。
11. 附件与配件:该激光器附带电源、控制单元、水冷系统等必要的附件和配件。
12. 厂家与质保:该激光器由XXX公司生产并提供质保服务,质保期为一年。
以上是980nm泵浦激光器的规格书,仅供参考。
实际产品可能会有所不同,请以厂家提供的技术手册为准。
半导体泵浦固体连续激光器实验原理文章标题:半导体泵浦固体连续激光器实验原理引言:半导体泵浦固体连续激光器(也称作DPSSL)是一种重要的激光器技术,它被广泛应用于科学研究、工业生产、材料加工等领域。
本文将深入探讨半导体泵浦固体连续激光器的实验原理,通过介绍其构造、工作原理和关键技术,帮助读者更全面、深刻地了解该激光器技术。
第一节:半导体泵浦固体连续激光器的构造和工作原理1.1 构造概述半导体泵浦固体连续激光器由激光工作物质、泵浦源、光学谐振腔等组成。
详细介绍每个组成部分的功能和作用。
1.2 工作原理半导体泵浦固体连续激光器的工作原理是基于半导体激光二极管对工作物质进行泵浦,从而实现能量转换。
解释能量转换的过程和原理,包括吸收、激发、跃迁等关键步骤。
第二节:半导体泵浦固体连续激光器的实验关键技术2.1 泵浦源选择介绍如何选择合适的半导体泵浦源,包括波长匹配、功率要求、热效应等因素的考虑。
2.2 激光工作物质选择探讨如何选择适用于半导体泵浦固体连续激光器的工作物质,包括钕掺杂YAG(钇铝石榴石)晶体、钇铝石榴石陶瓷等,比较它们的优缺点和应用领域。
2.3 光学谐振腔设计和优化介绍光学谐振腔的设计原理和方法,包括准稳态、长腔和短腔等不同谐振腔结构的选择和优化。
第三节:实验过程与结果分析3.1 实验步骤详细描述半导体泵浦固体连续激光器实验的步骤,包括调整泵浦源、控制温度、测量输出功率等操作。
3.2 实验结果分析对实验结果进行分析和讨论,包括激光输出功率与输入功率的关系、温度对输出功率的影响等方面。
第四节:对半导体泵浦固体连续激光器的观点和理解4.1 对半导体泵浦固体连续激光器的观点提供对半导体泵浦固体连续激光器技术的观点和评价,包括其优势、局限性以及应用前景等。
4.2 对实验原理的理解总结总结半导体泵浦固体连续激光器的实验原理,回顾文章中的关键内容,以帮助读者更全面、深入地理解该技术。
结论:通过对半导体泵浦固体连续激光器实验原理的细致讲解,读者可以加深对该激光器技术的理解,并在科学研究和工业应用中充分发挥其潜力。
HERO系列风冷式端面泵浦激光器使用说明1、开箱清点:本激光器包含如下部分:(1)激光头一台;(2)主控箱一台;(3)信号线一根;(4)AC 220V电源线一根;(5)本说明书一份。
2、使用特别注意:(1) 只有经过合格培训的人员方可操作本激光器;请仔细阅读完并完全理解本说明书后再操作本激光器。
(2) 通电后不得打开激光器控制箱,防止触电及防止被风扇打伤;需要打开控制箱时需先断开电源,拔下其电源线。
(3) 该激光器为全风冷系统,使用过程中不可遮挡激光头及控制箱的进、出风口。
控制箱两侧面及后面都有散热孔和散热风扇,安装激光器的整机散热风道应该满足激光器的散热需要,否则激光器将不能正常工作甚至被损坏。
(4) 不要过度弯折及挤压光纤,不要让光纤端面长时间暴露于外部,更不要对着光纤端面哈气或用硬物碰触光纤端面。
(5) 使用过程中特别要注意激光安全及电气安全。
该激光器输出强激光,使用不当会对人身、财产造成损害。
不得将输出的激光对准人身的任何部位(特别不得对准人的眼睛)。
为了防止意外发生,本产品的购买者、使用者有责任让其整机系统符合相应的标准(IEC60825-1,EN60204等)。
激光辐射警告标识四类激光产品避免受到激光直射或辐射避免受到激光直射或辐射(6) 请保证使用过程中环境温度低于30℃,如果周围环境温度超过25℃且湿度大于70%以上,可能会造成结露,露水会从主控箱内漏水孔导出,请采取有效措施防止露水对整机造成任何损坏并请保证电气安全、人员人身安全。
(7) 由于主控箱散热的需要,请保证主控箱向上平放,不可侧放或者向下平放。
3、激光器主控箱说明:(1)本激光器主控箱为一个标准3U控制箱,外形及尺寸如下图:(2)主控箱按键说明:本主控箱由微电脑控制,正常使用是一键式开关机。
有些打标软件需要首先硬件先通电,所以请先运行本主控箱,再运行打标软件。
RUN/OFF:激光器开启/关闭钥匙,向右拧90度开启控制电源,自检约15秒后系统检测准备就绪,激光电源上电,进入正常工作状态。
光纤激光泵浦源结构一、引言光纤激光泵浦源是一种新型的激光器,它采用光纤作为泵浦源,利用高功率激光对其进行泵浦,从而实现高能量、高效率的激光输出。
本文将详细介绍光纤激光泵浦源的结构、工作原理及其应用。
二、结构1. 光纤光纤是整个系统的核心部件,它通常由掺铒或掺钕等元素掺杂的石英玻璃制成。
这种材料具有良好的透明度和较低的非线性损耗,可以有效地将泵浦能量传输到放大介质中。
2. 泵浦模块泵浦模块通常由半导体激光器和耦合器组成。
半导体激光器是一种产生高功率激光的电子元件,可以将电能转化为光能。
耦合器则用于将半导体激光器产生的激光束耦合到光纤中。
3. 放大介质放大介质是指在波长范围内具有较高吸收截面和较长寿命的掺杂材料。
常见的放大介质有掺钕光纤、掺铒光纤等。
4. 光学元件光学元件包括反射镜、透镜等,用于对激光进行调节和聚焦。
三、工作原理当半导体激光器产生高功率激光束时,耦合器将其耦合到光纤中。
在光纤中,激光束与放大介质相互作用,从而产生受激辐射。
这些受激辐射与原始激光束不断相互作用,最终形成一个强大的激光脉冲。
四、应用由于其高能量、高效率的特点,光纤激光泵浦源被广泛应用于医疗、通信、制造等领域。
例如,在医疗领域中,它可以用于皮肤去除、眼科手术等;在通信领域中,它可以用于增强信号传输能力;在制造领域中,则可以用于材料切割和焊接等工艺。
五、结论通过对光纤激光泵浦源的结构、工作原理及其应用的介绍,可以看出它是一种具有广泛应用前景的激光器。
随着技术的不断进步,相信它将会在更多领域得到应用。
半导体激光器泵浦源阈值
半导体激光器的泵浦阈值是指在泵浦功率达到一定水平时,激光器开始产生激射输出的阈值点。
这个阈值点与半导体材料的特性以及激光器的结构参数有关。
在半导体激光器中,泵浦源通常是电流或光波。
当泵浦源的功率超过某个特定的阈值时,半导体材料中的电子开始发生自发辐射跃迁而产生光子,从而形成激射输出。
这个阈值取决于半导体材料的能带结构、载流子浓度、电子与空穴的复合速率以及光子增益等因素。
泵浦源通常以电流作为激励方式,而半导体材料的阈值电流(Ith)是指在达到一定电流水平时,激光器开始产生激射输出的阈值点。
当电流低于阈值电流时,激光器只产生自发辐射光,没有明显的激射输出。
当电流高于阈值电流时,光子增益开始超过损耗,激射输出逐渐增强。
除了阈值电流,还有一个相关的参数是阈值功率(Pth),它是指在达到一定的泵浦功率时,激光器开始产生激射输出的阈值点。
阈值功率与阈值电流之间存在一定的电光转换效率,通常可以通过实验测得。
半导体激光器的泵浦阈值是设计和优化激光器性能的重要参考参数,它决定了激光器的工作状态和性能特点。
降低阈值电流和功率,提高泵浦效率是半导体激光器研究的重要目标。
泵浦源半导体激光器随着固体激光及其应用技术的发展,激光性能得到进一步提高.近年又增加了一些新的品种,此文是由斯麦迪电子提仅供参考。
输出功率进一步提高(或多台同步合成),可用于对光电侦察、制导等光电传感器的致盲,高功率脉冲串方式工作可用作相关探测来实现远程测距,OPO 可产生约1.5µm激光用于人眼安全测距,3—5µm激光用于中红外光电对抗;在连续、高重频(几千到几十千赫兹级)或高重频大能量(百赫兹级)的高平均功率(几百瓦到几千瓦)体制下广泛用于各种航空、航天、船舶、兵器、电子等国防工二业部f]和国民经济其他部门的精密切割、焊接、打孔、热处理、打标等,军民用户可根据TDK电感应用需求和不同类型激光器的性能和参数进行综合考虑,选用适宜的激光器。
目前国际民用市场百瓦以下的中小型DPL。
商品,光束质量可以接近衍射极限,几百瓦的DPL.也可以有很好的光束质量。
德国Rofin - Sinar公司用于材料加工的DY系列高功率DPI.产品,最大功率已经达到2. 6kW。
美国、德国、日本是DPL技术先进的国家,都有多家研究机构DPL激光输出超过5kW。
美国也是研究军用DPL最早、资金投入最多的国家,从20世纪90年代开始陆续使用DPL装备和替换原来的灯泵激光装备,是全球使用DPL装备最多的国家。
美国从2002年起已经将高能DPL(25kW、lOOkW及lOOkW以L)列为第二代激光武器进行研究,以取代第一代氧碘化学激光武器,陆、海、空三军的多家研究机构均取得较好进展,根据不同的应用,选择半导体激光器(组件)应遵循的原则为:a.如果是用于引信和激光雷达,首先根据接收系统的要求确定中心波长,然后根据作用距离确定峰值功率、工作脉宽和重复频率等,根据光束特性要求确定光束整形要求,根据安装结构和平均功率确定封装要求。
b.如果是用于泵浦固体激光器,首先根据晶体介质的吸收峰确定中心波长,根据固态激光器的输出能量和光光转换效率提出泵浦源的功率(连续或准连续),根据晶体棒的尺寸和工作频率提出封装形式的要求。
标题:980nm半导体激光器泵浦模块摘要:本文将介绍980nm半导体激光器泵浦模块的原理、技术特点以及应用领域,力求详尽地解释该模块的工作原理和优势,并探讨其在光通信、医疗器械和材料加工等领域的广泛应用。
一、概述980nm半导体激光器泵浦模块是一种用于泵浦固体激光器的激光器组件,采用半导体激光器作为激发源,通过泵浦固体激光器的工作材料,使其产生激光放大,从而达到泵浦激光器的目的。
二、原理1. 980nm激光器980nm激光器是一种高功率、高亮度的半导体激光器,工作波长为红外光波段,具有较高的光电转换效率和较好的单模输出特性,是泵浦固体激光器的理想激发光源。
2. 泵浦固体激光器泵浦固体激光器是一种利用半导体激光器作为激发源,通过泵浦固体工作材料(如Nd:YAG、Nd:YVO4等)产生光放大的固体激光器,具有高功率、高能量密度和窄脉冲宽度等特点。
三、技术特点1. 高能量密度980nm半导体激光器泵浦模块能够提供高能量密度的激光输出,适用于对激光能量密度要求较高的应用场景。
2. 窄脉冲宽度采用半导体激光器作为激发源的泵浦模块具有窄脉冲宽度的特点,能够提供较短的激光脉冲时间,适用于对激光脉冲宽度要求严格的应用领域。
3. 高光束质量搭载980nm半导体激光器的泵浦模块输出激光具有高光束质量和较小的发散角,能够提供高质量的激光输出,适用于对激光束质量要求较高的应用场景。
四、应用领域1. 光通信980nm半导体激光器泵浦模块在光通信领域具有广泛应用,可用于光纤通信系统中的光放大器、激光雷达和光纤传感器等领域。
2. 医疗器械在医疗器械领域,980nm半导体激光器泵浦模块可用于激光手术系统、激光治疗仪器和激光诊断设备等医疗设备中,具有较高的医疗器械标准要求。
3. 材料加工在材料加工领域,泵浦模块可用于激光打标机、激光切割机、激光焊接机等设备中,能够满足对材料加工精度和速度要求较高的应用场景。
结论:980nm半导体激光器泵浦模块作为一种泵浦固体激光器的激发源,具有高能量密度、窄脉冲宽度和高光束质量等特点,适用于光通信、医疗器械和材料加工等应用领域,并具有广阔的市场前景和发展空间。
二氧化碳激光器泵浦方式
二氧化碳激光器是一种常用的激光器,广泛应用于医疗、工业制造、科学研究等领域。
其能量来源于气体分子中的振动和转动能级的跃迁,而泵浦方式则是其关键。
二氧化碳激光器的泵浦方式主要有三种:直接电子激发泵浦、化学反应泵浦、电子beam泵浦。
其中,直接电子激发泵浦是最常用的一种。
直接电子激发泵浦是利用高能量电子与原子或分子碰撞后转移能量的方式,将二氧化碳气体激发到高能量态,从而产生激光。
这种泵浦方式可以通过高压、高频交流放电、脉冲放电、直流放电、电子注等多种方法实现。
其中,高压放电是最常用的泵浦方式之一。
其具体步骤是:首先加入适量的氮气和二氧化碳气体,形成一个电极间的气体保护层;然后加通电流,形成一个放电通道,放电通道中的超高温度、超高能量密度的等离子体将导致气体分子中的电子跃迁,从而达到激发的目的。
化学反应泵浦则是通过将氧气、碘、氢氟酸等化学品与二氧化碳气体进行反应,产生激发能量。
这种泵浦方式的特点在于能量密度稳定、易于控制,但由于涉及到化学反应,所以技术上较为复杂。
电子beam泵浦则是利用高速电子束撞击二氧化碳气体原子或分子,使其获得激发能量的方法。
这种泵浦方式具有高能量密度、激发效率高等优点,但设备较为昂贵,易受水蒸气、氧气干扰。
总之,二氧化碳激光器的泵浦方式直接决定了其能量、功率等性能,因此选择最适合的泵浦方式十分关键,需根据具体需求选择。
实验三 半导体泵浦激光实验半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。
半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。
本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。
一、实验目的1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。
二、实验原理光与物质的相互作用可以归结为光与原子的相互作用。
爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。
假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。
如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。
如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。
原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。
激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。
自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。
如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。
泵浦激光器
什么是泵浦激光器
也许没多少人知道什么是泵浦,更别说泵浦激光器了。
泵浦是所有的激光器不可或缺的条件,所有的激光器都需要泵浦来让激光器中的物质形成粒子布局数反转,这样才能使激光器形成激光条件。
比如:半导体泵浦激光器本身将半导体激光器作为泵浦来用;还有半导体泵浦固体激光器是利用输出固定波长的半导体激光器代替氪灯或氙灯对激光晶体进行泵浦,这是激光器发展的又一大进步。
这类激光器不仅光电转化率高、光束质量高,而且效率高,寿命长等优点,被广泛应用于通讯、科学研究、打印机、医疗机械等各种高科技领域当中。
泵浦激光器的发展历程及应用
半导体泵浦固体激光器的发展与半导体激光器的发展是密不可分的。
1962年,第一只同质结砷化镓半导体激光器问世,1963年,美国人纽曼就首次提出了用半导体做为固体激光器的泵浦源的构想。
但在早期,由于二极管的各项性能还很差,作为固体激光器的泵浦源还显得不成熟。
直到1978年量子阱半导体激光器概念的提出,以及八十年代初期MOCVD 技术的使用及应变量子阱激光器的出现,使得半导体泵浦固体激光器的发展步上了一个崭新的台阶。
在进入九十年代以来,大功率的半导体泵浦固体激光器及半导体泵浦固体激光器列阵技术也逐步成熟,从而,大大促进了半导体泵浦固体激光器的研究。
国内半导体泵浦固体激光器市场化水平已经达到数百瓦,实验室水平已经达到千瓦级。
在应用上,大功率半导体泵浦固体激光器以材料加工为主,包括了常规的激光加工:主要是材料加工,如激光标记、激光焊接、激光切割和打孔等,结构紧凑、性能良好、工作可靠的大功率半导体泵浦固体激光打标机产品系列已经在国内得到了规模应用,在国外,千瓦级的半导体泵浦固体激光器已有产品,德国、美国汽车焊接就已经用到了千瓦级半导体泵浦固体激光焊剂机,在原理和技术方案上半导体泵浦固体激光器定标到万瓦都是可行的,主要受限于成本和市场需求的限制。
二倍频半导体泵浦固体激光器在微电子行业、三倍频半导体泵浦固体激光器在激光快速成型领域都得到了广泛应用。
除材料加工外,大功率半导体泵浦固体激光器还可以用于同位素分离(二倍频、绿光)、激光核聚变、科学研究、医疗、检测、分析、通讯、投影显示以及军事国防等领域,具有极其重要的应用价值。
泵浦激光器的分类
半导体泵浦固体激光器的种类很多,可以是连续的、脉冲的、调Q的,以及加倍频混频等非线性转换的。
工作物质的形状有圆柱和板条状的。
而泵浦的耦合方式可分为端面泵浦和侧面泵浦,其中端面泵浦又可分为直接端面泵浦和光纤耦合端面泵浦两种结构。
1、端面泵浦固体激光器
端面泵浦方式最大的优点就是容易获得好的光束质量,可以实现高亮度的固体激光器。
端面泵浦的效率较高。
这是因为,在泵浦激光模式不太差的情况下,泵浦光都能由会聚光学系统耦合到工作物质中,耦合损失较少;另一方面,泵浦光也有一定的模式,而产生的振荡光的模式与泵浦光模式有密切关系,匹配的效果好,因此,工作物质对泵浦光的利用率也相对高一些。
正是由于端面泵浦方式效率高、模式匹配好、波长匹配的优点在国际上发展极为迅速,已成为激光学科的重点发展方向之一。
它在激光打标、激光微加工、激光印刷、激光显示技术、激光医学和科研等领域都有广泛的用途,具有很大的市场潜力。
2、侧面泵浦固体激光器
侧面泵浦(Side Pump)固态激光器激光头是由三个二极管泵浦模块围成一圈组成泵浦
源,每个泵浦模块又由3个带微透镜的二极管线阵组成。
每个线阵的输出功率平均为20W输出波长为808nm。
该装置采用玻璃管巧妙地设计了泵浦腔和制冷通道。
玻璃管的表面大部分镀有808nm的高反膜,剩余的部分呈120°镀有三条808nm增透膜,这样便形成了一个泵浦腔。
半导体泵浦源发出的光经过三对光束整形透镜会聚到这三条镀增透膜的狭长区域内,然后透过玻璃管的管壁,被晶体吸收。
由于玻璃管大部分区域镀有高反膜,使得泵浦光进入泵浦腔以后,便在其中来回的反射,直至被晶体充分地吸收,而且在晶体的横截面上形成了均匀的增益分布。
同时玻璃管还能用于制冷,高速通过的冷却水将产生的热量迅速带走。
晶体采用的是一根复合结构的Nd:YAG棒,有效尺寸为j3*63mm,掺杂浓度为1.5at.%.当泵浦光功率为180W 时,得到了72W的激光输出。
光光转换效率高达40%。
兰亭序
永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。
群贤毕至,少长咸集。
此地有崇山峻岭,茂林修竹;又有清流激湍,映带左右,引以为流觞曲水,列坐其次。
虽无丝竹管弦之盛,一觞一咏,亦足以畅叙幽情。
是日也,天朗气清,惠风和畅,仰观宇宙之大,俯察品类之盛,所以游目骋怀,足以极视听之娱,信可乐也。
夫人之相与,俯仰一世,或取诸怀抱,晤言一室之内;或因寄所托,放浪形骸之外。
虽取舍万殊,静躁不同,当其欣于所遇,暂得于己,快然自足,不知老之将至。
及其所之既
倦,情随事迁,感慨系之矣。
向之所欣,俯仰之间,已为陈迹,犹不能不以之兴怀。
况修短随化,终期于尽。
古人云:“死生亦大矣。
”岂不痛哉!
每览昔人兴感之由,若合一契,未尝不临文嗟悼,不能喻之于怀。
固知一死生为虚诞,齐彭殇为妄作。
后之视今,亦犹今之视昔。
悲夫!故列叙时人,录其所述,虽世殊事异,所以兴怀,其致一也。
后之览者,亦将有感于斯文。