人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)
- 格式:docx
- 大小:143.76 KB
- 文档页数:10
5.2.1 三角函数的概念课程目标1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.数学学科素养1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:图1-2-1 (2)结论①y 叫做α的正弦,记作sin_α,即sin α=y ; ②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx (x ≠0). (3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 名称 sinα yr R 正弦 cosα x r R余弦tanαy x⎩⎨⎧⎭⎬⎫α⎪⎪α≠k π+π2,k ∈Z正切正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos αRtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”.四、典例分析、举一反三题型一 三角函数的定义及应用例1:求53π的正弦、余弦和正切值.例2 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.基础练习题 1、求π4、3π2、7π6的三角函数值.五、课堂小结让学生总结本节课所学主要知识及解题技巧 本节课我们主要学习了哪些内容? 1.三角函数的定义.2.运用三角函数数学思想解决问题.六、板书设计七、作业课本179页练习及182页练习.本节课主要采用讲练结合与分组探究的教学方法,借助单位圆探究任意角三角函数(正弦、余弦、正切)的概念,且借助单位圆与直角坐标系探究三角函数在各个象限符号,并会灵活运用.。
5.2.1三角函数的概念【教学目标】1.能用三角函数的定义进行计算.2.熟记正弦、余弦、正切在各象限的符号,并能进行简单的应用.3.会利用诱导公式一进行有关计算.【要点梳理】1.任意角的三角函数的定义如图,设α是一个任意角,α∈R,它的终边OP与单位圆交于点P(x,y)温馨提示:(1)在任意角的三角函数的定义中,应该明确α是一个任意角.(2)三角函数值是比值,是一个实数,这个实数的大小和P(x,y)所在终边上的位置无关,而由角α的终边位置决定.(3)要明确sin x是一个整体,不是sin与x的乘积,它是“正弦函数”的一个记号,就如f(x)表示自变量为x的函数一样,离开自变量的“sin”“cos”“tan”等是没有意义的.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.【思考诊断】1.若角α与β的终边相同,根据三角函数的定义,你认为sinα与sinβ,cosα与cosβ,tanα与tanβ之间有什么关系?[答案]sinα=sinβ,cosα=cosβ,tanα=tanβ2.判断正误(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cosα=cosβ.()(2)若sinα=sinβ,则α=β.()(3)已知α是三角形的内角,则必有sinα>0.()(4)任意角α的正弦值sinα、余弦值cosα、正切值tanα都有意义.()[答案](1)√(2)×(3)√(4)×【课堂探究】题型一任意角的三角函数的定义及其应用【典例1】(1)若角α的终边经过点P(5,-12),则sinα=________,cosα=________,tanα=________.(2)已知角α的终边落在直线3x+y=0上,求sinα,cosα,tanα的值.[思路导引]利用三角函数的定义求解.[解析] (1)∵x =5,y =-12,∴r =52+(-12)2=13,则sin α=y r =-1213,cos α=x r =513,tan α=y x =-125. (2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+(-3)2=2,所以sin α=-32,cos α=12,tan α=- 3. [答案] (1)-1213 513 -125(2)见解析 [名师提醒]求任意角的三角函数值的2种方法方法一:根据定义,寻求角的终边与单位圆的交点P 的坐标,然后利用定义得出该角的正弦、余弦、正切值.方法二:第一步,取点:在角α的终边上任取一点P (x ,y ),(P 与原点不重合); 第二步,计算r :r =|OP |=x 2+y 2;第三步,求值:由sin α=y r ,cos α=x r ,tan α=y x(x ≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.[针对训练]1.已知角α的终边经过点P (1,-1),则sin α的值为( )A.12B.32C.22 D .-22[解析] ∵α的终边经过点P (1,-1),∴sin α=-112+(-1)2=-22. [答案] D2.已知角α的终边与单位圆的交点为⎝⎛⎭⎫-12,y (y <0),则sin αtan α=________. [解析] ∵α的终边与单位圆的交点为⎝⎛⎭⎫-12,y , ∴⎝⎛⎭⎫-122+y 2=1,即y 2=34,又∵y <0,∴y =-32. ∴sin α=-32,tan α=3,sin αtan α=-32×3=-32. [答案] -32题型二 三角函数在各象限的符号问题【典例2】 判断下列各式的符号:(1)sin105°·cos230°;(2)cos3·tan ⎝⎛⎭⎫-2π3. [思路导引] 利用三角函数在各象限的符号判断.[解] (1)因为105°,230°分别为第二、三象限角,所以sin105°>0,cos230°<0.于是sin105°·cos230°<0.(2)因为π2<3<π,所以3是第二象限角,所以cos3<0, 又因为-2π3是第三象限角,所以tan ⎝⎛⎭⎫-2π3>0,所以cos3·tan ⎝⎛⎭⎫-2π3<0. [名师提醒]判断三角函数值正负的2个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断. 注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上.[针对训练]3.设θ是第三象限角,且满足⎪⎪⎪⎪sin θ2=-sin θ2,则角θ2为第________象限角. [解析] 因为θ是第三象限角,所以π+2k π<θ<32π+2k π,k ∈Z , 所以π2+k π<θ2<34π+k π,k ∈Z ,所以角θ2为第二、四象限角. 又因为⎪⎪⎪⎪sin θ2=-sin θ2,所以sin θ2<0,所以θ2为第四象限角. [答案] 四题型三 诱导公式一的应用【典例3】 求下列各式的值:(1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin810°+tan1125°+cos420°.[思路导引] 利用诱导公式将角化到0°~360°范围内,再求解.[解] (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32. (2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin90°+tan45°+cos60°=1+1+12=52. [名师提醒](1)公式一的实质是终边相同的角的同名三角函数值相等.利用它可将大角转化为[0,2π)范围内的角,再借助特殊角的三角函数值达到化简求值的目的.(2)熟记一些特殊角的三角函数值.[针对训练]4.计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 【课堂小结】1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.公式一的理解(1)公式一的实质:是说终边相同的角的三角函数值相等,即角α的终边每绕原点旋转一周,函数值将重复出现一次,体现了三角函数特有的“周而复始”的变化规律.(2)公式一的作用利用诱导公式一可把负角的三角函数化为0~2π间角的三角函数,亦可把大于2π的角的三角函数化为0~2π间角的三角函数,即实现了“负化正,大化小”.【随堂巩固】1.已知角α的终边经过点(-4,3),则cos α=( )A.45B.35 C .-35 D .-45[解析] ∵x =-4,y =3,∴r =(-4)2+32=5,∴cos α=x r =-45=-45,故选D. [答案] D2.sin ⎝⎛⎭⎫-35π6的值等于( ) A.12 B .-12 C.32 D .-32[解析] ∵sin ⎝⎛⎭⎫-35π6=sin ⎝⎛⎭⎫-6π+π6=sin π6=12,∴选A. [答案] A3.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由于sin α<0,则α的终边在第三或第四象限或y 轴非正半轴上,又tan α>0,则α的终边在第一或第三象限,所以α的终边在第三象限.[答案] C4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =________. [解析] ∵cos α=-45<0,∴α角应为第二或第三象限角, 又∵y =-6<0,∴α为第三象限角,∴m <0 又∵-45=m m 2+(-6)2,∴m =-8. [答案] -85.求值:tan405°-sin450°+cos750°.[解] tan405°-sin450°+cos750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan45°-sin90°+cos30°=1-1+32=32。
5.2.1 三角函数的概念在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,α∈R它的终边与单位圆交于点P(x,y),那么:(2)结论①y叫做α的正弦函数,记作sin α,即sin α=y;②x叫做α的余弦函数,记作cos_α,即cos α=x;③yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).(3)总结yx=tan α(x≠0)是以角为自变量,以单位圆上点的纵坐标或横坐标的比值为函数值的函数,正切函数我们将正弦函数、余弦函数、正切函数统称为三角函数.3.正弦、余弦、正切函数在弧度制下的定义域(1)图示:(2)口诀:“一全正,二正弦,三正切,四余弦”.5.公式一1.sin(-315°)的值是( ) A .-22 B .-12 C.22 D.12C [sin(-315°)=sin(-360°+45°)=sin 45°=22.] 2.已知sin α>0,cos α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [由正弦、余弦函数值在各象限内的符号知,角α是第二象限角.] 3.sin 253π=________.32 [sin 253π=sin ⎝ ⎛⎭⎪⎫8π+π3=sin π3=32.] 4.角α终边与单位圆相交于点M ⎝⎛⎭⎪⎫32,12,则cos α+sin α的值为________. 3+12 [cos α=x =32,sin α=y =12, 故cos α+sin α=3+12.] 三角函数的定义及应用 [探究问题]1.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α,cos α,tan α为何值?提示:sin α=y r ,cos α=x r ,tan α=y x(x ≠0).2.sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 提示:sin α,cos α,tan α的值只与α的终边位置有关,不随P 点在终边上的位置的改变而改变.【例1】 (1)已知角θ的终边上有一点P (x,3)(x ≠0),且cos θ=1010x ,则sin θ+tan θ的值为________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. [思路点拨] (1)依据余弦函数定义列方程求x → 依据正弦、正切函数定义求sin θ+tan θ(2)判断角α的终边位置→分类讨论求sin α,cos α,tan α(1)310+3010或310-3010 [因为r =x 2+9,cos θ=x r ,所以1010x =xx 2+9. 又x ≠0,所以x =±1,所以r =10. 又y =3>0,所以θ是第一或第二象限角.当θ为第一象限角时,sin θ=31010,tan θ=3,则sin θ+tan θ=310+3010.当θ为第二象限角时,sin θ=31010,tan θ=-3,则sin θ+tan θ=310-3010.](2)[解] 直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,cos α=-12,tan α=-3; 在第四象限取直线上的点(1,-3), 则r =12+(-3)2=2, 所以sin α=-32,cos α=12,tan α=- 3.(1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cos α=x r.已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.三角函数值符号的运用【例2】 (1)已知点P (tan α,cos α)在第四象限,则角α终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.[思路点拨] (1)先判断tan α,cos α的符号,再判断角α终边在第几象限. (2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最后判断乘积的符号.(1)C [因为点P 在第四象限,所以有⎩⎪⎨⎪⎧tan α>0,cos α<0,由此可判断角α终边在第三象限.](2)[解] ①∵145°是第二象限角, ∴sin 145°>0,∵-210°=-360°+150°, ∴-210°是第二象限角, ∴cos(-210°)<0,∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.判断三角函数值在各象限符号的攻略:(1)基础:准确确定三角函数值中各角所在象限; (2)关键:准确记忆三角函数在各象限的符号;(3)注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误. 提醒:注意巧用口诀记忆三角函数值在各象限符号.1.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是________.-2<a ≤3 [因为cos α≤0,sin α>0,所以角α的终边在第二象限或y 轴非负半轴上,因为α终边过(3a -9,a +2),所以⎩⎪⎨⎪⎧3a -9≤0,a +2>0,所以-2<a ≤3.]2.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.四 [角α是第三象限角,则角α2是第二、四象限角, ∵⎪⎪⎪⎪⎪⎪sin α2=-sin α2,∴角α2是第四象限角.]诱导公式一的应用 【例3】 求值:(1)tan 405°-sin 450°+cos 750°; (2)sin 7π3cos ⎝ ⎛⎭⎪⎫-23π6+tan ⎝ ⎛⎭⎪⎫-15π4cos 13π3.[解] (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30° =1-1+32=32. (2)原式=sin ⎝ ⎛⎭⎪⎫2π+π3cos ⎝ ⎛⎭⎪⎫-4π+π6+tan ⎝ ⎛⎭⎪⎫-4π+π4·cos ⎝ ⎛⎭⎪⎫4π+π3=sin π3cos π6+tan π4cos π3=32×32+1×12=54. 利用诱导公式一进行化简求值的步骤(1)定形:将已知的任意角写成2k π+α的形式,其中α∈[0,2π),k ∈Z . (2)转化:根据诱导公式,转化为求角α的某个三角函数值. (3)求值:若角为特殊角,可直接求出该角的三角函数值. 3.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 125π·tan 4π. [解] (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2.(2)sin ⎝ ⎛⎭⎪⎫-116π+cos 125π·tan 4π=sin ⎝⎛⎭⎪⎫-2π+π6+cos 25π·tan 0=sin π6+0=12. 1.三角函数的定义的学习是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点无关这一关键点.2.诱导公式一指的是终边相同角的同名三角函数值相等,反之不一定成立,记忆时可结合三角函数定义进行记忆.3.三角函数值在各象限的符号主要涉及开方,去绝对值计算问题,同时也要注意终边在坐标轴上正弦、余弦的符号问题.1.思考辨析(1)sin α表示sin 与α的乘积.( )(2)设角α终边上的点P (x ,y ),r =|OP |≠0,则sin α=yr,且y 越大,sin α的值越大.( )(3)终边相同的角的同一三角函数值相等.( ) (4)终边落在y 轴上的角的正切函数值为0.( )[提示] (1)错误.sin α表示角α的正弦值,是一个“整体”.(2)错误.由任意角的正弦函数的定义知,sin α=y r.但y 变化时,sin α是定值. (3)正确.(4)错误.终边落在y 轴上的角的正切函数值不存在.[答案] (1)× (2)× (3)√ (4)×2.已知角α终边过点P (1,-1),则tan α的值为( ) A .1 B .-1 C.22D .-22B [由三角函数定义知tan α=-11=-1.]3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________.-15 [设角α的终边与单位圆相交于点P (x ,y ), 则角β的终边与单位圆相交于点Q (x ,-y ), 由题意知y =sin α=15,所以sin β=-y =-15.]4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4.[解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32.。
三角函数的概念教学设计【教学目标】1.借助单位圆理解任意角的三角函数(正弦函数、余弦函数、正切函数)的定义,培养学生数学抽象的核心素养;2.会利用角的终边上的点的坐标求角的正弦、余弦和正切,培养学生数学运算的核心素养;3.体会三角函数定义的发生和发展过程,培养学生数形结合的数学思想,感悟数学的魅力,激发学习数学的兴趣;【教学重难点】教学重点:任意角三角函数的概念;教学难点:灵活运用公式;(一)情境引入一、问题1:生活中有哪些周而复始的现象呢?你能举例吗?问题2:函数是描述客观世界变化规律的数学模型,你能说出我们学习过哪些函数并分别指出它们的数学模型吗?(1)直线运动————一次函数(2)抛物运动————二次函数(3)指数爆炸————指数函数(4)对数增长————对数函数问题3:那我们生活中的圆周运动呢?又有什么数学模型可以刻画呢?带着这样的问题我们进入三角函数的定义的学习。
【设计意图】依据情境认知理论,通过生活中的周而复始的现象设置悬念来引入,增加学生学习的兴趣,挖掘学生的好奇心和求知欲,从而顺利引入本节课。
(二)探究新知一、探究新知1.这是一幅月相图,月亮在运动的过程,它的位置变化是可以通过所形成的角的大小来刻画的,那么月亮位置与所形成的角之间究竟有怎样的对应关系呢?假设月亮绕地球旋转的轨迹是个圆,地球在圆心O处,月亮的位置记为P,它到地球的距离为单位1,则点P以A为起点做逆时针方向旋转,能否建立一个函数模型,刻画点P的位置变化情况?【设计意图】根据弗赖登塔尔的四大教学原则中的“再创造”教学原则,采用月相图的探究活动,引导学生从中发现并提炼出其中的对应关系。
2.请跟周围同学讨论一下,如何建立坐标系讨论p点的位置变化。
回答:(1)建立坐标系:以单位圆的圆心O为原点,以射线OA为X轴的非负半轴,建立直角坐标系,点A的坐标为(1,0),点P的坐标为(x,y)(2)分析变量:弧度数角的大小P点坐标(x,y)点P的位置(3)对应关系:任意给定的角∝,它的终边OP与单位圆的交点P是唯一确定的,则P点的坐标也是唯一确定的。
课程基本信息课例编号学科数学年级高一学期上课题三角函数的概念教科书书名:普通高中教科书数学必修第一册出版社:人民教育出版社出版日期:2019年6月教学人员姓名单位授课教师指导教师教学目标教学目标:1. 初步理解借助单位圆上点的坐标定义三角函数,理解任意角的三角函数的概念;2.在三角函数定义的过程中进一步认知函数的本质,体会数形结合思想方法的作用;3.经历三角函数概念的抽象过程,提升学生思维的严谨性,发展数学抽象素养.教学重点:任意角的三角函数概念.教学难点:用单位圆上点的坐标定义三角函数.教学过程时间教学环节主要师生活动创设情景,导入新课问题引入:在客观世界中存在大量循环往复、周而复始的周期现象,比如日出日落、钟摆运动等,匀速圆周运动是这类现象的代表,在前面的学习中我们已经知道函数是描述客观世界变化规律的重要数学模型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?如右图所示,圆O上的点P以A为起点做逆时针旋转,在把角的范围推广到任意角后,我们可以借助角α的大小变化刻画点P的位置变化.根据弧度制的定义,角α的大小与圆O的半径无关,我们能否建立一个函数模型,刻画点P的位置变化情况?【设计意图】开门见山引出研究内容、过程与研究方法,指明点P随着角度的变化而变化,明确构建函数模型的目标,让学生初步了解本节课学习的方向,为具体研究指明方向.引导探究,形成新知分析要解决这个问题,我们需要什么工具?①建立函数模型,要利用直角坐标系.②根据任意角的定义,需要借助单位圆.如图,以单位圆的圆心O为坐标原点,以射线OA为x轴的非负半轴,建立直角坐标系,点A的坐标是()1,0,点P的坐标是(),x y. 把该问题抽象为一个质点P从点A()1,0开始在单位圆上的运动.问题1:这个运动过程中的有哪些变量,判断它们之间是否具有函数关系.如果有,能否写出函数解析式?(1)点P在单位圆上运动过程中涉及的变量有:点P的横坐标x、纵坐标y,弧长l,旋转角度α;(2)判断变量:,,,x y lα间的哪两个变量能否构成函数关系?过过点P作PM⊥x轴于M,根据勾股定理可知221OM PM+=,即221x y+=,显然变量x、y间的对应关系不符合函数定义.在弧度制学习中我们已经知道变量,lα之间的关系,并且变量,x y与α的关系和,x y与l的关系等价,所以我们研究变量,x y与α的关系.问题2: 若角α终边与单位圆交于点P,如何求点P的坐标呢?追问1:当我们遇到一般性问题应该如何研究?特殊化:不妨设3απ=,此时点P在第一象限, 构造直角三角形,过点P向x轴引垂线交x轴于M,Rt OMP∆中,可得12OM=,32PM=,即12x=,32y=,所以点P的坐标为13,22⎛⎫⎪⎪⎝⎭.追问2:当23απ=时,点P的坐标是什么?同样,当23απ=时,点P在第二象限, 可得12x=-,32y=,所以点P的坐标为13,22⎛⎫- ⎪ ⎪⎝⎭.追问3:任意给定一个角α,点P 的坐标唯一确定吗?因为单位圆的半径不变,点P 的坐标只与角α的大小有关,当角α确定时,点P 的坐标是(),x y 也唯一确定.追问4:在展示的运动变化的过程中,观察角α的终边与单位圆的交点P 的坐标,有什么发现?能否运用函数的语言刻画这种对应关系呢?对任意一个实数α,它的终边OP 与单位圆的交点P 的横、纵坐标x 、y 都是唯一确定的,有如下对应关系:任意角α(弧度)→ 唯一实数x ; ①任意角α(弧度)→ 唯一实数y . ②一般地,任意给定一个角R α∈,它的终边OP 与单位圆交点P 的坐标,无论是横坐标x ,还是纵坐标y ,都是唯一确定的.所以,点P 的横坐标x 、纵坐标y 都是角α的函数.【设计意图】以函数的对应关系为指向,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆的交点的横、纵坐标都是圆心角α (弧度)的函数,为引出三角函数的定义做好铺垫.下面给出这些函数的定义:如图,设α是一个任意角,R α∈,它的终边OP 与单位圆相交于点(),P x y ,那么把点P 的纵坐标y 叫做α的正弦函数,记做sin α,即sin y α=;把点P 的横坐标x 叫做α的余弦函数,记做cos α,即cos x α=;把点P 的纵坐标与横坐标的比值y x叫做α的正切函数,记做tan α,即()tan 0y x xα=≠. 问题3: 正弦函数、余弦函数、正切函数的对应关系各是什么?实数α(弧度)对应于点P 的纵坐标y →正弦函数;实数α(弧度)对应于点P 的横坐标x →余弦函数;当点P 的横坐标为0时,角α的终边在y 轴上,此时()2k k Z απ=+π∈,所以tan y xα=无意义.用新知标为13,22⎛⎫-⎪⎪⎝⎭,所以53515sin,cos,tan 3.32323πππ=-==-【设计意图】通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.例2 如图,设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(),x y,点P与原点的距离为r.求证:sinyrα=,cosxrα=,tanyxα=引导学生分析问题:①你能根据三角函数的定义作图表示sinα和cosα吗?②在你所作的图形中,yr,xr,yx表示什么?你能找到它们与任意角α的三角函数的关系吗?解:设角α的终边与单位圆交于点0P()00,x y,分别过点,P P作x轴的垂线00,PM P M,垂足分别为,M M,则000,PM y P M y==,00,,OM x OM x==OMP∆11OM P∆.所以得到001P M PMr=,即yyr=.因为y与y同号,所以yyr=,即sinyrα=.同理可证:cosxrα=,tanyxα=.【设计意图】通过问题引导,使学生找到OMP∆、11OM P∆,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了任意角的三角函数的另外一种定义,而且这种定义与已有的定义是等价的,能否用严格任意角三角函数的概念是三角函数知识的基础,我们以后要学习的有关三角函数其他知识都建立在我们对三角函数的概念的理解与认识上,所以同学们一定要认真学习和体会今天所学的知识.三角函数是如何定义的?我们除了学习单位圆定义,还有什么定义方法?①单位圆定义法:建立直角坐标系,使角α的顶点与坐标原点重合,终边与单位圆的交点为P , 即可由点P 坐标(),x y 得到三角函数定义.正弦函数:()sin y x x R =∈;余弦函数:()cos y x x R =∈;正切函数:tan y x =,2x x k k Z π⎧⎫≠+π∈⎨⎬⎩⎭. ②终边定义法: 建立直角坐标系,对于任意角α,角α终边上的任意一点P 的坐标为(),x y ,它到原点O 的距离为22r x y =+,那么sin y r α=,cos x r α= ,tan y xα=. 在我们研究三角函数概念的过程中,你体会到了什么数学思想方法?在任意角的三角函数的概念建构的过程中,我们运用了转化与化归、数形结合、函数思想,这些思想方法在我们今后的学习中非常重要,我们一定认真体会.。
第五章三角函数5.2.1三角函数的概念教学设计一、教学目标1. 借助单位圆理解三角函数(正弦、余弦、正切)的定义,会求具体弧度的三个三角函数值.2.从三角函数的定义认识其定义域、函数值在各个象限的符号.3.根据定义理解公式一,初步解决与三角函数值有关的一些简单问题.二、教学重难点1.教学重点三角函数的定义.三角函数值在各个象限内的符号,公式一.2.教学难点用角的终边上的点刻画三角函数.三角函数值的符号的应用.三、教学过程(一)探究一:三角函数的概念1.定义:设α是一个任意角,α∈R,它的終边OP与单位圆交于点P(x,y).(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα;(3)把点P 的纵坐标与横坐标的比值y x叫做α的正切,记作tan α,即tan y x α=(x ≠0).2.记法:通常将三角函数记为:正弦函数:sin ,y x x =∈R ;余弦函数:cos ,y x x =∈R ; 正切函数:tan ,()2y x x k k ππ=≠+∈Z . 探究二:三角函数的定义域交流讨论完成下表:探究三:各象限角的三角函数值的符号各个象限角的三角函数值的符号求证:角θ为第三象限角的充要条件是sin 0,(1)tan 0.(2)θθ<⎧⎨>⎩.证明:先证充分性,即如果(1)(2)式都成立,那么θ为第三象限角.因为(1)式sin 0θ<成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为(2)式tan 0θ>成立,所以θ角的终边可能位于第一或第三象限.因为(1)(2)式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.再证必要性,即如果角θ为第三象限角,那么(1)(2)式都成立.因为角θ为第三象限角,所以sin 0θ<,同时tan 0θ>,即(1)(2)式都成立.综上,命题得证.探究四:公式一公式一:sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中 在运算中起到简化的作用,即利用公式一,可以把任意角的三角函数值,转化为求0到2π范围角的三角函数值.(二)课堂练习1.已知4sin 5α=,α在第二象限,则tan α=( ) A .43 B .43- C .34 D .34- 答案:B 解析:由4sin 5α=及α是第二象限角,得3cos 5α==-,所以sin tan s 43co ααα==-. 故选: B2.如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:C3.已知点()2,0A -,()2,0B ,若圆()()22230x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,则r 的取值范围是( )A.(1,5)B.[]1,5C.(]1,3D.[)3,5 答案:B解析:0PA PB ⋅=,∴点P 在以AB 为直径的圆224x y +=上. 圆222(3)(0)x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,∴圆222(3)(0)x y r r -+=>与圆224x y +=有公共点,|2|32r r ∴-≤≤+,解得15r ≤≤,故选B.(三)小结作业小结:本节课我们主要学习了哪些内容?1.三角函数的定义.2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一.四、板书设计1.定义:正弦函数:sin ,y x x =∈R ; 余弦函数:cos ,y x x =∈R ;正切函数:tan ,()2y x x k k ππ=≠+∈Z . 2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中。
5.2.1三角函数的概念【课标要求】课程标准:1.借助单位圆理解三角函数(正弦、余弦、正切)的定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.理解终边相同的角的同一三角函数值相等.教学重点:三角函数的定义;三角函数在各象限内的符号.教学难点:任意角的三角函数的定义的建构过程.【知识导学】知识点一三角函数的概念(1)单位圆中三角函数的定义(2)三角函数的定义域知识点二三角函数值的符号规律:一全正、二正弦、三正切、四余弦.知识点三诱导公式(一)【新知拓展】(1)三角函数值是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.(2)终边相同的角的同名三角函数值相等.【基础自测】1.判一判(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cosα=cosβ.()(2)若sinα=sinβ,则α=β.()(3)已知α是三角形的内角,则必有sinα>0.()答案(1)√(2)×(3)√2.做一做(1)若sinα<0,且tanα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限(2)若角α的终边经过点P(5,-12),则sinα=________,cosα=________,tanα=________.(3)tan405°-sin450°+cos750°=________.(4)sin2·cos3·tan4的值的符号为________.答案 (1)D (2)-1213 513 -125 (3)32(4)负 【题型探究】题型一 三角函数的定义例1 已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值.[解] r =(-4a )2+(3a )2=5|a |,若a >0,则r =5a ,角α在第二象限,sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45,tan α=y x =3a -4a =-34; 若a <0,则r =-5a ,角α在第四象限,sin α=-35,cos α=45,tan α=-34. [条件探究] 在本例中,若将题设条件改为:已知角α的终边在直线y =3x 上,问题不变,怎样求解?解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点.则r = a 2+(3a )2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a ,sin α=3a 2a =32, cos α=a 2a =12,tan α=3a a= 3. 若a <0,则α为第三象限角,r =-2a ,sin α=3a -2a =-32,cos α=a -2a=-12,tan α=3a a = 3. 金版点睛利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=y r ,cos α=x r.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.(3)若终边在直线上时,因为角的终边是射线,应分两种情况处理.[跟踪训练1] (1)设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A.25 B .-25 C.15 D .-15(2)已知角α终边上的点P (4,3m ),且sin α=22m ,求m 的值. 答案 (1)A (2)见解析解析 (1)∵点P 在单位圆上,则|OP |=1.即(-3a )2+(4a )2=1,解得a =±15. ∵a <0,∴a =-15,∴P 点的坐标为⎝⎛⎭⎫35,-45, ∴sin α=-45,cos α=35, ∴sin α+2cos α=-45+2×35=25. (2)∵P (4,3m ),∴r =16+9m 2,∴sin α=y r =3m 16+9m 2=22m , 两边平方,得9m 216+9m 2=12m 2. ∴m 2(9m 2-2)=0,∴m =0或m =±23. 题型二 三角函数值的符号例2 (1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)判断下列各式的符号:①tan120°·sin269°;②cos4·tan ⎝⎛⎭⎫-23π4. [解析] (1)由sin αtan α<0可知sin α,tan α异号,从而α为第二、三象限角.由cos αtan α<0可知cos α,tan α异号,从而α为第三、四象限角. 综上可知,α为第三象限角.(2)①∵120°是第二象限角,∴tan120°<0.∵269°是第三象限角,∴sin269°<0,∴tan120°·sin269°>0.②∵π<4<3π2,∴4弧度是第三象限角,∴cos4<0. ∵-23π4=-6π+π4,∴-23π4是第一象限角, ∴tan ⎝⎛⎭⎫-23π4>0,∴cos4·tan ⎝⎛⎭⎫-23π4<0. [答案] (1)C (2)见解析金版点睛判断给定角的三角函数值正负的步骤(1)确定α的终边所在的象限;(2)利用三角函数值的符号规律,即“一全正、二正弦、三正切、四余弦”来判断.[跟踪训练2] (1)若三角形的两内角A ,B 满足sin A ·cos B <0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都有可能(2)点P (tan α,cos α)在第三象限,则α是第________象限角.答案 (1)B (2)二解析 (1)三角形内角的取值范围是(0,π),故sin A >0.因为sin A cos B <0,所以cos B <0,所以B 是钝角,故三角形是钝角三角形.(2)因为点P (tan α,cos α)在第三象限,所以tan α<0,cos α<0,则角α的终边在第二象限. 题型三 与三角函数有关的定义域问题例3 求下列函数的定义域:(1)y =sin x +cos x tan x; (2)y =-cos x +sin x .[解] (1)要使函数有意义,需tan x ≠0,∴x ≠k π+π2,且x ≠k π,k ∈Z ,∴x ≠k π2,k ∈Z . 于是函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪ x ∈R ,x ≠k π2,k ∈Z . (2)要使函数有意义,需⎩⎪⎨⎪⎧-cos x ≥0,sin x ≥0,即⎩⎪⎨⎪⎧ 2k π+π2≤x ≤2k π+3π2(k ∈Z ),2k π≤x ≤2k π+π(k ∈Z ),解得2k π+π2≤x ≤2k π+π(k ∈Z ), ∴函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π2≤x ≤2k π+π,k ∈Z . 金版点睛求解函数定义域的解题策略(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于与三角函数有关的函数定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.[跟踪训练3] 求下列函数的定义域:(1)y =sin x +tan x ;(2)y =sin x +tan x .解 (1)依题意,得⎩⎪⎨⎪⎧ x ∈R ,x ≠k π+π2(k ∈Z ), ∴函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠k π+π2,k ∈Z . (2)当sin x ≥0且tan x 有意义时,函数才有意义,∴⎩⎪⎨⎪⎧2k π≤x ≤(2k +1)π,x ≠k π+π2(k ∈Z ). ∴函数的定义域为{ x | 2k π≤x <2k π+π2或2k π+π2<x ≤2k π+π,k ∈Z }. 题型四 诱导公式(一)的应用例4 计算:(1)sin ⎝⎛⎭⎫-11π6+cos 12π5tan4π; (2)sin1140°cos(-690°)+tan1845°.[解] (1)原式=sin ⎝⎛⎭⎫-2π+π6+cos 12π5tan0=sin π6+0=12. (2)原式=sin(3×360°+60°)cos(-2×360°+30°)+tan(5×360°+45°)=sin60°cos30°+tan45°=32×32+1=74. 金版点睛利用诱导公式化简的步骤(1)将已知角化为k ·360°+α(k 为整数,0°≤α<360°)或2k π+β(k 为整数,0≤β<2π)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的.[跟踪训练4] 求下列各式的值: (1)cos 25π3+tan(-15π4)); (2)sin810°+tan1125°+cos420°.解 (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32. (2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin90°+tan45°+cos60°=1+1+12=52. 【随堂达标】1.如果角α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( ) A.12B .-12C .-32D .-33 答案 C解析 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,所以sin α=-32. 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( ) A .1B .0C .2D .-2 答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0,∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.在△ABC 中,若sin A cos B tan C <0,则△ABC 是( )A .锐角三角形B .直角三角形C.钝角三角形D.锐角或钝角三角形答案C解析因为sin A>0,所以cos B,tan C中一定有一个小于0,即B,C中有一个钝角.4.若750°角的终边上有一点(4,a),则a=________.答案43 3解析tan750°=tan(360°×2+30°)=tan30°=33=a4,解得a=433.5.计算sin810°+tan765°+tan1125°+cos360°.解原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0°=1+1+1+1=4.。
5.2 三角函数的概念-人教A版高中数学必修第一册(2019版)教案一、教学目标1.理解角的概念,熟练掌握角的度量方法。
2.理解三角形的概念,熟练掌握三角形的分类方法。
3.理解正弦、余弦、正切三角函数的定义,能够计算其在不同角度上的取值。
4.学会如何利用三角函数解决实际问题。
5.培养学生的分析问题和解决问题的能力。
二、教学重点1.熟练掌握角度的度量方法。
2.理解三角函数的定义及其公式。
3.掌握三角函数在不同角度上的取值。
三、教学难点1.对于初学者,理解角的概念可能会较为抽象。
2.一些学生可能会较难掌握三角函数的各项公式。
四、教学过程1. 角的概念及度量方法教学内容1.角的概念。
2.角度的度量方法。
教学步骤1.引入角的概念,让学生理解角是由两条射线构成的形状。
2.解释角度的度量方法,包括角度的符号、大小和单位。
3.让学生进行角度的计算练习。
教学方法讲授与练习相结合的教学方法。
教学效果学生能够清晰地理解角的概念,并熟练掌握角度的度量方法。
2. 三角形的分类教学内容1.三角形的定义。
2.三角形的分类。
教学步骤1.引入三角形的定义,让学生明确三角形是由三条线段所围成的图形。
2.解释三角形的分类方法,包括按角度大小进行分类和按边长大小进行分类。
3.让学生进行三角形分类的练习。
教学方法讲授与练习相结合的教学方法。
教学效果学生能够清晰地理解三角形的定义,并熟练掌握三角形的分类方法。
3. 三角函数的定义及其公式教学内容1.正弦函数的定义及其公式。
2.余弦函数的定义及其公式。
3.正切函数的定义及其公式。
教学步骤1.引入三角函数的概念,让学生明确三角函数是由三角形的边长比值所确定的函数。
2.解释正弦、余弦、正切函数的定义及其公式。
3.让学生进行三角函数的计算练习。
教学方法讲授与练习相结合的教学方法。
教学效果学生能够掌握三角函数的定义及其公式,并能够熟练计算三角函数的取值。
4. 实际问题的解决教学内容1.利用三角函数解决实际问题的方法。
5.2.1三角函数的概念一、教学目标:1、借助单位园理解任意角的三角函数的定义2、会利用相似关系,由角a 终边上任意一点的坐标得出任意角的正弦,余弦,正切的三角函数的定义。
3、能根据定义理解正弦,余弦,和正切函数在各个象限及坐标轴上的符号,会求一些特殊角的三角函数值4、理解并掌握公式一,并会用公式一进行三角函数式的化简或恒等式的证明。
二、教学重难点教学重点:三角函数的定义教学难点:对三角函数概念的抽象过程及定义的理解.三、情景导入江南水乡,水车在清澈的河流里悠悠转动,缓缓的把水倒进水渠,流向绿油油的田地,流向美丽的大自然,把水车放在坐标系中,点p 为水车上一点,它转动的角度为a,水车的半径为r ,点p 的坐标如何表示?四、预习检查五、教学过程① 在初中我们是如何定义锐角三角函数的?② 在直角坐标系中如何用坐标表示锐角三角函数?1.三角函数的定义前面,我们已经把角的范围扩展到了任意角,并用弧度制来度量角,将角和实数建立一一对应关系.接下来,我们将建立一个数学模型,刻画单位圆上点P 位置变化情况.(以点A 为起点做逆时针方向旋转)191 sin -1050tan 3π︒、()2sin ,cos ,tan Pαααα、已知角 则分别是多少?以单位圆的圆心为原点,以射线OA为x轴的非负半轴,建立直角坐标系.则A(1,0),P(x,y)射线OA从x轴非负半轴开始,绕点O按逆时针方向旋转角α,终止位置为OP.(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα(3)把点P的纵坐标和横坐标的比值y叫做α的正切函数,记作tanα,即xy=tanα(x≠0).x我们把正弦函数、余弦函数和正切函数统称为三角函数.例1、2.同角三角函数的符号一全正、二正弦、三正切、四余弦例2、3.特殊角的三角函数4.诱导公式一终边相同的角的对应三角函数相同.其中k ∈Z做题时,把角同化为(0~2π)即(0°~360°)终边相同的角,简化计算. 例4:求下列三角函数的值。
5.2.1 三角函数的概念
本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第五章《三角函数》,本节课是第3课时,这是节关于任意角的三角函数的概念课.
三角函数是高中范围内继指数函数、对数函数和幂函数之后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象( 概括)层次。
它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。
在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。
在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。
任意角的三角函数是研究一个实数集( 角的弧度数构成的集合)到另一个实数集( 角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。
认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。
本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键。
A.借助单位圆理解任意角三角函数的定
义;
B.根据定义认识函数值的符号,理解诱导
公式一;
C.能初步运用定义分析和解决与三角函数
值有关的一些简单问题;
D.体验三角函数概念的产生、发展过程,
领悟直角坐标系的工具功能,丰富数形结
1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义
;
2.教学难点:任意角的三角函数概念的建构过程。
多媒体
一、复习回顾,温故知新 1. 1弧度角的定义
【答案】等于半径长的圆弧所对的圆心角 2. 角度制与弧度制的换算:
【答案】︒︒
︒
≈==30.571801180)(弧度,π
π
3. 关于扇形的公式
【答案】
.2
1
)3(;21)2(;12lR S R S R l ===αα)( 4.在初中我们是如何定义锐角三角函数的? 【答案】
.tan ,cos ,sin a
b
c a c b ===ααα
二、探索新知
探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。
当
6
π
α=
时,点P 的坐标是什么?当
3
22
π
π
α或
=
时,点P 的坐标又是什么?它们唯一确定吗? 【答案】当6
π
α=
时,点P 的坐标为
),(
2
123。
当2
π
α=
时,点P 的坐标为)
,(10。
当3
2π
α=时,点P 的坐标为)(23,21-。
通过复习上节知识和初中所学锐角三角函数,引入本节新课。
建立知识间的联系,提高学生概括、类比推理的能力。
通过探究,让学能求角的终边与单位圆的交点坐标,进而明白其确定性,提高学生的解决问题、分析问题的能力。
x 的正弦记为1y 。
1z 与1y 相等吗?对于余弦、正切也有相同的结论
吗?
【答案】都相等
例1. 求
3
5π
的正弦、余弦和正切值.
变式:把角
35π改为6
7π呢? 【答案】,2
1
67sin
-=π2367cos -=π 3367tan =π 例2.
如图,设α是一个任意角,它的终边上任意一点P (不与原点
O 重合)的坐标为(x,y ),点P 与原点的距离为r 。
求证:
.tan ,cos ,sin x
y
r x r y ===ααα
探究四.1.根据三角函数的定义,确定三角函数的定义域。
三角函数 定义域 αsin =y
R
αcos =y
R
αtan =y
⎭
⎬⎫⎩⎨⎧∈+≠)(2Z k k ππ
αα
2.确定三角函数值在各象限的符号。
口诀:一全正,二正弦,三正切,四余弦。
任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义。
如,计算方法、定义域、值域、符号表示、有关结论( 与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,引发学生的认知冲突一“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角( 认识研究方法的变化,以及符号表示的变化0-2π范围内的角( 认识该范围内角的三角函数的表示方法,特别是值域的变化)不同象限下终边相同的角(
逐渐形成
计算一个任意角的三角函数的操作过程)。
锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是家当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。