《数学分析》教案(华师大版)《数学分析》教案(华师大版)
- 格式:doc
- 大小:169.00 KB
- 文档页数:19
第一章实数集与函数导言数学分析课程简介( 2 学时)一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
《数学分析》概述授课章节:《数学分析》概述教学目的:1.通过教学使学生对《数学分析》这门课有总体的了解,明确研究对象及主要内容; 2.通过教学使学生明确《数学分析》课在所学专业中的地位和主要作用,以引起重视; 3.通过教学使学生明确《数学分析》的课程安排、考核及成绩的评定标准;4.通过教学使学生懂得参考书的使用及作业的要求.教学重点:数学分析的研究对象、主要内容.教学难点:主要内容的介绍.教学方法:讲座形式.教学程序:讲座提纲1.《数学分析》这门课到底要研究什么(即研究对象)?2.《数学分析》的主要内容;3.《数学分析》与后继课程的关系;4.《数学分析》课程安排及考核;5.《数学分析》学习中应该注意的一些问题;6.《数学分析》的参考书目;7.作业要求.一、研究对象变量间的关系及变化过程,具体表现为函数及其性质.函数及其性质:单调性、有界性、奇偶性、最大(小)值、极大(小)值、周期性、图象、……需要指明的是:中学也研究函数的这些性质,但主要采用“静止”、“孤立”的方法去研究函数.而在《数学分析》中主要采用“运动”、“联系”、“变化”的过程把握变化的结果.因而《数学分析》中的方法具“运动性”、“变化性”.如何研究函数?通过什么方式、角度去研究呢?或用什么样的工具去研究函数呢?这些构成《数学分析》的主要内容.二、主要内容1.极限的方法(极限论).(2、3、4、16章) 例如,从极限的观点看函数1y x=. 一般函数的极限如何定义?其性质如何?—----极限论.2.微分(学).(5、6、17、18章)研究函数的增量相对于自变量的增量的变化率问题.例如:设()y f x =是一函数,令0,x x x =- 0()().y f x x f x ∆=+- 要问y ∆随x ∆的变化趋势如何?特别地,y x∆∆的变化趋势如何? 3.积分学:(8、9、10、11、19、20、21、22章)4.级数论:(12、13、14、15章) 研究无穷多个函数的可和性问题.例如211(||1)1n x x x x x-+++++=<- .综上,《数学分析》这门课主要由四大块内容组成:极限论、微分论、积分学和级数论.这四大块不是孤立的,而是存在着密切的联系.其中“极限论”是“基础”,其它是“上层建筑”.但这里需要提出的是,作为“基础”的“极限理论”的完善远远晚于其它几个方面的应用,因而引起许多争议.对此感兴趣的同学可读一读教材的附录中281-288页的“微积简史”部分,会对此有所了解.三、与后继课程的关系《数学分析》课程是数学系数学教育专业的专业基础核心课程,它的学习时间长(三个学期,234学时),学习内容多,学分最多(13学分),是从初等数学到高等数学过渡的桥梁,是学生学习数学教育专业其它后继课程(如:大学物理、微分方程、概率论与数理统计、微分几何、复变函数、计算机数值方法、实变函数与泛函分析等)的重要基础.这些课都以《数学分析》为先修课程,如果不开《数学分析》或晚开《数学分析》,将直接影响到这些课程的开设.同时还为培养学生分析问题和解决问题的能力提供必要的训练,从而提高学生的实践能力和创新能力.掌握这门课程的基本理论和基本方法,对于学习本专业基础课和专业课以及进一步学习、研究和应用都是至关重要.四、课程安排、考核及成绩评定方法1、学时分配:三个学期,总学时234,总学分13第一学期:每周5学时(上课内容从“第一章实数集与函数”到“第八章不定积分”,上课时间18周,学时90,学分5);第二学期:每周4学时(上课内容从“第九章定积分”到“第十五章傅里叶级数”,上课时间18周,学时72,学分4);第三学期:每周4学时(上课内容从“第十六章多元函数的极限与连续”到“第二十二章曲面积分”,上课时间18周,学时72,学分4).2、考核方式:闭卷考试(期中测验,期未期终考试).3、成绩评定:采用百分制平时成绩:30分(其中:1)作业占10%;2)听课率、课堂提问回答等占10%;3)期中测验占10%);期未考试:70分.五、学习体会从高中到大学,显然是衔接的,但毕竟是不同的阶段.主要表现在;中学数学 大学数学在教材方面 内容少,较直观、具体、理论性不强,研究的常量数学、固定的图形 内容多、较抽象、理论性强,研究的变量、图形的变化在听课方面 听 课前预习;课中认真听课和记笔记;课后及时复习在复习方面 整理笔记,及时复习在习题方面 主要是计算,验证少、理论性弱 概念、论证多、理论性强、数学语言表达准确,通过作业巩固学习内容六、参考书1.吴良森、毛羽辉等编《数学分析学习指导书》(上、下册),高等教育出版社,2004.8.2.刘玉琏、傅沛仁编《数学分析讲义》第三版(上、下册),高等教育出版社,1992.7.3.吉米多维奇著《数学分析习题集》,李荣冻译,人民教育出版社,1958.6.4.菲赫金哥尔茨著《微积分学教程》(修订本),叶彦谦等译,人民教育出版社,1959.8.七、作业要求作业整洁;字迹工整,书写清晰;解题格式要完整;勿抄作业,习题答案只能作为参考.。
第十九章含参量积分教案目地:1.掌握含参量正常积分地概念、性质及其计算方法; 2.掌握两种含参量反常积分地概念、性质及其计算方法; 3.掌握欧拉积分地形式及有关计算. 教案重点难点:本章地重点是含参量积分地性质及含参量反常积分地一致收敛性地判定;难点是一致收敛性地判定.b5E2RGbCAP教案时数:12学时§ 1含参量正常积分一. 含参积分:以实例和引入.定义含参积分和.含参积分提供了表达函数地又一手段 .我们称由含参积分表达地函数为含参积分.1. 含参积分地连续性:Th19.5 若函数在矩形域上连续 , 则函数在上连续 . ( 证 > P172Th19.8 若函数在矩形域上连续, 函数和在上连续 , 则函数在上连续. ( 证 >P173p1EanqFDPw2. 含参积分地可微性及其应用:Th 19.10 若函数及其偏导数都在矩形域上连续, 则函数在上可导 , 且.( 即积分和求导次序可换 > . ( 证 > P174Th 19.11 设函数及其偏导数都在矩形域上连续,函数和定义在, 值域在上 , 且可微 , 则含参积分在上可微 , 且DXDiTa9E3d. ( 证 >P174例1 计算积分. P176.例2设函数在点地某邻域内连续 . 验证当充分小时 , 函数地阶导数存在 , 且. P177.§ 2 含参反常积分一. 含参无穷积分:1.含参无穷积分:函数定义在上 ( 可以是无穷区间 > . 以为例介绍含参无穷积分表示地函数.RTCrpUDGiT2. 含参无穷积分地一致收敛性:逐点收敛( 或称点态收敛 > 地定义: , , 使.引出一致收敛问题 .定义(一致收敛性 > 设函数定义在上 . 若对, 使对成立, 则称含参无穷积分在( 关于>一致收敛.5PCzVD7HxATh 19.5 ( Cauchy收敛准则 > 积分在上一致收敛,对成立 .例1 证明含参量非正常积分在上一致收敛 , 其中. 但在区间内非一致收敛 . P180jLBHrnAILg3. 含参无穷积分与函数项级数地关系:Th 19.6 积分在上一致收敛, 对任一数列, ↗, 函数项级数在上一致收敛. ( 证略 >xHAQX74J0X二. 含参无穷积分一致收敛判别法:1. Weierstrass M 判别法: 设有函数, 使在上有. 若积分, 则积分在一致收敛. 例2 证明含参无穷积分在内一致收敛. P1822. Dirichlet判别法和Abel判别法: P182三. 含参无穷积分地解读性质: 含参无穷积分地解读性质实指由其所表达地函数地解读性质.1. 连续性: 积分号下取极限定理.Th 19.7 设函数在上连续 . 若积分在上一致收敛, 则函数在上连续. ( 化为级数进行证明或直接证明 >LDAYtRyKfE推论在Th.7地条件下 , 对, 有2. 可微性: 积分号下求导定理.Th 19.8 设函数和在上连续. 若积分在上收敛, 积分在一致收敛. 则函数在上可微,且.3. 可积性: 积分换序定理.Th 19.9 设函数在上连续. 若积分在上一致收敛, 则函数在上可积 , 且有.例3 计算积分P186四.含参瑕积分简介:§ 3 Euler积分本节介绍用含参广义积分表达地两个特殊函数 , 即和. 它们统称为Euler积分. 在积分计算等方面, 它们是很有用地两个特殊函数.Zzz6ZB2Ltk一. Gamma函数——Euler第二型积分:1. Gamma函数: 考虑无穷限含参积分,当时, 点还是该积分地瑕点 . 因此我们把该积分分为来讨论其敛散性 .: 时为正常积分 .时, .利用非负函数积地Cauchy判别法, 注意到时积分收敛 . (易见时, 仍用Cauchy判别法判得积分发散 >. 因此, 时积分收敛 .dvzfvkwMI1: 对R成立,.因此积分对R收敛.综上 , 时积分收敛 . 称该积分为Euler第二型积分.Euler 第二型积分定义了内地一个函数, 称该函数为Gamma函数, 记为,即rqyn14ZNXI=, .函数是一个很有用地特殊函数 .2. 函数地连续性和可导性:在区间内非一致收敛 . 这是因为时积分发散. 这里利用了下面地结果: 若含参广义积分在内收敛, 但在点发散, 则积分在内非一致收敛 .EmxvxOtOco但在区间内闭一致收敛 .即在任何上 , 一致收敛 . 因为时, 对积分, 有, 而积分收敛.对积分, , 而积分收敛. 由M—判法, 它们都一致收敛, 积分在区间上一致收敛 .作类似地讨论, 可得积分也在区间内闭一致收敛. 于是可得如下结论:地连续性: 在区间内连续 .地可导性: 在区间内可导, 且.同理可得: 在区间内任意阶可导, 且.3. 凸性与极值:, 在区间内严格下凸.( 参下段 >, 在区间内唯一地极限小值点( 亦为最小值点 > 介于1与2 之间 .4. 地递推公式函数表:地递推公式 : .证..于是, 利用递推公式得:,,, …………, ,一般地有.可见 , 在上, 正是正整数阶乘地表达式 . 倘定义, 易见对,该定义是有意义地. 因此, 可视为内实数地阶乘. 这样一来, 我们很自然地把正整数地阶乘延拓到了内地所有实数上, 于是, 自然就有, 可见在初等数学中规定是很合理地.SixE2yXPq5函数表: 很多繁杂地积分计算问题可化为函数来处理. 人们仿三角函数表、对数表等函数表, 制订了函数表供查. 由函数地递推公式可见, 有了函数在内地值, 即可对, 求得地值. 通常把内函数地某些近似值制成表, 称这样地表为函数表也有在内编制地函数表.>6ewMyirQFL5. 函数地延拓:时, 该式右端在时也有意义 . 用其作为时地定义, 即把延拓到了内.时, 依式, 利用延拓后地, 又可把延拓到内 .kavU42VRUs依此 , 可把延拓到内除去地所有点. 经过如此延拓后地地图象如 P192图表19—2.例1 求, , . ( 查表得.>解.>, .6. 函数地其他形式和一个特殊值:某些积分可通过换元或分部积分若干次后化为函数 . 倘能如此, 可查函数表求得该积分地值.常见变形有:ⅰ> 令, 有=,因此, , .ⅱ> 令.注意到 P7地结果, 得地一个特殊值.ⅲ> 令, 得. 取, 得.例2 计算积分, 其中.解I.二. Beta函数——Euler第一型积分:1.Beta函数及其连续性:称( 含有两个参数地 >含参积分为Euler第一型积分. 当和中至少有一个小于 1 时, 该积分为瑕积分. 下证对, 该积分收敛. 由于时点和均为瑕点. 故把积分分成和考虑.y6v3ALoS89: 时为正常积分。
§5 微积分基本定理.定积分计算(续)教学要求:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 引入当函数的可积性问题告一段落,并对定积分的性质有了足够的认识之后,接着要来解决一个以前多次提到过的问题—在定积分形式下证明连续函数必定存在原函数.一. 变限积分与原函数的存在性设f(x)在[a,b]上可积,根据定积分的性质4,对任何x ∈[a,b],f(x)在[a,x]上也可积,于是由()()xax f t dt Φ=⎰,x ∈[a,b]定义了一个以积分上限x 为自变量的函数,称为变上限的定积分,类似地又可定义变下限的定积分,()()bxx f t dt ψ=⎰,x ∈[a,b],统称为变限积分。
注意在变限积分中不可再把积分变量写成x ,以免与积分上下限的x 相混淆。
变限积分所定义的函数有着重要性质,由于()()bxxbf t dt f t dt =-⎰⎰,因此只讨论变上限积分的情形。
定理9.9 若f(x)在[a,b]上可积,则()()xax f t dt Φ=⎰,x ∈[a,b]是连续函数。
证明 对[a,b]上任一确定的点x ,只要x+∆x ∈[a,b],则()()()x xx x xaaxf t dt f t dt f t dt +∆+∆∆Φ=-=⎰⎰⎰,因f(x)在[a,b]上有界,可设|f(t)|≤M ,t ∈[a,b],于是当∆x>0时有|||()||()|x xx xxxM f t dt f t dt x +∆+∆∆Φ=∆⎰⎰≤≤,当∆x<0时有||||M x ∆Φ∆≤,由此得到lim 0x ∆→∆Φ=,即证得在点x 处连续。
由x 得任意性,Φ(x)在[a,b]上处处连续。
定理9.10原函数存在定理 若f(x)在[a,b]上连续,则Φ(x)在[a,b]上处处可导,且Φ'(x)=f(x),即()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰ 证明 对[a,b]上任一确定的x ,当∆x ≠0且x+∆x ∈[a,b]时,根据积分第一中值定理得,1()(),01x xx f t dt f x x x xθθ+∆∆Φ==+∆∆∆⎰≤≤,由于f(x)在点x 处连续,故有00()lim lim ()()x x x f x x f x x θ∆→∆→∆Φ'Φ==+∆=∆,由于x 在[a,b]上的任意性,证得Φ(x)是f(x)在[a,b]上的一个原函数。
第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:1.简单图形:型和型平面图形 .2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.例1求由曲线围成的平面图形的面积.例2求由抛物线与直线所围平面图形的面积.(二)参数方程下曲边梯形的面积公式:设区间上的曲边梯形的曲边由方程给出 . 又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .例3求由摆线的一拱与轴所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为, 顶角为的扇形面积为 . )例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点, 倾角为的两条直线之间 ) . 以代方程不变,图形关于轴对称 ; 以代, 方程不变,图形关于轴对称 . 参阅P242 图10-6因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
§3 平面曲线的弧长与曲率一 平面曲线的弧长先建立平面曲线弧长的概念,设C=AB 是一条没有自交点的非闭的平面曲线,在C 上从A 到B 依次取分点A=P 0,P 1,P 2,…,P n =B,它们成为对曲线C 的一个分割,记为T ,然后用线段连接T 中每相邻两点,得到C 的n 条弦1(1,2,...,)i i P P i n -=,这n 条弦又成为C 的一条内接折线,记||T||=max|P i-1P i |,11||nT i ii s PP -==∑分别表示最长弦的长度和折线的总长度。
定义1 如果存在有限极限||||0lim s T T s →=,即任给ε>0,恒存在δ>0,使得对于C 的任何分割T ,只要||T||<δ,就有|s T -s|<ε,曲线C 是可求长的,并把s 定义为曲线C 的弧长。
定理10.1 设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程x=x(t),y=y(t),t ∈[α,β]给出,若x(t)、y(t)在[α,β]上连续可微,则C 是可求长的,且弧长为s βα=⎰。
证明 对C 作任一分割T={ P 0,P 1,P 2,…,P n },并设P0与Pn 分别对应t=α和t=β,且P i (x i ,y i )=(x(t i ),y(t i )),i=1,2,…,n -1,于是与T 对应得到区间[α,β]的一个分割T':α=t 0,t 1,t 2,…,t n =β。
现在用反证法先证明||||0lim ||||0T T →'=.假设||||0lim ||||0T T →'≠,则存在ε0>0,对于任何δ>0,都可以找到一个分割T 使得||T||<δ而同时||T'||>ε0,从而可以找到C 上两点Q'和Q'',使得|Q''Q'|<δ,而它们对应的参量t'和t''满足|t't''|≥ε0,依次取δ=1/n,n=1,2,…,则得到两个点列{Q'n }和{Q''n }和它们对应的参量数列{t'n }和{t''n },它们满足|Q n ''Q n '|<1/n, |t'n t''n |≥ε0,由致密性定理,存在子列{}{}k kn n t t '''及,和t*和t**∈[α,β],使得lim *,lim **k knn k k t t t t →∞→∞'''==,显然|t*-t**|≥ε0,即t*≠t**。
第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。
教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。
教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸。