结构力学 静定结构的受力分析
- 格式:ppt
- 大小:6.73 MB
- 文档页数:142
1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。
◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。
◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。
◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。
本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。
(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。
1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。
以拉力为正,压力为负。
剪力F Q :截面上应力沿杆轴切线方向的合力。
以绕隔离体顺时针转为正,反之为负。
弯矩M :截面应力对截面中性轴的力矩。
不规定正负,但弯矩图画在受拉侧。
在水平杆中, 当弯矩使杆件下部纤维受拉时为正。
A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。
内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。
轴力FN外力背离截面投影取正,反之取负。
剪力F=截面一边所有外力沿截面切线方向投影代数和。
Q外力绕截面形心顺时针转动,投影取正,反之取负。
弯矩M =截面一边所有外力对截面形心的外力矩之和。
外力矩和弯矩使杆同侧受拉时取正,反之取负。
2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。
2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。
1 结构力学多媒体课件1、刚架由梁和柱组成的结构,其结点全部或部分是刚结点。
2、刚架的形式2)简支刚架1)悬臂刚架2、刚架的形式3)三铰刚架4)主从刚架3、刚架的特点1)杆数少,净空大,便于使用3、刚架的特点2)刚结点的特点①变形:刚结点处的各杆端不能发生相对移动和相对转动,因而受力变形后,各杆杆端转动了同一角度,即各杆之间的夹角保持不变。
②受力:刚结点可承受和传递弯矩保持角度不变3、刚架的特点3)横梁和竖柱连成整体,使整体刚度增大,弯矩的峰值减少二、刚架中各杆的杆端内力1、支座反力的计算⑴求反力时要先根据支座的性质正确定出反力未知量个数,不能多、不能少。
⑵假定反力方向,由平衡方程确定其数值。
⑶应尽量利用一个平衡方程求一个未知力。
⑷求出反力后要有没有用过的平衡方程校核。
l /2l /2l /2l /2CBAPF AY =0.5PF BY =0.5PF AX=0.75P F BX =0.25P2m 2m 4mCBA4m2kN/mGFEDF AX =1KNF CX =1KNF CY =3KNF BY =7KN2、杆端内力的计算⑴方法:截面法⑵内力符号结点处有不同的杆端截面。
各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。
——AB杆A端的轴力。
FN AB——AB杆A端的剪力。
FQ AB——AB杆A端的弯矩。
MAB2、杆端内力的计算⑶内力的正负规定轴力FN:以拉力为正,压力为负。
剪力FQ:以绕隔离体顺时针转为正,反之为负。
弯矩M:不规定正负,但弯矩图画在受拉侧。
F N FNF Q F QM AB M BAF NF NF QF Q MBAM AB 竖杆剪力图和轴力图可画在任一侧,但必须标出正负;弯矩图画在受拉一侧,可不标正负。
2、杆端内力的计算 ⑷正确选取脱离体⑸注意结点平衡∑F X =0 ∑F Y =0 ∑M D =0一般先求出支座反力及铰结点处的内约束力,然后将刚架拆成杆件,逐杆绘制其内力图,将各杆的内力图合在一起就是刚架的内力图。
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
王飞教师结构力学课程第4 讲(单元)教案设计第三章静定结构的受力分析1. 静定结构的概念从几何构造分析的角度看,结构必须是几何不变体系。
根据多余约束n,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。
从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。
超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。
静定结构的基本特点是l 在几何组成上,静定结构是无多余联系的几何不变体系。
2 在静力学上,静定结构的所有反力、内力仅由静力平衡方程即可求得,且在荷载作用下,解答具有唯一性。
3 静定结构只在荷载作用下才产生反力、内力。
反力和内力只与结构的尺寸、几何形状有关,而与构件截面尺寸、形状、材料无关,且支座沉陷、温度变化、制造误差等均不会产生内力,只产生位移。
§3-1 梁的内力计算回顾3.1.1 内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N、剪力F Q和弯矩M(图3-1)。
轴力----截面上应力沿轴线方向的合力,轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力,剪力以截开部分顺时针转向为正。
弯矩----截面上应力对截面形心的力矩,在水平杆件中,当弯矩使杆件下部受拉时弯矩为正。
图3-1作图时,轴力图、剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号3.1.2 内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用以下六个字描述:1. 截开----在所求内力的截面处截开,任取一部分作为隔离体。
2. 代替----用相应内力代替该截面的应力之和。
3. 平衡----利用隔离体的平衡条件,确定该截面的内力。
利用截面法可得出以下结论:1. 轴力等于该截面一侧所有的外力沿杆轴切线方向的投影代数和;2. 剪力等于该截面一侧所有外力沿杆轴法线方向的投影代数和;3. 弯矩等于该截面一侧所有外力对截面形心的力矩的代数和。
结构力学静定结构的受力分析静定结构是指在外载荷作用下,结构的每个部分均处于力学平衡状态,即结构的受力分析可以根据平衡方程求解。
静定结构的受力分析是结构力学中的重要内容,对于工程设计和分析非常关键。
在静定结构的受力分析中,需要根据结构的几何形状和支座条件,确定结构的受力模式,并使用平衡方程进行计算。
下面将介绍静定结构受力分析的基本步骤。
首先,需要对结构进行几何建模,确定结构的几何形状。
这包括确定结构的几何尺寸、节点位置和材料特性等。
几何建模是进行受力分析的前提,对于一些复杂的结构,可以使用计算机辅助设计软件进行建模。
其次,根据结构的边界条件,确定结构的支座情况。
支座条件包括固定支座、铰接支座和滑动支座等。
支座的选择是根据结构的实际情况及设计要求来确定的。
然后,根据结构的受力模式,建立受力体系,并采用平衡方程进行受力计算。
受力体系包括结构的梁、柱等构件以及它们之间的关系。
平衡方程是基于结构处于力学平衡的原理,其中包括转矩平衡和力平衡等方程。
通过平衡方程,可以得到结构中各个部分的受力大小和方向。
接着,根据受力计算的结果,进行受力校核。
受力校核是为了验证结构设计的合理性,包括确定结构中的应力、变形和稳定性等。
校核的依据是结构的设计规范和要求,以保证结构的安全可靠。
最后,对受力计算的结果进行结果的处理和分析。
这包括对受力大小和方向的合理性进行评估,以及根据受力情况进行结构优化设计。
在静定结构的受力分析过程中,需要注意以下几个问题。
首先,要合理选择受力模式和支座条件,以确保受力计算的有效性。
其次,要注意受力计算的精度和误差控制,以保证计算结果的准确性。
最后,在进行受力校核时,要注意结构的强度、刚度和稳定性等方面的要求。
总之,静定结构的受力分析是结构力学中的重要内容,对于工程设计和分析非常关键。
通过合理的几何建模、选择支座条件,建立受力体系并应用平衡方程进行受力计算,可以得到结构受力的大小和方向,为结构的设计和分析提供依据。