网壳结构稳定基本理论—06
- 格式:ppt
- 大小:2.58 MB
- 文档页数:48
空间网壳结构稳定分析概述发表时间:2016-04-18T14:00:31.153Z 来源:《工程建设标准化》2015年12月供稿作者:徐飞[导读] 河北正元化工工程设计有限公司空间网格结构由于其重量小、抗震性能好、空间性能优、外型美观等特点.(河北正元化工工程设计有限公司,河北,石家庄,050000)【摘要】概述影响网壳稳定的因素,线性屈曲与非线性屈曲的区别及联系。
【关键字】稳定分析内容;非线性稳定;荷载--位移曲线。
1.简述空间网格结构由于其重量小、抗震性能好、空间性能优、外型美观等特点,使其能够很好的满足建设方对功能、造型的要求,广泛应用于机场、体育场馆、高速公路收费站、大型储煤设施等跨度较大的建筑物,由于其充分发挥了材料的强度及外形优势,使其取得了良好的经济效益和社会效益。
由于跨度大,网壳结构在竖向荷载作用下,整体变形较大,荷载与变形之间的行为已经呈现出非线性特征,根据《空间网格结构技术规程》(JGJ 7-2010)[1]规定,单层网壳以及厚度小于跨度 1/50 的双层网壳均应进行稳定性计算。
一般双层网壳均能满足此条件,所以网壳稳定实际上就是单层网壳稳定的问题。
2.稳定状态特点网壳稳定分有约束稳定和变形稳定两种。
约束稳定是由于约束不足引起整体位移或大位移,主要靠支座约束来解决,而目前所讲的网壳稳定为变形稳定问题,即在特定外荷载作用下几何形状的改变。
网壳的稳定性分析分为两类,第一类为理想化分析,即达到某种荷载时,除结构原来的平衡状态外,还可能出现第二个平衡状态,称为平衡分岔失稳或分支点失稳,在数值分析上称为求特征值问题,为线性分析,得到的荷载为屈曲荷载,荷载——位移曲线见图1。
线性屈曲的静力平衡方程可以写成下列形式: [K﹢λKG]{U}={P}[K]: 结构的弹性刚度矩阵 [K]: 结构的结合刚度矩阵 {U}: 结构的几何位移向量 {U}: 结构的外力向量 λ:特征值(临界荷载)λ<λcr :不稳定平衡状态; λ=λcr :不稳定状态; λ>λcr : 稳定状态第二类分析表现为结构失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,称为极值点失稳,为非线性分析,考虑结构几何非线性和材料非线性,此时的荷载称为极限荷载,荷载——位移曲线见图2。
1 题目 (2)1.1 结构参数 (2)1.2 荷载及组合 (2)2 建立网壳模型 (2)3结构线性整体稳定分析 (3)3.1 模型建立 (3)3.2模型分析结果 (3)3.3结果分析 (4)4完善结构大位移几何非线性整体稳定分析 (5)4.1模型建立 (5)4.2 模型分析结果 (6)4.3 结果分析 (6)5带缺陷结构大位移几何非线性整体稳定分析 (6)5.1 缺陷模式及幅值 (6)5.2 模型分析结果 (7)5.3 结果分析 (8)5.4 缺陷敏感性 (9)6带缺陷结构大位移弹塑性整体稳定分析 (9)6.1 模型建立 (9)6.2 模型分析结果 (9)6.3 结果分析 (10)6.4 弹塑性稳定分析的看法 (10)7 结构的整体稳定临界承载力 (11)7.1 三种非线性稳定分析的比较 (11)7.2 稳定临界承载力的确定 (12)8 一杆一单元和一杆两单元的模拟比较 (12)8.1 线性整体稳定比较 (12)8.2 完善结构大位移几何非线性整体稳定比较 (13)8.3 带缺陷结构大位移几何非线性整体稳定比较 (14)8.4 带缺陷结构大位移弹塑性整体稳定比较 (16)8.5 整体稳定临界承载力比较 (17)8.6 总结 (17)1 题目1.1 结构参数单层球面网壳,跨度70m,矢跨比f/L=1/4。
杆件材料Q235B,截面均取圆钢管φ127.0⨯4.0,网壳节点刚接,周边边界点为支座节点,且为固定铰支座。
1.2 荷载及组合满跨均布恒载(q):结构自重(杆件部分)+屋面(0.3kN/m2)半跨均布活载(p):p =0.5 kN/m2荷载组合:1.0恒+1.0活2 建立网壳模型采用3D3S建立单层凯威特型球面网壳,网格环向分为14份,径向分为8份,网壳结构简图见图2.1。
图2.1 单层凯威特型球面网壳模型参数以及施加的荷载见第一章节。
3结构线性整体稳定分析将3D3S中建立的网壳模型导入到ANSYS中,得到网壳有限元模型。
球面网壳结构是一种独特的结构形式,它具有轻质、高强度、耐腐蚀、耐疲劳等优点。
在现代建筑、桥梁、航空航天等领域得到了广泛应用。
然而,球面网壳结构也存在一些稳定性问题,特别是在承受外力作用下容易发生失稳破坏。
因此,研究球面网壳结构的稳定性是非常重要的。
一、球面网壳结构的基本概念和分类球面网壳结构是由若干根经纬组成的高强度杆件和节点组成的网状结构,呈球面形状。
根据节点连接方式的不同,球面网壳结构可分为刚性节点球面网壳和铰接节点球面网壳两种。
刚性节点球面网壳是由刚性连接件将若干根经纬杆件连接起来组成的网架结构,具有较高的刚度和强度。
由于刚性连接件的存在,刚性节点球面网壳的计算和设计比较容易。
铰接节点球面网壳是通过铰接节点将若干根经纬杆件连接起来,形成一个柔性的球面网壳结构。
由于节点处的连接件和杆件均为铰接,因此在其承载过程中产生较多的应力变形。
因此,设计铰接节点球面网壳结构的过程较为复杂。
二、球面网壳结构的稳定性分析球面网壳结构的稳定性研究是结构设计和计算的重要内容。
与其他结构相比,球面网壳结构的稳定性分析存在以下特点:1.不规则形状球面网壳结构的形状不规则,因此其受力状态也较为复杂。
在球面网壳结构的设计过程中,需要充分考虑其形状和受力状态,进行合理的分析和设计。
2.不同的节点类型根据节点的不同类型,球面网壳结构分为刚性节点球面网壳和铰接节点球面网壳两种形式。
在分析结构的稳定性时,需要分别考虑刚性节点和铰接节点的情况。
3.多个节点位移相互影响球面网壳结构中的多个节点之间存在位移相互影响的情况。
因此,在分析结构的稳定性时,需要考虑节点位移的影响,确定每个节点的位移方向和大小。
4.复杂的边界条件球面网壳结构的边界条件比较复杂,需要考虑框架的边缘受力状态、球面曲率半径、节点位置等多个因素的影响。
因此,在分析结构的稳定性时,需要考虑各种边界条件的复杂性,并进行相应分析和计算。
三、球面网壳结构的稳定性控制球面网壳结构的稳定性受到许多因素的影响,例如材料的强度、形变能力、边界条件等。
《网壳结构的稳定性》沈世钊著网壳结构的稳定性沈世钊(哈尔滨工业大学哈尔滨150090)摘要:本文通过荷载-位移全过程分析对各种形式网壳结构的稳定性能进行了深入研究。
对复杂结构的全过程分析方法作了探讨,通过所完成的2800余例各式网壳的全过程分析揭示了不同类型网壳结构稳定性能的基本特性,并提出了单层球面网壳、柱面网壳和椭圆抛物面网壳稳定性承载力的实用计算公式。
关键字:网壳结构稳定性全过程分析非线性有限元分析一、概述稳定性分析是网壳结构、尤其是单层网壳结构设计中的关键问题。
国外自70年代以来,国内自80年代中期以来,网壳结构发展异常迅速,其稳定性问题遂成为研究热点领域之一。
结构的稳定性可以从其荷载-位移全过程曲线中得到完整的概念。
传统的线性分析方法是把结构强度和稳定问题分开来考虑的。
事实上,从非线性分析的角度来考察,结构的稳定性问题和强度问题是相互联系在一起的。
结构的荷载-位移全过程曲线可以准确地把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。
当考察初始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。
但以前,当利用计算机对复杂结构体系进行有效的非线性有限元分析尚未能充分实现的时候,要进行网壳结构的全过程分析是十分困难的。
在较长一段时间内,人们不得不求助于连续化理论("拟壳法")将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。
例如文献1-3都提出了关于球面网壳稳定性的计算公式。
这种"拟壳法"公式对计算某些特定形式网壳的稳定性承载力起过重要作用。
但这种方法有较大的局限性:连续化壳体的稳定性理论本身并未完善,缺乏统一的理论模式,需要针对不同问题假定可能的失稳形态,并作出相应的近似假设;事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。
网壳结构的整体稳定分析姓名:张秀斌学号:10121270指导教师:张勇网壳结构的整体稳定分析摘要网壳结构的稳定性是网壳、特别是单层网壳分析中的一个关键问题,复杂曲面单层网壳结构的稳定性问题更值得重视。
如何准确计算结构的稳定极限承载力和确定各种因素对稳定性的影响程度是结构设计必须考虑的问题。
本文简单介绍了网桥结构稳定分析的两种方法拟壳法和有限元法,并展望了网壳稳定分析的发展趋势。
关键词:网壳结构失稳有限元法几何初始缺陷目录网壳结构的整体稳定分析 (2)关键词:网壳结构失稳有限元法几何初始缺陷 (2)1绪论 (3)1.1网壳结构的特点 (3)1.2网壳结构的分类 (3)1.3 国内外网壳结构应用概况 (3)2网壳结构稳定性分析的理论和基础 (4)2.1稳定分析的必要性和目的 (4)2.2失稳和屈曲 (5)2.3网壳结构的失稳模态 (5)2.4影响网桥结构整体稳定性的因素 (7)3网壳结构的稳定分析方法 (8)3.1拟壳法 (8)3.2有限元法 (9)3.21有限元法的特点: (9)3.2.2有限元分析的关键问题 (9)3.3有缺陷网壳的相关分析方法 (10)3.3.1随机缺陷模态法 (10)3.3.2一致缺陷模态法 (10)4网壳稳定分析趋势与展望 (11)参考文献 (12)1绪论1.1网壳结构的特点网壳结构是一种曲面形网格结构,有单层网壳和双层网壳之分,是大跨空间结构中一种举足轻重的主要结构形式。
网壳结构的优点和特点,大致可归纳如下:(1)网壳结构兼有杆系和薄壳结构的主要特性,杆件比较单一,受力比较合理。
(2)网壳结构的刚度大、跨越能力大,往往当跨度超过l00m时,便很少采用网架结构,而较多的采用网壳结构。
(3)网壳结构可以用小型构件组装成大型空间,小型构件和连接节点可以在工厂预制,走工业化生产的道路,现场安装简便,不需要大型的机具设备,因而综合技术经济指标较好。
(4)网壳结构的分析计算借助于通用程序和计算机辅助设计,现已相当成熟,不会有多大的难度。
浅谈网壳结构的稳定性分析浅谈网壳结构的稳定性分析【摘要】稳定性是网壳结构(尤其是单层网壳结构)分析设计中的关键问题。
在设计网壳结构时,除了按常规设计规范验算网壳结构构件强度、稳定性及结构刚度外,还应该进行结构整体稳定性以及对初始缺陷的敏感性验算[2]。
本文对影响网壳稳定性的因素和研究方法做了综述,从而有助于设计人员对网壳稳定性的研究。
【关键词】网壳;稳定性;缺陷网壳结构的稳定性能可能从其荷载-位移全过程曲线中得到完整的概念。
结构的失稳(屈曲)类型分为两种:一种是极值点屈曲,另一种是分枝点屈曲,其中分枝点屈曲又分为稳定分枝点屈曲和不稳定分枝点屈曲。
网壳结构根据不同的曲面形式对初始缺陷的敏感程度不同。
对初始缺陷敏感的网壳,结构稳定承载力会因为初始缺陷的存在而降低,同时,初始缺陷还会导致分枝屈曲问题转化极值点屈曲问题。
分枝点屈曲只发生在理想完善的结构,实际结构都是有初始缺陷的,所以其失稳都极值点屈曲而不是分枝点屈曲。
网壳失稳模态有很多种类型,通常有两种分类方法:一种是根据网壳结构失稳时,结构失稳的变形范围可以分为局部失稳和整体失稳;另一种是根据结构失稳时,构件是否发生塑性变形可以分为弹性失稳和塑性失稳。
局部失稳就是结构在荷载作用下失稳时,如果只有某个或某些局部区域结构偏离了初始平衡位置的失稳变形,而其他区域没有发生偏离初始平衡位置的变形。
结构的局部失稳又可以分为局部节点失稳和局部杆件失稳,局部节点失稳主要表现为结构局部一个或多个节点偏离了其初始平衡位移,这种节点的偏离平衡位置有两种,第一种是节点仍在它初始平衡位置上,但节点已经出现了绕某个自身轴的转动变形,这样的转动变形有可能会造成连接在此节点上的杆件弯曲变形。
第二种是节点偏离了它的初始平衡位置。
局部失稳一般容易发生在结构整体刚度分布不均匀,存在较薄弱的区域或者在结构上某区域作用过大的集中荷载。
整体失稳就是结构在荷载作用下失稳时,结构的大部分或几乎整个结构都偏离了初始平衡位置的失稳变形。
网壳结构设计简介戚 豹徐州建筑职业技术学院土木工程系第五章网壳结构设计简介网架结构是一个以受弯为主体的平板,可以看作是平板的格构化形式。
而网壳结构则是壳体结构格构化的结果,以其合理的受力形态,成为较为优越的结构体系。
可以说,网壳结构不仅仅依赖材料本身的强度,而且以曲面造型来改变结构的受力,成为以薄膜内力为主要受力模式的结构形态,能够跨越更大的跨度。
不仅如此,网壳结构以其优美的造型激发了建筑师及人们的想象力,随着结构分析理论以及试验研究的不断深入,计算技术的不断提高和增强,越来越多的建筑采用了这种结构型式。
5.1 网壳结构的常用形式5.1.1 网壳结构的基本曲面及形成1.网壳的型体网壳结构的型体是指网壳的形状、曲面形式和杆件的布置。
如果型体设计合理,可以使得结构在已知条件下可能达到最大的规模,受力合理、安全储备高、美观、制造和安装简易、节省材料、经济实用等。
国际薄壳与空间结构协会(IASS)创始人、西班牙著名结构工程师托罗哈认为:“最佳结构有赖于其自身受力之型体,而非材料之潜在强度。
”也就是说,网壳结构凭借其型体的合理性,才能成为一种最为优越的结构。
因此,网壳结构的型体已经成为当今建筑师与结构工程师的重要研究课题。
在进行网壳结构设计和型体创新时,首先必须了解曲面的几何形式、物理性质及其工作特性。
通常,我们把曲面分为两大类:1)典型曲面典型曲面,也称几何学曲面。
某些曲面不管其形式如何,也不管它是如何形成的,总可以用几何学方程表示出来。
比如,用圆弧线、双曲线、抛物线、椭圆线和直线等表示出的曲面并可以用微分方程求解的,都属于典型曲面。
国内外采用这种曲面已经建造了大量形体优美、经济合理的建筑。
如果再将这些曲面进行适当的切割或组合,还可以构成更多的型体,创造出新颖的网壳结构。
2)非典型曲面非典型曲面,亦称非几何学曲面。
某些曲面不能以简单的几何学方程来表示。
非典型曲面最初是建筑师为了使空间结构的型体有所创新,达到建筑造型能自由地发挥而发展起来的,最早应用于钢筋混凝土薄壳结构。