eisenbud交换代数 solutions
- 格式:docx
- 大小:15.33 KB
- 文档页数:3
近世代数第9讲置换群(pormutation group)本讲的教学目的和要求:置换群是一种特殊的变换群。
换句话说,置换群就是有限集上的变换群。
由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。
这一讲主要要求:1、弄清置换与双射的等同关系。
2、掌握置换—轮换—对换之间的联系和置换的奇偶性。
3、置换的分解以及将轮换表成对换之积的基本方法要把握。
4、对称群与交错群的结构以及有限群的cayley定理需要理解。
本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。
注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。
就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。
所以,一般研究抽象群用的还是直接的方法。
并且也不能一下子把所有群都不得找出来。
因为问题太复杂了。
人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。
对每个群类进行研究以设法回答上述三个问题。
可惜 , 人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解决。
变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。
一. 置换群的基本概念定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。
有限集合A 的若干个置换若作成群,就叫做置换群。
含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。
通常记为n S .明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。
现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。
Z[x]的素理想与Krull维数Advances in Applied Mathematics 应⽤数学进展, 2017, 6(8), 942-945Published Online November 2017 in Hans. /doc/045644411.html/journal/aam https:///doc/045644411.html/10.12677/aam.2017.68113Prime Ideals and Krull Dimension of []xRongzheng JiaoSchool of Mathematics Science, Yangzhou University, Yangzhou JiangsuReceived: Nov. 4th, 2017; accepted: Nov. 17th, 2017; published: Nov. 23rd, 2017AbstractUsing elementary method, we get all the prime ideals of integral domain []x , which give an ex-plicit proof of a result in Mumford’s red book. We get the Krull dimension 2 of []x by directcomputation as a by-product.KeywordsIntegral Domain, Prime Ideal, Maximal Ideal, Krull Dimension, Euclid Domain[]x 的素理想与Krull 维数焦荣政扬州⼤学数学科学学院,江苏扬州收稿⽇期:2017年11⽉4⽇;录⽤⽇期:2017年11⽉17⽇;发布⽇期:2017年11⽉23⽇摘要本⽂⽤初等⽅法考虑⼀元多项式环[]x 上的素理想、极⼤理想。
学数学的必看GTM经典著作下载三202 Introduction to Topological Manifolds,John M.Lee(拓扑流形入门)镜像下载(4874KB,英文版,DJVU格式,支持关键词检索,点击打开下载页面,支持迅雷、快车下载)203 The Symmetric Group,Bruce E.Sagan 204 Galois Theory,Jean-Pierre Escofier 205 Rational Homotopy Theory,Yves Félix,Stephen Halperin,Jean-Claude Thomas(有理同伦论)镜像下载(5220KB,英文版,DJVU格式,支持关键词检索,点击打开下载页面,支持迅雷、快车下载)有理同伦论是由Sullivan创立的。
Felix是新鲁汶大学(法语鲁汶大学)的教授,第二作者是著名的华人逻辑学家王浩的学生。
206 Problems in Analytic Number Theory,M.Ram Murty 207 Algebraic Graph Theory,Godsil,Royle(代数图论)镜像下载(4062KB,英文版,DJVU格式,支持关键词检索,点击打开下载页面,支持迅雷、快车下载)Godsil是加拿大滑铁卢大学的教授,代数组合图论的权威。
曾任JAC的主编,现在是组合学期刊(JC)电子版的主编。
Royle是UWA的副教授。
208 Analysis for Applied Mathematics,Ward Cheney 209 AShort Course on Spectral Theory,William Arveson(谱理论简明教程)镜像下载(4366KB,英文版,DJVU格式,支持关键词检索,点击打开下载页面,支持迅雷、快车下载)本书给读者提供谱论-被称之为解决算子理论基本问题的基本工具,并主要计算了无限维空间特别是希尔伯特空间算子的谱。
《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。
美国数学本科生、研究生基础课程参考书目在网上找书的时候恰好看到这个,看着觉得的确是经典书目大全,贴在这里供学弟学妹们参考:)其中所谓第几学年云云,各校要求不同,像我所在的学校,一般学生第一年选三到四门基础课(代数、分析、几何三大类中至少各挑一门),学年末进行qualifying笔试。
第二年开始选自己喜爱方向的高级课程,并通过qualifying口试。
第三年开始做research,并通过第二语言考试(法语或德语或俄语,一般人都选法语,因为代数几何经典大作都是法语的). 而Princeton 就没有基础课,只有seminar类型的课。
第一学年几何与拓扑:1、James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一级;2、Basic Topology by Armstrong:本科生拓扑学教材;3、Kelley, General Topology:一般拓扑学的经典教材,不过观点较老;4、Willard, General Topology:一般拓扑学新的经典教材;5、Glen Bredon, Topology and geometry:研究生一年级的拓扑、几何教材;6、Introduction to Topological Manifolds by John M. Lee:研究生一年级的拓扑、几何教材,是一本新书;7、from calculus to cohomology by Madsen:很好的本科生代数拓扑、微分流形教材。
代数:1、Abstract Algebra Dummit:最好的本科代数学参考书,标准的研究生一年级代数材;2、Algebra Lang:标准的研究生一、二年级代数教材,难度很高,适合作参考书;3、Algebra Hungerford:标准的研究生一年级代数教材,适合作参考书;4、Algebra M,Artin:标准的本科生代数教材;5、Advanced Modern Algebra by Rotman:较新的研究生代数教材,很全面;6、Algebra:a graduate course by Isaacs:较新的研究生代数教材;7、Basic algebra Vol I&II by Jacobson:经典的代数学全面参考书,适合研究生参考。
Cambridge Igcse Mathematics Core And Extended CoursebookIf you are searching for the ebook Cambridge igcse mathematics core and extended coursebook in pdf form, then you have come on toright website. We present the utter option of this ebook in doc, txt, PDF, DjVu, ePub forms. You can readingCambridge igcse mathematics core and extended coursebook online or downloading. As well, on our site you can read guides andanother artistic books online, or downloading their. We wish to invite consideration what our site not store theeBook itself, but we give url to site whereat you may load either read online. If want to downloading pdf Robinairmodel 34134z repair manual cambridge-igcse-mathematics-core-and-extended-coursebook.pdf, then you've come to the loyal website.We have Cambridge igcse mathematics core and extended coursebook txt, DjVu, doc, ePub, PDF forms. We will be glad if you returnanew.stewart - calculus - early transcendentals 6e - isohunt.to Stewart Calculus Early Transcendentals 6E Solutions books Student Solutions Manual for Stewart's Single Variable Calculus Early Transcendentals,study guide for stewarts single variable calculus - Study Guide for Stewarts Single Variable Calculus : Early Transcendentals, 6th edition [James Stewart] on . *FREE* shipping on qualifying offers.calculus: early transcendentals, hybrid edition - Calculus: Early Transcendentals, Hybrid Edition (with Enhanced WebAssign with eBook Printed Access Card for Multi Term Math and Science) (Cengage Learning's Newcomplete solutions manual for stewart's single - Complete solutions manual for Complete solutions manual for Stewart's Single variable calculus early transcendentals Single variable calculus earlypearson - university calculus, early - University Calculus, Early Transcendentals, Student's Solutions Manual for University Calculus, Early Transcendentals, Single Variable, 2/Esingle variable calculus: early transcendentals, - In the Seventh Edition of SINGLE VARIABLE CALCULUS: EARLY TRANSCENDENTALS, The guide includes single variable Early Transcendentals, 7e). Student Solutionsbundle: calculus: early transcendentals, 7th + - Bundle: Calculus: Early Transcendentals, Student Solutions Manual, (Chapters 1-11) for Stewart's Single Variable Calculus: Early Transcendentals, 7thstudents files | stewart calculus early - free download Stewart Calculus Early Transcendentals 7th manual solution pdf check also Stewart Calculus Early This is the solution manual for Single Variablestudent solutions manual for stewart\'s single - Student Solutions Manual for Stewart's Single Variable Calculus Early Transcendentals, Manual for Stewart's Single Variable Calculus Earlysingle variable calculus early transcendentals by - Study Guide for Single Variable Calculus, Early Transcendentals by James Stewart and a great selection of Single Variable Calculus: Early Transcendentals bundle: single variable calculus: early - Multi-Term Courses by by purchasing this bundle which includes Single Variable Calculus: Early Transcendentals, a complete learning solution,student solutions manual for stewart's essential calculus - Student Solutions Manual for Stewart's Essential Calculus: Early Transcendentals Stewart Single Variable Calculus: Early9780716795940 - single variable calculus: early - Early Transcendentals Student Solutions The Student Solutions Manual to accompany Rogawski's Single Variable Calculus: Early Transcendentals offerscalculus early transcendentals.pdf - download - for single variable calculus early transcendentals by jon Guide For Calculus Early Transcendentals By Jon Solutions Manual, Single Variablebook supplements - stewart calculus - The guide includes single variable and The online Solution Builder lets instructors Includes complete questions from the Calculus: Early Transcendentalsthomas+calculus+early+transcendentals+with+student+solutions - FINDThomas+Calculus+Early+Transcendentals+with+Student+Solutions+Manual,+Multivariable+andCalculus+Early+Transcendentals+with+Student+Solutions+Manual,calculus textbooks :: homework help and answers :: - Stewart Calculus: Early Transcendentals, 7th Stewart Calculus, 7th Edition Stewart Single Variable Calculus: Early Stewart Calculus: Early Transcendentalsstudent solutions manual single variable for thomas' calculus - Student Solutions Manual Single Variable for Thomas' Calculus: Early Transcendentals (9780321656926) Thomas' Calculus Early Transcendentals,pearson - calculus: early transcendentals - bill briggs - 13.7 Change of Variables in Multiple Integrals . Single Variable Calculus: Early Transcendentals Plus MyMathLab Student Solutions Manual, Single Variable forstudent solutions manual, multivariable for calculus and - Multivariable For Calculus And Calculus: Early Transcendentals Author: William L. Briggs,Lyle Cochran, Publisher: Title: Student Solutions Manual,calculus early transcendentals solutions guide - Jun 15, 2015 CALCULUS EARLY TRANSCENDENTALS SOLUTIONS GUIDE FREE single variable calculus: early transcendentals student solutions manual by jon student solutions manual: calculus: early - Tamas Wiandt, "Student Solutions Manual: Calculus: Early Transcendentals, Single Calculus: Early Transcendentals, Single Variable Guide To Penetrationstudent solutions manual, (chapters 1-11) for stewart's - Rent or Buy Student Solutions Manual, for Stewart s Single Variable Calculus: Early Transcendentals, 7th Student Guide for Stewart's Single Variablejon rogawski solutions | - chegg - save up to 90% - Jon Rogawski Solutions. Calculus Early Transcendentals Single Variable CalcPortal for Calculus Early Transcendentals 2nd Edition 6140 Problems solved:study guide for stewart's single variable - Rent Study Guide for Stewart's Single Variable Calculus: Early Variable text, the Study Guide Transcendentals, 7th 7th edition solutions arestewart calculus - Early Transcendentals. CALCULUS 8E . BIOCALCULUS Calculus for the Life Sciences. BIOCALCULUS Calculus, Probability, and Statistics for the Life Sciences. ESSENTIALcalculus early transcendentals single variable complete - FIND calculus early transcendentals single variable complete of a Single Variable: Early Early Transcendentals with Student Solutionsstudent solutions manual for stewart's single - numbered exercise in Single Variable Calculus: Early Transcendentals Student Solutions Manual for Stewart's out solutions to every oddinstructor's solutions manual for single variable calculus - instructor's solutions manual for Single Variable Calculus Early Transcendentals, 4th Edition, JAMES I have solutions manuals to all problems and exercises in single- variable-calculus-pdf.pdf - - Single Variable Calculus, Early Early Transcendentals PDF.pdf, E Study Guide For Single Student Solutions Manual, Single Variablecalculus early transcendentals 7th edition - stewart calculus early transcendentals 7th edition solutions calculus early transcendentals 7th edition solutions manual stewart calculus 7th edition solutions manualcomplete solutions manual for: single variable - Complete Solutions Manual for: Single Variable Calculus Early Transcendentals 7th Edition By Stewart by James Stewart Write The First Customer Reviewcalculus: early transcendentals, 7th edition - In the Seventh Edition of CALCULUS: EARLY TRANSCENDENTALS, and eBook Printed Access Card for Multi Term Math and Science Solutions Manual,single variable calculus: early transcendentals, 7th edition - Single Variable Calculus: Early Transcendentals, 7th Edition, Student Solutions Manual PDF Free Download, (multi) Click to download: PDF:calculus: early transcendentals multi variable - Find 9781133068617 Calculus: Early Transcendentals Multi Variable University At Early Transcendentals Multi Variable Used, Solutionearly transcendentals solution guide multi - Thomas' Calculus Early Transcendentals with Student Solutions Manual, Multivariable and Single Variable with MyMathlab/MyStatsLab (12th Edition) by Thomas Jr., George student solutions manual, for stewart's calculus : early - For Stewart's Calculus : Early Transcendentals (Page 1 of 10) Study Guide Format. Early Transcendentals, Single Variable Complete -Solutions Manualmathematics - single variable calculus: early transcendentals - In the Seventh Edition of SINGLE VARIABLE CALCULUS: EARLY TRANSCENDENTALS, Complete Solutions Manual With SINGLE VARIABLE CALCULUS: EARLY TRANSCENDENTALS,student solutions manual for single variable - Student Solutions Manual for Single Variable Calculus: Early Transcendentals and Calculus by James Stewart, January 2, 2007,Brooks/Cole Pub Co edition,student solutions manual , multivariable for calculus and - Student Solutions Manual, Student Solutions Manual, Multivariable for Calculus and Calculus: Early Transcendentals has 0 available edition to buy at Alibris. Related PDFs:tsividis mos transistor solution manual, frank peretti this present darkness, de cirkel by dave eggers, yaz geçer by murathan mungan, hamilton raphael ventilator manual, ovid workbook answer key, emily bronte s wuthering heights bloom s modern critical interpretations, shrinking man by richard matheson, jeppesen private pilot maneuvers manual, 2004 toyota hiace repair manual, modelos multinivel y lo, essentials of criminal justice 8th edition download, friendship factor how to get closer to people you care for, introduction to food engineering solutions manual, west african folktales, new outlander phev a power generating 4wd suv 39362, dog water free by michael jay, dark places by gillian flynn, seductress of caralon brides of caralon prequel, goodenough draw a person test scoring, volvo penta aqd40 manual, 8th element protocol, 101 design methods a structured approach for driving innovation in your organization, ginzel testmaker, løgnhalsen fra umbrien by bjarne reuter, fundamentals of thermodynamics 8th edition solution manual borgnakke, flesh and feathers by april fifer, rest und http by stefan tilkov, promises to keep by jane green, jason by laurell k hamilton, drager evita 2 ventilator user manual, glycemic index diet for dummies, mcdonalds crew trainer questions and answers, restaurant policies and procedures template, building an import export business 4th edition, house of stairs by william sleator, gage physical geography 7, pandora hearts vol 02 by jun mochizuki, introduction to physics 8th edition cutnell johnson, demetrio di faro un protagonista dimenticato。
eisenbud交换代数Eisenbud交换代数是现代代数表面理论的一个重要分支。
它是由David Eisenbud在20世纪80年代中期提出的,以研究代数曲线在仿射流形上的理想和矢量丛的几何性质为出发点。
Eisenbud交换代数的主要研究对象是拟凸或凸流形上的交换代数,这些代数在某种意义下是仿射代数簇上坐标环的广义推广。
Eisenbud交换代数的研究方法主要是通过引入使非交换性能有一定控制的辅助结构,以及利用几何工具和代数工具相互之间的相互联系,来研究非交换环的性质和结构。
最初的几何工具就是亚纯函数和亚纯函数理论,在此基础上,Eisenbud发展了一系列有力工具和概念,如奇异连续函数和微分流形的剪切结构,从而使得Eisenbud交换代数具有很强的几何性质和结构性质。
Eisenbud交换代数的一个重要方向是研究非交换代数的表示理论。
表示理论是研究抽象代数结构的一种重要方法,它将代数结构转化为线性代数结构,从而为代数结构的研究提供了新的视角和工具。
Eisenbud交换代数通过引入表示理论的方法来研究非交换代数的结构和性质,这为研究非交换代数的代数性质和几何性质提供了一种新的途径和思路。
另一个重要的研究方向是Eisenbud交换代数在代数几何中的应用。
代数几何是研究代数对象的几何性质和代数性质的一门学科,它是数学的一个重要分支。
Eisenbud交换代数在代数几何中的应用是通过发展Eisenbud环和Eisenbud模等一系列新的代数工具,来研究代数几何中的关键问题,如切空间的几何性质、剪切环的结构、局部稳定性和局部代数性质等。
此外,Eisenbud交换代数还在代数拓扑学、代数几何流形、非交换系统的拓扑性质和结构、代数K理论等领域有着广泛的应用和影响。
总的来说,Eisenbud交换代数作为现代代数表面理论的一个重要分支,通过引入辅助结构和利用几何工具和代数工具的相互联系,为代数问题的研究提供了一种新的方法和思路,开辟了代数学和几何学的新研究领域,对于代数学和数学的发展具有重要的意义。
数学基础学习阶段◆分析学微积分学教程(1、2、3册)菲赫金哥尔茨数学分析教程(上、下册)史济怀Principles of Mathematical Analysis (Third Edition) Walter Rudin实变函数江泽坚实变函数论周民强复分析导论(上、下册)沙巴特泛函分析讲义(上、下)张恭庆Real and Complex Analysis(Third Edition) Walter RudinFuctional Analysis(Second Edition) Walter Rudin◆代数学高等代数(北京大学数学与力学系)前代数小组代数学引论(聂灵沼、丁石孙)Algebra HungerfordAlgebra Lang美国大学数学参考书目录:第一学年几何与拓扑:1、James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级;2、Basic Topology by Armstrong:本科生拓扑学教材;3、Kelley, General Topology:一般拓扑学的经典教材,不过观点较老;4、Willard, General Topology:一般拓扑学新的经典教材;5、Glen Bredon, Topology and geometry:研究生一年级的拓扑、几何教材;6、Introduction to Topological Manifolds by John M. Lee:研究生一年级的拓扑、几何教材,是一本新书;7、From calculus to cohomology by Madsen:很好的本科生代数拓扑、微分流形教材。
代数:1、Abstract Algebra Dummit:最好的本科代数学参考书,标准的研究生一年级代数教材;2、Algebra Lang:标准的研究生一、二年级代数教材,难度很高,适合作参考书GTM;3、Algebra Hungerford:标准的研究生一年级代数教材,适合作参考书GTM;4、Algebra M,Artin:标准的本科生代数教材;5、Advanced Modern Algebra by Rotman:较新的研究生代数教材,很全面;6、Algebra:a graduate course by Isaacs:较新的研究生代数教材;7、Basic algebra Vol I&II by Jacobson:经典的代数学全面参考书,适合研究生参考。
eisenbud交换代数【原创实用版】目录1.交换代数的概念2.Eisenbud 交换代数的定义3.Eisenbud 交换代数的性质4.Eisenbud 交换代数的应用正文1.交换代数的概念交换代数是代数学的一个重要分支,主要研究交换环(即具有加法交换律的环)的性质及其表示。
交换代数起源于 19 世纪末 20 世纪初,当时数学家们对线性代数和代数几何的研究日益深入,交换代数作为这两个领域的交叉学科应运而生。
交换代数有着广泛的应用,例如在数学的各个领域,以及物理学、计算机科学等领域。
2.Eisenbud 交换代数的定义Eisenbud 交换代数是一种特殊的交换代数,由美国数学家 Eisenbud 于 20 世纪 50 年代提出。
Eisenbud 交换代数是在给定向量空间上的线性变换的基础上,通过引入一种新的乘法运算定义而成的。
具体地,设 V 是一个向量空间,L(V) 是 V 上的线性变换组成的集合,那么 Eisenbud 交换代数可以表示为:A = span{L(V)},其中 span 表示线性组合。
3.Eisenbud 交换代数的性质Eisenbud 交换代数具有以下几个重要性质:(1)结合律:对于 A 中的任意元素 a 和 b,有 a * b = b * a。
(2)交换律:对于 A 中的任意元素 a 和 b,有 a * b = b * a。
(3)分配律:对于 A 中的任意元素 a、b 和 c,有 a * (b + c) = a * b + a * c。
(4)单位元:存在一个元素 e,对于 A 中的任意元素 a,满足 a * e = e * a = a。
(5)乘法对加法的分配律:对于 A 中的任意元素 a、b 和 c,有 a * (b + c) = a * b + a * c。
4.Eisenbud 交换代数的应用Eisenbud 交换代数在数学领域有着广泛的应用,例如在代数几何、线性代数、微积分等分支中都有重要的应用。
美国大学本科数学专业的必修课及教材(Required courses and materials for undergraduate mathematics in the United States)What are the required courses and teaching materials for undergraduate math majors in the United States? Questioner: 2008-10-18 22:01 _ blue shadow mourning drunk, | reward points: 100 | Views: 2387I'm going to America next year undergraduate mathematics, professional choice, now want to own a preview, hope to understand the required curriculum in the United States about 40 of university mathematics and the use of the teaching materials are (what is the most important about mathematics curriculum) hope that good hearted people tell me, thank you...2008-10-31 19:10 satisfied answer American undergraduate mathematics, Graduate basic curriculum reference bookFirst academic yearGeometry and topology:1, James, R., Munkres, Topology: the new topology of teaching materials for undergraduate senior or graduate freshmen;2, Basic, Topology, by, Armstrong: Undergraduate topology textbooks;3, Kelley, General, Topology: the classic textbook of general topology, but the older point of view;4, Willard, General, Topology: new classical textbook of general topology;5, Glen, Bredon, Topology, and, geometry: Graduate freshmen topology and geometry textbooks;6, Introduction, to, Topological,, Manifolds, by, John, M., Lee: Graduate freshman topology and geometry textbook, is a new book;7, From, calculus, to, cohomology, by, Madsen: good undergraduate algebra topology and differential manifold teaching materials.Algebra:1, Abstract, Algebra, Dummit: the best undergraduate algebra reference books, standard graduate students, first-year algebra textbooks;2, Algebra Lang: standard graduate student, grade one or two algebra teaching material, very difficult, suitable for reference books;3, Algebra, Hungerford: standard graduate freshmen algebra textbooks, suitable for reference books;4, Algebra, M, Artin: standard undergraduate algebra textbooks;5, Advanced, Modern, Algebra, by, Rotman: newer graduatealgebra textbooks, very comprehensive;6, Algebra:a, graduate, course, by, Isaacs: newer graduate algebra textbooks;7, Basic, algebra, Vol, I&II, by, Jacobson: classical algebra comprehensive reference book, suitable for graduate reference.Analysis basis:1, Walter, Rudin, Principles, of, mathematical, analysis: standard reference books for undergraduate mathematical analysis;2, Walter, Rudin, Real, and, complex, analysis: standard graduate freshmen analysis textbooks;3, Lars, V., Ahlfors, Complex, analysis: senior undergraduate and graduate students in the first grade classic analysis of teaching materials;4, Functions, of, One, Complex, Variable, I, J.B.Conway: graduate level single variable complex analysis classic;5, Lang, Complex, analysis: graduate level single variable complex analysis reference book;6, Complex, Analysis, by, Elias, M., Stein: newer graduate level single variable complex analysis textbooks;7, Lang, Real, and, Functional, analysis: graduate levelanalytical reference books;8, Royden, Real, analysis: standard graduate students in the first year of the actual analysis of teaching materials;9, Folland, Real, analysis: standard graduate students in the first year of the actual analysis of teaching materials.Second academic yearAlgebra:1, Commutative, ring, theory, by, H., Matsumura: newer graduate exchange algebra standard textbook;2, Commutative, Algebra, I&II, by, Oscar, Zariski, Pierre, Samuel: classical commutative algebra reference book;3, An, introduction, to, Commutative, Algebra, by, Atiyah: standard introductory textbook on commutative algebra;4, An, introduction, to, homological, algebra, by, Weibel: newer graduate students' two year coherence algebra textbooks;5, A, Course, in, Homological, Algebra, by, P.J.Hilton, U.Stammbach: classical and comprehensive homological algebra reference book;6, Homological, Algebra, by, Cartan: classical homological algebra reference books;7, Methods, of, Homological, Algebra, by, Sergei, I., Gelfand, Yuri, I., Manin: advanced and classical homological algebra reference books;8, Homology, by, Saunders, Mac, Lane: an introduction to the classical homological algebra system;9, Commutative, Algebra, with, a,, view, toward, Algebraic, Geometry, by, Eisenbud: Advanced Algebra geometry, commutative algebra reference book, the latest exchange algebra comprehensive reference.Algebraic topology:1, Algebraic, Topology, A., Hatcher: the latest graduate algebra topology standard textbook;2, Spaniers, "Algebraic, Topology": classical algebraic topology reference book;3, Differential, forms, in, algebraic, topology, by, Raoul, Bott, and, Tu, Loring, W.: Graduate algebra topology standard textbook;4, Massey, A, basic, course, in, Algebraic, topology: classical graduate algebra topology textbooks;5, Fulton, Algebraic, topology:a, first, course: very good algebra algebra reference for freshmen and graduate students in their freshman year;6, Glen, Bredon, Topology, and, geometry: standard graduate algebra topology textbooks, there is a considerable space to talk about smooth manifolds;7, Algebraic, Topology, Homology, and, Homotopy: advanced and classical algebraic topological reference books;8, A, Concise, Course, in,, Algebraic, Topology, by, J.P.May: Graduate algebra topology introductory materials, covering a wide range;9, Elements, of, Homotopy, Theory, by, G.W., Whitehead: advanced and classical algebraic topological reference books.Real analysis and functional analysis:1, Royden, Real, analysis: standard graduate analysis textbooks;2, Walter, Rudin, Real, and, complex, analysis: standard graduate analysis textbooks;3, Halmos, "Measure Theory": Classic graduate analysis of teaching materials, suitable for reference books;4, Walter, Rudin, Functional, analysis: standard graduate functional analysis textbooks;5, Conway, A, course, of, Functional, analysis: standard graduate functional analysis textbooks; 6, Folland, Real,analysis: standard graduate student analysis of teaching materials;7, Functional, Analysis, by, Lax: advanced graduate functional analysis textbooks;8, Functional, Analysis, by, Yoshida: advanced graduate functional analysis reference book;9, Measure, Theory, Donald, L., Cohn: classical measurement theory reference book.Differential topology Li Qun and Lie algebra1, Hirsch, Differential, topology: standard graduate differential topology textbooks, quite difficult;2, Lang, Differential, and, Riemannian, manifolds: graduate reference books of Differential Manifolds, higher difficulty;3, Warner, Foundations, of, Differentiable, manifolds, and, Lie, groups: standard graduate Differential Manifolds teaching materials, there is considerable space about Li Qun;4, Representation, theory:, a, first, course, by, W., Fulton, and, J., Harris: Li Qun and its representation standards;5, Lie, groups, and, algebraic, groups, by, A., L., Onishchik, E., B., Vinberg: Li Qun's reference book;6, Lectures, on, Lie, Groups, W.Y.Hsiang: Li Qun's referencebook;7, Introduction, to, Smooth, Manifolds, by, John, M., Lee: the newer standard textbook on smooth manifolds;8, Lie, Groups, Lie, Algebras, and, Their, Representation, by, V.S., Varadarajan: the most important reference book of Li Qun and Li algebra;9, Humphreys,李代数及其表示理论,介绍SpringerVerlag,gtm9:标准的李代数入门教材。
eisenbud交换代数摘要:I.引言A.交换代数的概念B.Eisenbud 交换代数的背景与意义II.Eisenbud 交换代数的定义与性质A.定义B.性质C.举例说明III.Eisenbud 交换代数与其他交换代数的联系与区别A.与经典交换代数的联系与区别B.与其他交换代数的联系与区别IV.Eisenbud 交换代数的应用A.在代数几何中的应用B.在数论中的应用C.在其他领域的应用V.Eisenbud 交换代数的局限性与未来展望A.局限性B.未来展望VI.结论A.对Eisenbud 交换代数的评价B.对未来研究的启示正文:交换代数是代数学中的一个重要分支,主要研究具有交换性的结合律和分配律的代数结构。
Eisenbud 交换代数是这一领域的一个重要成果,它的定义、性质及其与其他交换代数的关系等问题一直是数学家们关注的焦点。
Eisenbud 交换代数是由数学家David Eisenbud 在20 世纪80 年代提出的,它的主要思想是将经典的交换代数进行扩展,以更好地刻画代数几何中的一些现象。
具体来说,Eisenbud 交换代数是一种具有某些局部性质的交换代数,这种局部性质使得它能够更好地处理代数几何中的局部问题。
与经典交换代数相比,Eisenbud 交换代数具有更强的表达能力。
例如,它可以更好地描述代数几何中的奇点现象。
然而,Eisenbud 交换代数也有其局限性,比如在处理一些全局性质问题时,它的表达能力可能不如经典交换代数。
在应用方面,Eisenbud 交换代数在代数几何、数论等领域都取得了重要的成果。
例如,它在研究代数曲面的奇点、代数簇的有限生成性质等问题时发挥了关键作用。
同时,Eisenbud 交换代数也为这些领域的研究提供了新的研究方法和思路。
总之,Eisenbud 交换代数是交换代数学的一个重要成果,它在刻画代数几何中的局部性质方面具有独特的优势。
尽管它还存在一些局限性,但无疑为代数学的研究提供了一个有力的工具。
Heisenberg群上二阶左不变LPDO的局部可解性—辛变换
技巧
佚名
【期刊名称】《兰州大学学报(自然科学版)》
【年(卷),期】1992(000)001
【摘要】无
【总页数】1页(P1)
【正文语种】中文
【中图分类】O1
【相关文献】
1.Heisenberg群上一类非齐次左不变微分算子局部可解的必要条件 [J], 傅初黎
2.关于Heisenderg群上左不变微分算子可解性的一点注记 [J], 钮鹏程;
3.幂零李群上非齐次左不变微分算子局部可解的必要条件 [J], 屈长征
4.Heisenberg群上的一类奇性左不变微分算子的初值问题和基本解 [J], 牛鹏程;郑驻军
5.Heisenberg群上一类左不变LPDO的局部基本解及局部可解性 [J], 崔尚斌因版权原因,仅展示原文概要,查看原文内容请购买。
eisenbud交换代数solutions
摘要:
I.引言
- 介绍交换代数及其在数学中的重要性
- 概述Eisenbud 交换代数解决方案的主要内容
II.Eisenbud 交换代数解决方案的背景和基本概念
- 交换代数的基本定义和性质
- 介绍Eisenbud 交换代数解决方案所涉及的范畴和模型
III.Eisenbud 交换代数解决方案的主要结果
- 详细阐述Eisenbud 交换代数解决方案的主要定理和结论
- 解释这些结果在代数几何、数论等领域的应用
IV.Eisenbud 交换代数解决方案的证明方法
- 介绍Eisenbud 交换代数解决方案所采用的主要证明方法,如局部化、同调论等
- 分析这些证明方法的优缺点及适用范围
V.Eisenbud 交换代数解决方案的影响和意义
- 讨论Eisenbud 交换代数解决方案对代数学发展的贡献
- 与其他交换代数解决方案进行比较,分析其优缺点和局限性
VI.结论
- 总结Eisenbud 交换代数解决方案的主要内容
- 展望交换代数未来研究的方向和挑战
正文:
I.引言
交换代数作为代数学的一个重要分支,研究的是具有交换性质的环及其上的模。
它在几何、数论、量子力学等领域具有广泛的应用。
Eisenbud 交换代数解决方案是近年来在这一领域取得的重要成果之一,为我们理解交换代数的性质和结构提供了有力的工具。
本文将介绍Eisenbud 交换代数解决方案的主要内容,并分析其在代数学中的重要意义。
II.Eisenbud 交换代数解决方案的背景和基本概念
为了更好地理解Eisenbud 交换代数解决方案,我们先简要回顾一下交换代数的基本定义和性质。
设R 是一个环,如果对任意的a, b∈R,有ab = ba,则称R 是一个交换环。
交换环上的模是一个具有结合律的R-线性运算,满足交换律的R-向量空间。
Eisenbud 交换代数解决方案主要关注的是具有交换性质的环及其上的模。
在此背景下,Eisenbud 交换代数解决方案涉及的一些基本概念如下:
1.交换代数中的范畴和模型。
2.局部化和同调论等基本方法。
III.Eisenbud 交换代数解决方案的主要结果
Eisenbud 交换代数解决方案包括一系列重要的定理和结论。
这里我们列举其中的几个主要结果:
1.Eisenbud 证明了交换代数中一个重要的维数公式,从而为研究代数簇的维数提供了一个新的工具。
2.他提出了一种用同调论方法研究交换代数的方法,进一步揭示了交换代
数与代数几何之间的联系。
3.Eisenbud 还发现了一种新的方法来研究代数中的同构问题,为这一领域的研究提供了新的思路。
IV.Eisenbud 交换代数解决方案的证明方法
Eisenbud 交换代数解决方案采用了多种证明方法,其中局部化、同调论等方法起着关键作用。
例如,他在证明维数公式时采用了局部化方法,而在研究同构问题时则运用了同调论。
这些证明方法在揭示交换代数的性质和结构方面具有重要的意义。
V.Eisenbud 交换代数解决方案的影响和意义
Eisenbud 交换代数解决方案对代数学的发展产生了深远的影响。
首先,它丰富了交换代数的理论体系,为这一领域的研究提供了新的工具。
其次,Eisenbud 交换代数解决方案揭示了交换代数与代数几何、数论等领域的深刻联系,为这些领域的研究提供了新的思路。
最后,这一成果对培养代数学人才,推动学术交流也发挥了重要作用。
VI.结论
本文介绍了Eisenbud 交换代数解决方案的主要内容,分析了其在代数学中的重要意义。
这一成果为我们理解交换代数的性质和结构提供了有力的工具,同时也为代数学未来的研究指明了方向。