数学分析PPT电子课件教案第十八章 极值与条件极值
- 格式:docx
- 大小:16.55 KB
- 文档页数:2
第十八章 隐函数定理及其定理4条件极值引例:设计一个容量为V, 而表面积最小的长方形开口水箱. 设水箱的长、宽、高分别为x,y,z ,则表面积为S(x,y,z)=2(xz+yz)+xy. 即面积函数的自变量要符合定义域的要求(x>0,y>0,z>0),且须满足 xyz=V, 这类附有约束条件的极值问题称为条件极值问题.一般形式:在条件组φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 目标函数y=( x 1,…,x n )的极值.解法:1、消元法,如引例中的条件可化为z=xyV,代入函数S 得: F(x,y)=S(x,y,xy V)=2V(x 1+y1)+xy. 由(F x ,F y )=(0,0)求得稳定点(32V ,32V ), 可求得最小面积S=3324V .2、拉格朗日乘数法:欲求函数z=f(x,y)的极值,限制条件为C: φ(x,y)=0. 把C 看作(x,y)的曲线方程,设C 上一点P 0(x 0,y 0)为f 满足条件的极值点, 且在点P 0的某邻域上φ(x,y)=0能惟一确定可微的隐函数y=g(x), 则 x=x 0必为z=f(x,g(x))=h(x)的极值点. 由f 在P 0可微, g 在x 0可微, 可得 h ’(x 0)=f x (x 0,y 0)+f y (x 0,y 0)g ’(x 0)=0, 且当φ满足隐函数定理条件时,有 g ’(x 0)=-),(),(0000y x y x y x ϕϕ, 代入上式得:f x (P 0)φy (P 0)-f y (P 0)φx (P 0)=0. 几何意义上,上式表示曲面z=f(x,y)的等高线f(x,y)=f(P 0)与曲线C 在P 0有公共切线.从而存在某常数λ0, 使得在P 0处满足:⎪⎭⎪⎬⎫==+=+0)(0)()(0)()(0000000P P P f P P f y y x x ϕϕλϕλ,引入辅助变量λ和辅助函数L(x,y,λ)=f(x,y)+ λφ(x,y), 可得⎪⎭⎪⎬⎫===+==+=0)(),,(0)()(),,(0)()(),,(0000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕλϕλλϕλλλ, 即将条件极值问题转化为L 的无条件极值问题,称为拉格朗日乘数法, 其中函数L 称为拉格朗日函数,辅助变量λ称为拉格朗日乘数.注:一般条件极值问题的拉格朗日函数:(λ1,…,λn 为拉格朗日乘数) L(x 1,…,x n ,λ1,…,λm )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ.定理18.6:设在条件φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 函数y=( x 1,…,x n )的极值问题, 其中f 与φk 在区域D 上有连续的一阶偏导数.若D 的内点P 0(01x ,…,0.n x )是上述问题的极值点,且雅可比矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂⋯⋯∂∂⋯∂∂n mm n x x x x ϕϕϕϕ1111的秩为m, 则存在m 个常数01λ,…,0.m λ,使得 (01x ,…,0.n x ,01λ,…,0.m λ)为拉格朗日函数L(x 1,…,x n ,λ1,…,λn )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ的稳定点, 即(01x ,…,0.n x ,01λ,…,0.m λ)为n+m 个方程⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋯=⋯⋯=⋯==∂∂+∂∂⋯⋯=∂∂+∂∂∑∑==0),,(0),,(011111111111n m n mk n k k nx mk k k x x x L x x L x x f L x x f L m n ϕϕϕλϕλλλ的解.例1:用拉格朗日乘数法重新求本节开头提到的水箱设计问题. 解:所求问题的拉格朗日函数为L(x,y,z,λ)=2(xz+yz)+xy+λ(V-xyz),列方程组得:⎪⎪⎩⎪⎪⎨⎧=-==-+==-+==-+=00220202xyz V L xy y x L xz x z L yz y z L z yx λλλλ,解得:x=y=2z=32V ,λ=324V .∴水箱表面积最小值为:23333)2()22(222V V V V ++=3324V .注:由例1可得不等式:2(xz+yz)+xy ≥3324V =32)(4xyz , x>0,y>0,z>0.例2:抛物面x 2+y 2=z 被平面x+y+z=1截成一个椭圆. 求这个椭圆到原点的最长与最短距离.解:实质为求f(x,y,z)=x 2+y 2+z 2在条件x 2+y 2-z=0及x+y+z-1=0下的最值. 令L(x,y,z,λ,μ)=x 2+y 2+z 2+λ(x 2+y 2-z)+μ(x+y+z-1), 列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=0100202202222z y x L z y x L z L y y L x x L z y x μλμλμλμλ, 解得:λ=-3±35,μ=-7±311,x=y=231±-,z=2∓3.又f(231±-,231±-,z=2∓3)=9∓53. ∴椭圆到原点的最长距离为39+, 最短距离39-.例3:求f(x,y,z)=xyz 在条件x 1+y 1+z 1=r1,(x>0, y>0, z>0, r>0)下的极小值,并证明不等式3(a 1+b 1+c1)-1≤3abc , 其中a,b,c 为任意正实数. 解:令L(x,y,z,λ)=xyz+λ(x 1+y 1+z 1-r1), 列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==-==-==-=01111000222r z y x L zxy L y xz L xyz L z y x λλλλ,解得:x=y=z=3r, λ=(3r)4.把x 1+y1+z 1=r1看作隐函数z=z(x,y) (满足隐函数定理条件), 记F(x,y)=xyz(x,y)=f(x,y,z), 它是f 与z=z(x,y)的复合函数. 则有z x =-21x -/21z -=-22x z , z y =-22yz ; F x =yz+xyz x =yz-x yz 2, F y =xz-y xz 2; F xx =yz x +yz x +xyz xx =332x yz , F yy =332yxz , F xy =z+yz y +xz x +xyz xy =z-y z 2-x z 2+xy z 32;∵(F xx F yy -F xy 2)(3r,3r,3r)=27r 2>0, ∴f(3r,3r,3r)=(3r)3极小值, 也是最小值. 即有xyz ≥(3r)3, (x>0, y>0, z>0, 且x1+y1+z 1=r1).令x=a,y=b,x=c, 则r=(a 1+b 1+c 1)-1, 即有abc ≥[3(a 1+b 1+c 1)-1]3,或3(a 1+b 1+c1)-1≤3abc (a>0, b>0, c>0).习题1、应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=x 2+y 2, 若x+y-1=0;(2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0); (3)f(x,y,z)=xyz, 若x 2+y 2+z 2=1, x+y+z=0.解:(1)令L(x,y,λ)=x 2+y 2+λ(x+y-1), 列方程组:⎪⎩⎪⎨⎧=-+==+==+=010202y x L y L x L y x λλλ,解得:λ=-1, x=y=21. 又当x →∞, y →∞时,f →∞, ∴函数在唯一的稳定点取得极小值f(21,21)=21. (2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0);令L(x,y,z,t,λ)=x+y+z+t+λ(xyzt-c 4), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+==+==+==+=0010101014c xyzt L xyz L xyt L xzt L yzt L tz y x λλλλλ, 解得:x=y=z=t=c.又当n 个正数的积一定时,其和必有最小值,∴函数在唯一的稳定点取得最小值也是极小值f(c,c,c,c)=4c.(3)令L(x,y,z,λ,μ)=xyz+λ(x 2+y 2+z 2-1)+μ(x+y+z), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==-++==++==++==++=001020202222z y x L z y x L z xy L y xz L x yz L zy x μλμλμλμλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==616261z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=616261z y x . ∵f 在有界集{(x,y,y)|x 2+y 2+z 2=1, x+y+z=0}上连续,∴存在最值.又f(61,61,-62)=f(-62,-61,61)=f(61,-62,61)=-631,f(-61,-61,62)=f(62,-61,-61)=f(-61,62,-61)=631, ∴f 在(61,61,-62),(-62,-61,61),(61,-62,61)取得极小值-631,在(-61,-61,62),(62,-61,-61),(-61,62,-61)取得极大值631.2、(1)求表面积一定而体积最大的长方体; (2)求体积一定而表面积最小的长方体.解:设长、宽、高分别为x,y,z ,则体积V=xyz, 表面积S=2xy+2yz+2zx,(1)记L(x,y,z,λ)=xyz+λ(2xy+2yz+2zx-S), 有⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=02220)(20)(20)(2S zx yz xy L y x xy L z x xz L z y yz L z yxλλλλ,解得:x=y=z=6S, ∴体积最大的长方体必在唯一的稳定点取得,即 表面积一定的长方体为正方体时,V=36⎪⎪⎭⎫ ⎝⎛S =66SS最大. (2)记L(x,y,z,λ)=2xy+2yz+2zx+λ(xyz-V), 有⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=0022022022V xyz L xy y x L xz z x L yz z y L z yx λλλλ,解得:x=y=z=3V , ∴表面积最小的长方体必在唯一的稳定点取得,即 体积一定的长方体为正方体时,表面积S=632V 最小.3、求空间一点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的最短距离.解:由题意,相当于求f(x,y,z)=d 2=(x-x 0)2+(y-y 0)2+(z-z 0)2在条件 Ax+By+Cz+D=0下的最小值问题.由几何学知,空间定点到平面的最短距离存在,可设L(x,y,z,λ)=(x-x 0)2+(y-y 0)2+(z-z 0)2+λ( Ax+By+Cz+D), 列方程组有⎪⎪⎩⎪⎪⎨⎧=+++==+-==+-==+-=00)(20)(20)(2000D Cz By Ax L C z z L B y y L A x x L z y x λλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=-+++++=-+++++=-222000022200002220000)()()(C B A D Cz By Ax C z z C B A D Cz By Ax B y y C B A D Cz By Ax A x x , ∴f 的最小值必在惟一的稳定点取得,即 d=202020)()()(z z y y x x -+-+-=222000||CB A D Cz By Ax +++++为所求最短距离.4、证明:在n 个正数的和为定值条件x 1+x 2+…+x n =a 下,这n 个正数的乘积x 1x 2…x n 的最大值为n nna . 并由此结果推出n 个正数的几何平均值不大于算术平均值n n x x x ⋯21≤nx x x n+⋯++21.证:记L(x 1,x 2,…,x n ,λ)=x 1x 2…x n +λ(x 1+x 2+…+x n -a), (x 1,x 2,…,x n >0)列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+⋯++==+⋯=⋯⋯=+⋯⋯=⋯⋯=+⋯==+⋯=-+-000002112111214313221a x x x L x x x L x x x x x L x x x x L x x x L n n x nk k x n x n x n k λλλλλ, 解得:x 1=x 2=…=x n =n a. ∴最大值必在惟一的稳定点取得,即f(n a ,n a ,…,n a )=n nna 最大.又x 1x 2…x n ≤n n n a ,∴n n x x x ⋯21≤na =n x x x n+⋯++21.5、设a 1,a 2,…,a n 为已知的n 个正数,求f(x 1,x 2,…,x n )=∑=nk k k x a 1在限制条件x 12+x 22+…+x n 2≤1下的最大值. 解:记x 12+x 22+…+x n 2=r ≤1, L(x 1,x 2,…,x n ,λ)=∑=nk k k x a 1+λ(x 12+x 22+…+x n 2-r),列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+⋯++==+=⋯⋯=+==+=rx x x L x a L x a L x a L n nn x x x n22221221102020221λλλλ, 解得:x i =∑=±nk kiaa r 12, (i=1,2,…,n)可知,当x i =∑=±nk kiaa r 12, 且r=1时,取得最大值f M =∑=nk ka12.6、求函数f(x 1,x 2,…,x n )=x 12+x 22+…+x n 2在条件∑=nk k kx a1=1(a k >0,k=1,2,…,n)下的最小值. 解:记L(x 1,x 2,…,x n ,λ)=x 12+x 22+…+x n 2+λ(∑=nk k kx a1-1),列方程组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⋯⋯=+==+=∑=10202021221121n k k k n n x x x x a L a x L a x L a x L n λλλλ, 解得:x i =∑=n k k i a a 12, (i=1,2,…,n),∴函数在唯一的稳定点取得最小值F m =∑=nk ka121.7、利用条件极值方法证明不等式xy 2z 3≤10866⎪⎭⎫⎝⎛++z y x , x,y,z>0.证 :记L(x,y,z,λ)=xy 2z 3+λ(x+y+z-a), (x,y,z>0, a>0),列方程组有⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=00302022332a z y x L z xy L xyz L z y L z yxλλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===236a z a y a x , 又当n 个正数的和一定时,其积必有最大值,∴xy 2z 3≤32236⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a a =6633322⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯a =10866⎪⎭⎫⎝⎛++z y x .。
第十八章隐函数定理及其应用教学目的:1.理解隐函数定理的有关概念及隐函数存在的条件,进而会求隐函数的导数;2.了解隐函数组的有关概念,理解二元隐函数组存在的条件,了解反函数组存在的条件;3.掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决。
教学重点难点:本章的重点是隐函数定理;难点是隐函数定理的证明。
教学时数:14学时§1 隐函数一.隐函数概念:隐函数是表达函数的又一种方法.隐函数及其几何意义: 以为例作介绍.1.2.隐函数的两个问题:ⅰ>隐函数的存在性; ⅱ> 隐函数的解析性质.二.隐函数存在条件的直观意义:三.隐函数定理:Th 1 ( 隐函数存在唯一性定理) 若满足下列条件:ⅰ> 函数在以为内点的某一区域D上连续;ⅱ> ; ( 通常称这一条件为初始条件);ⅲ> 在D内存在连续的偏导数ⅳ> .的某邻域()D内, 方程唯一地确定一个定义在则在点某区间内的隐函数⑴,时()且.在区间内连续 .⑵函数四.隐函数可微性定理:满足隐函数存在唯一性定理的条件, 又设在D内Th 2 设函数存在且连续 . 则隐函数. ( 证)在点满足隐函数存在例1 验证方程唯一性定理的条件, 并求隐函数的导数 . P149例1. 其中为由方程所确定例2的隐函数 . 求. P150例2 ( 仿)在点的某邻域内例3 ( 反函数存在性及其导数) 设函数有连续的导函数函数, 并求反函数的导数. P151例4五. 元隐函数: P149 Th3. 验证在点存在是例4§2隐函数组一.隐函数组:从四个未知数两个方程的方程组入手介绍隐函数组,一般形式为*二.隐函数组定理:分析从上述线性方程组中解出和的条件入手, 对方程组*在一定条件下拟线性化, 分析可解出和的条件, 得出以下定理 .Th 1 ( 隐函数组定理) P153 Th 4.例1P154例1.三.反函数组和坐标变换:1.反函数组存在定理:Th 2 (反函数组定理) P155 Th 52.坐标变换: 两个重要的坐标变换.例2 , 3 P156—157例2 , 3 .§3 几何应用平面曲线的切线与法线: 设平面曲线方程为. 有一..,切线方程为法线方程为例1求Descartes叶形线在点处的切线和二.空间曲线的切线与法平面:曲线由参数式给出: .1.切线方程为.法平面方程为.的方程为2. 曲线由两面交线式给出: 设曲线点在上. 推导切线公式. [1]P209.切线方程为.法平面方程为.例2P161例2 .三.曲面的切平面与法线:的方程为, 点在上. 推导切面公设曲面式.1]P211.切平面方程为.法定义域线方程为.例3P162例3 .§4 条件极值一.条件极值问题: 先提出下例:的长方体形开口水箱 . 确定长、宽和高, 使例要设计一个容积为水箱的表面积最小 . 分别以、为: 在约束条件之下求函数二. 条件极值点的必要条件:之下求函数的极值 . 当满足约束条件设在约束条件的点存在条件时, 由方程的极限点, 有.代入, 就有, 、、、均表示相应偏导数在点的值 . )( 以下即—可见向量(, )与向量, )正交. 注意到向量, ), )与向量, )线性相关,即存在实数, 使(, ) + , ).亦即二.Lagrange乘数法:在约束条件之下的条件极值由上述讨论可见, 函数点应是方程组的解.倘引进所谓Lagrange函数为Lagrange乘数), ( 称其中的实数则上述方程组即为方程组以三元函数, 两个约束条件为例介绍Lagrange乘数法的一般情况 .四、用Lagrange乘数法解应用问题举例:求容积为的长方体形开口水箱的最小表面积 . P166例1例1抛物面被平面截成一个椭圆. 求该椭圆例2到坐标原点的最长和最短距离 . P167例2求函数在条件例3下的极小值. 并证明不等式, 其中为任意正常数.168 例3。
数学分析PPT电子课件教案-第十八章极值与条件极值
1、第十八章:极值与条件极值,第一节极值与最小二乘法,一、多元函数的极值,定义:若函数,则称函数在该点取得极大值(微小值).,例如:,在点(0,0)有微
小值;,在点(0,0)有极大值;,在点(0,0)无极值.,极大值和微小值,统称为极值,,使函数取得极值的点称为极值点.,,的某邻域内有,说明:使偏导数都为0的点称为驻点.,例如,,定理1(必要条件),函数,偏导数,,证:,据一元函数极值的必要条件可知定理结论成立.,取得极值,,取得极值,取得极值,但驻点不肯定是极值点.,有驻点(0,0),,但在该点不取极值.,且在该点取得极值,
2、,则有,存在,故,定理2(充分条件),的某邻域内具有一阶和二阶连续偏导数,且,令,若函数,二、最值应用问题,,函数f在闭域上连续,函数f在闭域上可到达最值,,最值可疑点,稳定点,偏导数不存在的点,边界上的最值点,特殊,当区域内部最值存在,且只有一个极值点P时,,为微小值,,为最小值,(大),(大),根据,第二节条件极值与拉格朗日乘数法,三、条件极值,极值问题,无条件极值:,条件极值:,条件极值的求法:,方法1代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,,还有其它条件限制,例如,,
3、,方法2拉格朗日乘数法.,如方法1所述,,则问题等价于一元函数,可确定隐函数,的极值问题,,极值点必满足,设,记,例如,,故,故有,引入帮助函数,帮助函数F称为拉格朗日(Lagrange)函数.,利用拉格,极值点必满足,,则极值点满足:,,朗日函数求极值的方法称为拉格朗日乘数法.,例1.求满足约束条件,的最大值。
,解:作拉格朗日函数:,令,即,稳定点:,由实际问题知所求最大值必存在,而稳定点又唯一,因此唯一的稳定点就是最大值点。
故球内接长方体中以正方体的体积最大。
,例2.求在约束条件,下的微小值;,并证明不等式:,解:作拉
4、格朗日函数:,令,即,稳定点:,下面判别稳定点是极值点,记,则,故方程,在稳定点附近可唯一确定可微数,令,如今用二元函数取极值的充分条件判别,是的极值点。
,由约束条件得:,从而,故在点有,.因此在取微小值,,这等价于在取微小值,分析约束集,是一无界集。
当在内远离原点时,函数将趋于正无,穷。
因此,函数的唯一微小值点是函数的最小值点,即,代入得,,推广,拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.,设,解方程组,可得到条件极
值的可疑点.,例如,求函数,下的极值.,在条件,,内容小节,1.函数的极值问题,
第一步利用必要
5、条件在定义域内找驻点.,即解方程组,第二步利用充分条件判别驻点是否为极值点.,2.函数的条件极值问题,(1)简洁问题用代入法,如对二元函数,(2)一般问题用拉格朗日乘数法,设拉格朗日函数,如求二元函数,下的极值,,解方程组,第二步判别,?比较驻点及边界点上函数值的大小,?依据问题的实际意义确定最值,第一步找目标函数,确定定义域(及约束条件),3.函数的最值问题,在条件,求驻点.,,习题,例1.,求函数,解:第一步求驻点.,得驻点:(1,0),(1,2),(–
3,0),(–3,2).,第二步判别.,在点(1,0)处,为微小值
6、;,解方程组,,,,的极值.,求二阶偏导数,,,,,在点(?3,0)处,不是极值;,在点(?3,2)处,为极大值.,在点(1,2)处,不是极值;,,例2.商量函数,及,是否取得极值.,解:明显(0,0)都是它们的驻点,,在(0,0)点邻域内的取值,,因此z(0,0)不是极值.,因此,为微小值.,,正,负,0,在点(0,0),并且在(0,0)都有,可能为,例3.,解:设水箱长,宽分别为x,ym,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,依据实际问题可知最小值在定义域内应存在,,的有盖长方体水,问
7、当长、宽、高各取怎样的尺寸时,才能使用料最省?,,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时,水箱所用材料最省.,例4.有一宽为24cm的长方形铁板,,把它折起来做成,解:设折起来的边长为xcm,,则断面面积,,一个断面为等腰梯形的水槽,,倾角为?,,,,积最大.,为,,问怎样折法才能使断面面,,令,,解得:,由题意知,最大值在定义域D内到达,,而在域D内只有,一个驻点,,故此点即为所求.,,,,例5.,要设计一个容量为,则问题为求x,y,,令,解方程组,解:设x,y,z分别表示长、宽、高,,下水箱外表
8、积,最小.,z使在条件,,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱,试问,补充题,已知平面上两定点A(1,3),B(4,2),,试在椭圆,圆周上求一点C,使,△ABC面积S△最大.,解答提示:,设C点坐标为(x,y),,则,设拉格朗日函数,解方程组,得驻点,对应面积,而,比较可知,点C与E重合时,三角形,面积最大.,,,作业,P102:2.4.6,。