小学六年级奥数专项 行程问题
- 格式:doc
- 大小:917.00 KB
- 文档页数:14
小学六年级奥数行程问题练习题及解析在进行小学奥数学习的时候,各位家长要时不时地抽查孩子,让他们给你讲题,看看是否思路清晰。
下面小编给大家分享了有关行程问题的奥数题,一起来看看吧!简单的行程问题:1.甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米,解决问题.解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:(0.07+0.08)X=6,0.15X=6,X=40;前一半比后一半时间多走:(80-70)×40,=10×40,=400(米).答:前一半比后一半的时间多走400米.故答案为:400.点评:根据题目特点,巧妙灵活地设出未知数,是解题的关键.行程问题:2.同一条公路上依次排列着A、B、C、D四个车站,B、C两站相距32千米,从B站开出一辆客车,开向A站,每小时行48千米,同时从C站开出一辆货车开向D站,每小时行45千米.经过2小时后,两车相距多少千米?分析:先求出两车的速度和,用速度和乘上行驶的时间,求出两车一共行驶的路程,然后再加上BC之间的路程即可.解答:解:(48+45)×2+32,=93×2+32.=186+32,=218(千米);答:经过2小时后,两车相距218千米.点评:本题是相背行驶,两车之间的距离=两车行驶的路程+原来之间的距离.多人行程问题:3.甲乙丙三个小分队都从A地到B地进行野外训练,上午6时,甲乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲丙两队同时到达B地,那么丙队追上乙队的时间是上午()时.分析:从上午6时到下午6时共经过12小时,则A、B两地的距离为5×12=60千米,丙上午8时出发,则全程比甲少用8时-6时=2小时,所以丙的速度为每小时60÷(12-2)=6千米.由于丙出发时,乙已行了4×2=8千米,两人的速度差为每小时6-4=2千米,则丙追上乙需要8÷2=4小时,所以丙追上乙的时间是8时+4小时=12时.解答:解:6时+6时=12时,8时-6时=2时;5×12÷(12-2)=60÷10,=6(千米);2×4÷(6-4)=8÷2,=4(小时).8时+4小时=12时.即丙在上午12时追上乙.故答案为:12.点评:首先根据甲的速度及所用时间求出两地的距离进而求出丙的速度是完成本题的关键.追及问题:4.甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙?分析:由题意可知甲的速度快,甲乙两人同时从相距36千米的A、B两城同向,说明用的时间相同,甲追上乙时,甲比乙多行相距的36千米,再求出甲比乙每小时多行的路程是15-6=9千米,再求出追及时间是36÷9=4小时即可.解答:解:36÷(15-6),=36÷9,=4(小时),答:4小时后甲可追上乙.求速度:5.甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地。
小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。
已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。
已知牛牛每分钟走50米,求甲、乙两地之间的路程。
(7)上学路上当当发现田田在他前面,于是就开始追田田。
当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。
问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。
15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。
六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。
今天,咱们就来好好探讨一下这类问题。
行程问题主要涉及速度、时间和路程这三个量之间的关系。
基本的公式就是:路程=速度×时间。
而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。
咱们先来说说相遇问题。
比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。
A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。
解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。
然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。
再来看一个稍微复杂点的相遇问题。
甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。
A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。
然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。
接下来是追及问题。
比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。
因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。
而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。
再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。
甲每小时走 2 千米,乙每小时走 5 千米。
出发 4 小时后,乙追上甲。
一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。
因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。
六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。
1. 题目。
甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。
求A、B两地的距离。
解析。
根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。
2. 题目。
A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。
问几小时后两车相遇?解析。
速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。
3. 题目。
甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。
两人同时同地反向出发,经过多少秒两人第一次相遇?解析。
在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。
速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。
二、行程问题解题技巧之追及问题。
4. 题目。
甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。
乙先走2小时,则先走的路程为6×2 = 12千米。
甲、乙的速度差为8 6 = 2千米/小时。
根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。
5. 题目。
一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。
汽车先出发3小时,行驶的路程为60×3 = 180千米。
摩托车与汽车的速度差为90 60 = 30千米/小时。
行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
完整版)六年级奥数题及答案:行程问题六年级奥数题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距216千米。
2.XXX从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时。
XXX来回共走了45公里。
3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的1.5倍。
4.一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟。
在无风的时候,他跑100米要用11.67秒。
5.A、B两城相距56千米。
有甲、乙、丙三人。
甲、乙从A城,丙从B城同时出发,相向而行。
甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进。
求出发后经2小时,乙在甲丙之间的中点为20千米。
6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了24步。
7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走2.5米才能回到出发点。
8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟。
那么需要18分钟,电车追上骑车人。
9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。
他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有540公里。
10.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在BC边上。
小学六年级奥赛行程问题及解析三篇第1条小学六年级数学划题划题([知识点讲解)基本概念划题是研究物体的运动,它研究物体速度、时间、距离三者之间的关系.距离速度时间的基本公式;距离/时间速度;距离/速度/时间键决定移动过程中的位置和方向。
遇到问题的速度和遇到时间的距离请写出其他公式来追踪问题和时间与距离之间的差异速度与距离之间的差异写出其他公式主要方法是画一个线图基本问题类型是已知的遇到距离、遇到距离、遇到时间、时间相遇的时间、轨迹的时间、速度和速度差、并找到第三个量。
遇到问题的例子1、两辆车同时离开AB。
第一次见面后,两辆车将继续行驶,到达对方的起点后立即返回。
在第二次会议上,从AB到B的距离是AB总距离的51%。
众所周知,当第一辆车相遇时,短跑运动员花了1XX年的时间。
顺风跑90米需要10秒.时间,同样风速下逆风跑70米。
在没有风的情况下,他还花了10秒.的时间来询问他在购物中心跑100米需要多少秒。
小明从自动扶梯的顶部向上移动到年级的底部,XXXX 奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克运动每小时行驶48公里,b每小时行驶54公里。
当他们相遇时,两辆车距中点36公里。
当他们相遇时,a和b之间的距离是4+4+4+4+2公里。
小明从a到b每小时走6公里,回来时每小时走9公里,共用5个小时。
小学六年级数学思维训练奥数题—行程问题专练1.小天和爸爸同时分别从天安门和正阳门出发(天安门广场北起天安门,南至正阳门),相向而行。
小天每分钟走50米,爸爸的速度是小天的120%,相遇后,小天继续向前走9.6分钟到达正阳门。
天安门广场南北长多少米?2.一家人靠窗坐在速度为72千米/时的火车里,一列有30节车厢的货运火车迎面驶来,当货车车头经过窗口时开始计时,直到最后一节车厢驶过窗口共用时18秒。
已知货运火车每节车厢长16米,每两节车厢(包括车头)间距1.2米。
如果货运火车车头长24头,货车的速度是多少?3.从火车站坐公交车去泰山风景区,途中与同时从风景区开往火车站的某两出租车相遇,相遇点离火车站5千米。
相遇后两车继续以原速前进。
到达风景区后,我们发现有东西丢在火车站,又立即乘公交车返回。
在途中与返回的那辆出租车第二次相遇,相遇点在离风景区2.5千米处。
火车站与风景区之间相距多少千米呢?4.甲、乙两人沿着同一条路同时从山脚和山顶相向出发,甲上山行完全程要4小时,乙下山行完全程要6小时,两人在距中点150千米处相遇。
泰山山顶到山脚路程长多少米?5.甲船逆水航行600米需要3分钟,返回原地需要2分钟;乙船逆水航行同一段水路,需要4分钟。
(1)水流速度是多少?(2)乙船静水速度是多少?(3)乙船返回原地需要多少分钟?6.火车通过450米的大桥用时32秒,通过2200米的隧道时,火车的速度提高了一倍,所以通过隧道只用了51秒,火车的车长为多少米?7.一列火车长200米,它以每秒10米的速度穿过一座大桥,从车头上桥到车尾离开大桥共需80秒,这座桥长为()米。
8.一辆卡车、一辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在距B地20千米处第二次相遇,A、B两地间的路程是多少千米?9.甲、乙两车分别从A、B两地同时发出相向而行,相遇时距中5,求A、B两地的路程。
1、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车距离中点36千米,甲乙两地相距千米2、小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回公用5小时。
小明来回共走了公里。
3、一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍。
4、一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下,逆风跑70米,也用了10秒。
在无风的时候,他跑100米要用秒。
5、AB两城相距56千米,有甲乙丙三人,甲乙从A城,丙从B城同时出发,相向而行。
甲乙丙分别以每小时6千米、5千米、4千米的速度行进。
求出发后经过小时,乙在甲丙之间的中点?6、主人追他的狗,狗跑三步的时间主任跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑了出了步。
7、兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点。
8、骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离出发地2100时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人。
9、一个自行车选手在相距950公里的甲乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。
他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点据甲地有 公里10、如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上。
11、动物园有8米的大树,两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米。
稍大的猴子爬到树顶,下来的速度比原来快了2倍。
行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行 程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙例题专题简行程问题(一)车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以 先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车 到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。
两车同时从两地开出,相遇时甲车距B 地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。
小学六年级奥数列方程解行程问题1.小学六年级奥数列方程解行程问题1、甲从A地以6千米/小时的速度向B地行走,40分钟后,乙从A地以8千米/小时的速度追甲,结果在甲离B地还有5千米的地方追上了甲,求A、B两地的距离。
2、甲、乙两车都从A地开往B地,甲车每小时行40千米,乙车每小时行50千米,甲车出发半小时后,乙车出发,问乙车几小时可追上甲车?3、一轮船从甲码头顺流而下到达乙码头需要8小时,逆流返回需要12小时,已知水流速度是3千米/小时,求甲、乙两码头的距离。
4、甲乙两港相距120千米,A、B两船从甲乙两港相向而行6小时相遇。
A船顺水,B船逆水。
相遇时A船比B船多行走49千米,水流速度是每小时15千米,求A、B两船的静水速度。
5、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?2.小学六年级奥数列方程解行程问题1、甲、乙两地间的路程为160千米,A骑自行车从甲地出发骑行速度为每小时20千米,B骑摩托车从乙地出发速度是甲的3倍,两人同时出发。
相向而行经过几个小时相遇?2、甲、乙两人骑车同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时甲、乙两人相距32.5千米?3、一辆慢车每小时行48千米,一辆快车每小时行55千米,慢车在前快车在后,两车相隔14千米,快车追上慢车需要几小时?4、甲、乙两人环湖竞走,环湖一周520米,甲每分钟走100米,乙每分钟走80米,甲在乙的前面120米,经过几分钟两人第一次相遇?5、已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车在桥上的时间为40秒,则火车的速度为多少?3.小学六年级奥数列方程解行程问题1、AB两地相距300千米,甲乙两人分别从AB两地同时出发,相向而行,甲每小时行30千米,乙每小时行20千米,几小时后两人相遇?分析:甲行驶的路程+乙行驶的路程=AB的距离甲行驶的路程=甲的速度x相遇时间乙行驶的路程=乙的速度x相遇时间解:设X小时后两人相遇。
【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。
我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。
以下是整理的《⼩学六年级奥数⾏程问题》相关资料,希望帮助到您。
【篇⼀】⼩学六年级奥数⾏程问题 1、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250⽶,⼄每分钟跑200⽶,两⼈同时同地同向出发,经过45分钟甲追上⼄,如果两⼈同时同地反向出发,经过多少分钟两⼈相遇? 2、⼀队⾃⾏车运动员以每⼩时24千⽶的速度骑车从甲地到⼄地,两⼩时后⼀辆摩托车以每⼩时56千⽶的速度也从甲地到⼄地,在甲地到⼄地距离的⼆分之⼀处追上了⾃⾏车运动员.问:甲⼄两地相距多少千⽶? 3、⼩爱和⼩清同时从A、B两城相向⽽⾏,在离A城35千⽶处相遇,到达对⽅城市后⽴即以原速沿原路返回,⼜在离A城15千⽶处相遇,两城相距多少千⽶? 4、A、B、C三辆车同时从甲出发到⼄地去,A、B两车速度分别为每⼩时50km和38km,有⼀辆迎⾯开来的卡车分别在他们出发后4⼩时、5⼩时、6⼩时先后与A、B、C三车相遇。
求C车的速度。
5、甲⼄两地相距258千⽶。
⼀辆汽车和⼀辆拖拉机同时分别从两地相对开出,经过4⼩时两车相遇。
已知汽车的速度是拖拉机速度的2倍。
相遇时,汽车⽐拖拉机多⾏多少千⽶? 6、甲⼄两车分别从A、B两站同时出发,相向⽽⾏,第⼀次相遇时在距A站28千⽶处,相遇后两车继续前进,各⾃到达B、A两站后,⽴即沿原路返回,第⼆次相遇距A站60千⽶处。
A、B两站间的路程是多少千⽶? 7、⼩张与⼩王早上8时分别从甲、⼄两地同时相向出发,到10时两⼈相距112.5千⽶;继续⾏进到下午1时,两车相距还是112.5千⽶。
问两地相距多少千⽶? 8、两地相距380千⽶。
有两辆汽车从两地同时相向开出。
原计划甲汽车每⼩时⾏36千⽶,⼄汽车每⼩时⾏40千⽶,但开车时甲汽车改变了速度,以每⼩时40千⽶的速度开出,问在相遇时,⼄汽车⽐原计划少⾏了多少千⽶? 9、东、西两镇相距240千⽶,⼀辆客车在上午8时从东镇开往西镇,⼀辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
六年级奥数工(Gong)程行程问题复习题(含答案)1、一项工程,如果甲先做5天,那么乙接着做20天可(Ke)完成;如果甲先做20天,那么乙接着做8天可完成。
如果甲、乙合做,那么多少天可以完成?2、一项工程,甲、乙两队合作需6天完成,现在乙队先(Xian)做7天,然后甲队做(Zuo)4天,共完成这项工程的13,如(Ru)果把其余的工程交给乙队单独做,那么还(Huan)要几天才能15完成?3、放满一个水池的水,若同时打开1,2,3号阀(Fa)门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。
问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?4、甲(Jia)、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程需要12天.二队完成乙工程需要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%.结果两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?5、甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?6、列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方(Fang)有一辆与它同向行驶的货车,货车车身长 320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?7、铁路旁的一条与铁路平行的小(Xiao)路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?8、一条河上有甲、乙两个码头,甲在(Zai)乙的上游50 千(Qian)米处。
行程问题(一)例1 客车从甲地,货车从乙地同时相对开出5小时后,客车距乙地还有全程的六分之一,货车距甲地还有142千米。
客车比货车每小时多行12千米,甲、乙两地间的路程是多少千米?两地间的路程是多少千米?练习1 AB 两地相距21千米,上午8时甲乙分别从AB 两地出发相向而行,当甲到达B 地后立即返回,地后立即返回,乙到达乙到达A 地后也立即返回,地后也立即返回,上午上午10时他们第2次相遇时,此时甲走的路程比乙走的路程多9千米,甲每小时走多少千米?千米,甲每小时走多少千米?练习2当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。
如果乙和丙按原来的速度继续冲向终点,当乙到达终点的时候,将比丙领先多少米?米?例2 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车距离目的地还有24千米,甲车行完全程用了多少时间?行完全程用了多少时间?练习3 甲乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,千米,它到乙地立即返回,它到乙地立即返回,它到乙地立即返回,第二辆汽车每小时行第二辆汽车每小时行28千米。
千米。
两两辆车从开出到相遇共用多少小时?辆车从开出到相遇共用多少小时?练习4 4 AA 、B 两地相距900千米,甲车从A 地开到B 地需要15小时,乙车从B 地到A 地需要10小时。
两车同时从两地开出,相遇时,甲车距B 地还有多少千米?米?练习5 甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。
到10点钟时两车相距112.5千米。
继续行进到下午1时,两车相距还是112.5千米。
AB 两地间的距离是多少千米?两地间的距离是多少千米?例3 甲乙两车同时从AB 两站相对开出,5小时后甲车到达中点,乙车离中点还有60千米。
已知乙车的速度是甲车的2/3,AB 两地相距多少千米?两地相距多少千米?练习6 客车从甲城到乙城要行10小时,货车从乙城到甲城要行15小时。
六年级下奥数之行程问题在六年级的奥数学习中,行程问题可是一个重要的部分,它不仅有趣,还能很好地锻炼我们的思维能力。
行程问题的类型多种多样,比如相遇问题、追及问题、流水行船问题等等。
让我们先来看看相遇问题。
比如说,甲从 A 地出发,速度是每小时 5 千米,乙从 B 地出发,速度是每小时 3 千米,A、B 两地相距 16 千米,两人同时出发,相向而行,经过多长时间两人相遇?解决这个问题,我们要知道相遇时,两人所走的路程之和等于两地的距离。
所以,我们可以先算出两人的速度之和:5 + 3 = 8(千米/小时),然后用两地的距离除以速度之和,就能得到相遇时间:16 ÷ 8 =2(小时)。
再来说说追及问题。
假设甲在前面跑,速度是每小时 4 千米,乙在后面追,速度是每小时 6 千米,一开始两人相距 8 千米,那么乙经过多久能追上甲?在追及问题中,追及时间等于两人的路程差除以速度差。
这里的路程差就是一开始两人相距的 8 千米,速度差是 6 4 = 2(千米/小时),所以追及时间是 8 ÷ 2 = 4(小时)。
接下来是流水行船问题。
一艘船在静水中的速度是每小时18 千米,水流速度是每小时 2 千米。
如果船顺流而下,它的速度就是静水速度加上水流速度,即 18 + 2 = 20(千米/小时);如果逆流而上,速度就是静水速度减去水流速度,即 18 2 = 16(千米/小时)。
我们通过一道具体的题目来感受一下。
一艘船从甲地顺流行驶到乙地需要 4 小时,从乙地逆流返回甲地需要 6 小时。
已知甲地到乙地的路程是 96 千米,求船在静水中的速度和水流速度。
我们先设船在静水中的速度为 x 千米/小时,水流速度为 y 千米/小时。
根据顺流速度=静水速度+水流速度,逆流速度=静水速度水流速度,可以列出方程组:4(x + y) = 966(x y) = 96解这个方程组,先化简第一个方程:4x + 4y = 96,即 x + y = 24 ①化简第二个方程:6x 6y = 96,即 x y = 16 ②①+②得:2x = 40,x = 20把 x = 20 代入①得:20 + y = 24,y = 4所以,船在静水中的速度是 20 千米/小时,水流速度是 4 千米/小时。
模块一发车问题【例1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【例2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【巩固】某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【例3】一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?【巩固】从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?【例4】甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?【例5】甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.【例6】小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟?【例7】某人乘坐观光游船沿顺流方向从A港到B港。
发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。
模块二火车过桥【例8】小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用了20秒.已知火车全长390米,求火车的速度.【例9】小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?【例10】列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?【例11】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【例12】李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米.问货车行驶的速度是多少?【例13】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【例14】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
14时10分时火车追上这位工人,15秒后离开。
14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。
问:工人与学生将在何时相遇?【例15】同方向行驶的火车,快车每秒行30米,慢车每秒行22米。
如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车。
快车长多少米,满车长多少米?【例16】两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长.【例17】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【例18】一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?模块三流水行船【例19】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【例20】船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?【例21】(2009年“学而思杯”六年级)甲、乙两艘游艇,静水中甲艇每小时行112千米,乙艇每小时行54千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时千米..【例22】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度。
【例23】一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。
客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。
【例24】江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。
又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。
则游船在静水中的速度为每小时多少千米?【例25】(2008年三帆中学考题)一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是2:1.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距千米.【例26】一条小河流过A,B, C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米?【例27】河水是流动的,在B点处流入静止的湖中,一游泳者在河中顺流从A点到B点,然后穿过湖到C点,共用3小时;若他由C到B再到A,共需6小时.如果湖水也是流动的,速度等于河水速度,从B流向C,那么,这名游泳者从A到B再到C只需2.5小时;问在这样的条件下,他由C到B再到A,共需多少小时?模块四时钟问题【例28】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【例29】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?.【例30】某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。
当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?【例31】手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。
8点整将手表对准,12点整手表显示的时间是几点几分几秒?【巩固】某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。
问:这块手表一昼夜比标准时间差多少秒?【例32】一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。
将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。
此时的标准时间是多少?课后练习:练习1.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?练习2.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔6分钟遇到迎面开来的一辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们已行走了分钟..练习3.慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?练习4.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不正常,每个白天快30秒,每个夜晚慢20秒。
如果在10月一日清晨将挂钟对准,那么挂钟最早在什么时间恰好快3分?练习5.某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。