有机无机复合材料中的界面第二
- 格式:ppt
- 大小:1.70 MB
- 文档页数:28
研读报告/文献综述1、有机/功能性无机复合材料界面改性及性能特点研究Interface characterization and preparation of organic——inorganic composites2、有机一无机复合材料的制备与界面特性3、(无机粒子填充型)导热绝缘复合材料(ZnO、Al)4、高导热先进复合材料设计制备、应用研究5、无机粒子改性聚丙烯材料以聚丙烯(PP)为基体,四针状氧化锌晶须(T-ZnO(下标w))为导热填料,用双螺杆挤出机制备导热绝缘的T-ZnO(下标w)/PP复合材料。
在w(T-ZnO(下标w))为0~30%的范围内,探讨了T-ZnO(下标w)的用量对T-ZnO(下标w)/PP复合材料的热导率(λ)、体积电阻率(ρ(下标v))、力学性能和加工性能的影响。
结果表明,随T-ZnO(下标w)用量的增加,T-ZnO(下标w)/PP复合材料的热导率提高,体积电阻率下降;材料的拉伸强度、弯曲强度以及冲击强度均随T-ZnO(下标w)用量的增加呈先增大后减小的趋势,而熔体流动速率则呈增大趋势。
当T-ZnO(下标w)用量达30%时,材料的热导率达到最大值0.3803 W•(m•K)^(-1),比纯PP提高了55.9%;体积电阻率达到最小值6.17×1016Ω•cm,比纯PP降低了64.5%,仍可满足绝缘材料的要求。
对其断面结构的观察表明,T-ZnO(下标w)的针状结构有利于在PP基体中形成导热通路,从而提高材料的热导率。
Thermally conductive and electric-insulating polypropylene (PP) composites were prepared with a twin-screw extruder using tetrapod zinc oxide whisker (T-ZnO(subscript w)) as thermal conductive filler. The effects of T-ZnO(subscript w) content on the thermal conductivity (λ), volume resistivity (ρv), mechanical properties a nd processability of the T-ZnO(subscript w)/PP composites were investigated within the range of T-ZnO(subscript w) content from 0 to 30%. The results indicate that as the content of T-ZnO(subscript w) increases, the thermal conductivity of the T-ZnO(subscriptw)/PP composites increases while the volume resistivity decrease; besides, the tensile, flexural and impact strength of the T-ZnO(subscript w)/PP composites exhibit a tendency to increase firstly and then decrease, and the melt flow rate exhibit a tendency to increase. The T-ZnO(subscript w)/PP composite filled with 30% of T-ZnO(subscript w) possesses the maximum thermal conductivity and the minimum volume resistivity. The former is 0.3803 W•(m•K)^(-1), which is 55.9% higher than that of pure PP; and the latter is 6.17×1016 Ω•cm, which is 64.5% lower than that of pure PP but meets the requirements for electric-insulating materials. The observations of the fracture surfaces theT-ZnO(subscript w)/PP composites by means of SEM show that the tetrapod structure of T-ZnO(subscript w) is favorable to the formation of passage for heat conduction, thus increasing the thermal conductivity of composites.PP/滑石粉导热绝缘复合材料的制备与性能研究采用聚丙烯(PP)为基体,不同粒径滑石粉为填料,通过双螺杆挤出机挤出制备导热绝缘的PP/滑石粉复合材料。
有机无机复合材料的制备与性能随着科技的不断发展,材料学科也得到了飞速的进步。
有机无机复合材料作为一种新型的材料,在各个领域都有广泛的应用。
本文将主要介绍有机无机复合材料的制备方法以及其性能特点。
首先,我们来介绍有机无机复合材料的制备方法。
有机无机复合材料由有机物质和无机物质构成,因此制备方法可以分为有机相和无机相的耦合方法和无机相导向的方法。
一种常见的有机相和无机相耦合的制备方法是溶胶-凝胶法。
通过溶胶中的有机物和无机物的混合反应,形成新的有机无机复合材料。
这种方法制备的复合材料具有均匀的微观结构和良好的界面结合强度,且可调控复合材料的组分和形貌。
另一种制备方法是界面活性剂辅助的水热法。
在此方法中,界面活性剂通过在水相中作为表面活性剂,促进有机物和无机物的混合反应。
经过水热处理后,有机物和无机物形成均匀分散的复合材料颗粒。
这种方法制备的复合材料具有良好的分散性和稳定性。
除了有机相和无机相耦合的方法外,无机相导向的制备方法也是常用的。
一种典型的方法是原位聚合法。
通过在有机物中加入无机聚合体的前体,使其在适当的条件下发生聚合反应。
这种方法可以得到具有优异性能的复合材料,如高强度、高导电性等。
有机无机复合材料的制备方法多种多样,每种方法都有其优缺点。
制备过程中的条件、配比以及后续处理等都会对最终的复合材料性能产生重要影响。
下面我们将重点关注有机无机复合材料的性能特点。
首先,有机无机复合材料具有优异的力学性能。
有机相和无机相的共同作用使得复合材料的力学性能得到提升。
无机相具有较高的硬度和刚性,而有机相则具有较高的韧性和弯曲性。
两者结合后能够达到力学性能的协同效应,使得复合材料的强度、刚度和韧性都得到提高。
其次,有机无机复合材料具有优异的热性能。
无机相具有较高的热导率和热稳定性,可以提高复合材料的热传导性和抗热氧化能力。
而有机相则具有较低的热导率,在一定程度上降低了热性能的损耗。
因此,有机无机复合材料在高温环境下能够更好地保持其性能稳定性。
复合材料的界面定义
复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的性能和特点。
在复合材料中,界面是指不同组分之间的交界面,是复合材料中最重要的部分之一。
界面的性质和特点直接影响着复合材料的整体性能和应用范围。
因此,对复合材料的界面进行准确的定义是非常重要的。
首先,复合材料的界面可以被定义为不同组分之间的交界面,包括纤维和基体
之间的界面、不同填料之间的界面等。
这些界面通常是由于材料的不同成分或性质所导致的,因此界面的性质往往会对整体材料的性能产生显著的影响。
其次,复合材料的界面还可以被定义为材料的微观结构和相互作用的区域。
在
这些区域中,不同组分之间的相互作用会产生一系列的界面效应,如界面扩散、界面结合、界面应力传递等。
这些效应会直接影响着复合材料的力学性能、热学性能、耐久性等方面。
另外,复合材料的界面还可以被定义为材料的表面区域,包括纤维表面、填料
表面、基体表面等。
这些表面区域往往是复合材料与外界环境或其他材料之间的直接接触区域,因此界面的性质会直接影响着复合材料的耐腐蚀性、黏附性、润湿性等方面。
综上所述,复合材料的界面可以被定义为不同组分之间的交界面、材料的微观
结构和相互作用区域,以及材料的表面区域。
界面的性质和特点直接影响着复合材料的整体性能,因此对复合材料的界面进行准确的定义是非常重要的。
在未来的研究中,我们需要进一步深入理解复合材料的界面定义,探索界面效应对复合材料性能的影响机制,为复合材料的设计、制备和应用提供更加科学、准确的理论基础。