全基因扩增的引物设计步骤
- 格式:docx
- 大小:37.40 KB
- 文档页数:4
PCR引物设计流程(以扩增鹅PHIP基因编码区序列为例)一.流程图二.确定模板1.确定模板来源物种近亲物种:原鸡,绿头野鸭,鸽,雀,鹦鹉,蜂鸟等常用物种:灵长类(人,大猩猩,恒河猴),哺乳类(大鼠,小家鼠,猪,牛,羊,狗),爬行类(鳄,龟),两栖类(蛙,蟾蜍),鱼类(斑马鱼,亚马逊帆鱼)一般在每一类常用物种中选择一个物种,在近亲物种中选择2种以上作为模板。
如,扩增鹅PHIP基因选择以下物种序列为引物设计模板:鸡,鸭,人,小鼠,蟾蜍,斑马鱼。
2.利用NCBI得到各物种需扩增基因的模板序列A.进入NCBI主页/,选定搜索范围为“Gene”,关键词为“PHIP”,得到如下图搜索结果(也可在关键词中包含物种名,如“PHIP Anser”,物种的英文名和拉丁学名在搜索时都可使用)。
B.点击所需物种的PHIP基因,进入该基因的报告页面(以人PHIP基因为例)。
基因报告页面中部Refseq条目中显示该基因在NCBI中的参考序列,该条目下可得到mRNA序列。
如下图。
另,关于RefSeq条目的相关名词解释参考/refseq/about/。
C.需注意:对于同一基因的mRNA可能具有不同长度的剪切异构体,选择模板时不同物种应尽量选择同一异构体(一般选择最长的异构体)。
D.如需得到该基因所在基因组的序列信息(如扩增启动子区域时),在基因报告页面上部Genomic regions,transcripts,and products 条目下,点击Go to nucleotide选项下FASTA按钮可进入基因组(组装)序列页面。
E.在基因组(组装)序列页面中,默认仅显示跳转前基因的序列,在Change region show 条目中修改设置为Whole sequence得到基因组序列,在Send选项下保存即可。
3.整理下载的模板序列三.寻找保守区域保守区域的意义:基因的保守区域是指不同来源的同一个基因在某些区域没有差别或者差别很小。
PCR扩增的原理和操作步骤PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,通过扩增DNA片段,能在短时间内从极少量的DNA样本中大量产生目标DNA片段。
PCR的原理和操作步骤如下:PCR原理:PCR是通过逐渐增加的方式在体外复制DNA片段的技术,它包括三个步骤:变性、退火和延伸。
1. 变性(Denaturation):将含有目标DNA的样本加热至94-96℃,使DNA双链解开,产生两个单链DNA。
2. 退火(Annealing):将温度降至50-65℃,引入一对寡核苷酸引物/引模,它们在目标DNA的两个末端特异性结合。
引物的设计与目标DNA的序列互补。
其中的一段是在目标DNA序列的正向链上引物,另一段是在反向链上的引物。
3. 延伸(Extension):将温度升至72℃,引入热稳定的DNA聚合酶,使其延伸引物,生成新的DNA链。
延伸的速度约为300-1000个碱基每分钟。
如此一来,经过一次PCR循环,两条由引物引导的DNA链将被复制一次,重复进行多次PCR循环,DNA量会呈指数增长。
PCR操作步骤:1.DNA模板制备:从细胞中提取DNA,常用方法有裂解法和酶切法。
通过这些方法获得的DNA片段可作为PCR的模板。
2.引物设计:根据所需扩增的DNA序列设计引物。
引物通常由15-30个核苷酸组成,选择引物时要注意避免二聚体形成和引物之间的副产物形成。
3.反应体系设置:将PCR反应液配置至PCR试管或96孔板中,反应体系一般包括PCR缓冲液、dNTPs、模板DNA、引物、Mg2+离子和聚合酶等成分。
4.PCR循环程序:通常包括初步变性程序、循环变性程序和末端延伸程序。
初步变性程序为94-96℃,1-3分钟;循环变性程序为94-96℃,10-30秒;退火温度为50-65℃,20-60秒;延伸温度为72℃,20-60秒,延伸时间根据目标片段的长度确定,每一循环的延伸时间通常为片段长度的1-2秒。
引物设计的详细步骤详细步骤如下:步骤一:了解引物设计的基本原理引物设计是指为特定的DNA序列设计一对合适的引物,以便在PCR反应中扩增目标DNA序列。
引物是PCR反应的关键组成部分,引物的选择和设计对于PCR扩增的成功率和特异性非常重要。
因此,了解引物设计的基本原理对于有效设计合适的引物至关重要。
步骤二:确定PCR反应的目标序列在设计引物之前,我们需要确定PCR反应的目标序列,即我们需要扩增的DNA区域。
这个目标序列可以是已知的基因序列,也可以是未知的区域。
确定目标序列后,我们可以继续设计引物。
步骤三:确定引物的一些基本参数在设计引物之前,我们需要确定一些基本的参数,以便帮助我们选择合适的引物。
这些参数包括引物的长度、GC含量、Tm值以及避免二聚体形成等。
引物长度:通常来说,引物的长度应在18-25个核苷酸之间。
过长的引物可能导致不特异的扩增产物的形成,而过短的引物则可能导致低扩增效率。
GC含量:引物的GC含量对于引物的稳定性和特异性有影响。
在正常情况下,引物的GC含量应在40%-60%之间。
Tm值:引物的Tm值是指引物在PCR反应中的解离温度。
Tm值过低可能导致非特异的扩增产物的形成,而Tm值过高则可能导致低扩增效率。
避免二聚体形成:在设计引物时,我们还需要考虑引物之间的互补性以及避免引物形成二聚体。
引物之间的互补性可能导致引物形成二聚体,从而降低PCR反应的效率和特异性。
步骤四:选择合适的引物设计工具目前有很多在线引物设计工具可供选择,例如NCBI Primer-BLAST、OligoAnalyzer等。
这些工具可以根据输入的目标序列帮助我们快速选择合适的引物。
此外,还可以使用一些商业引物设计软件,如Primer Premier等。
步骤五:进行引物特异性分析设计好引物后,我们需要进行引物特异性分析,确保引物只扩增目标序列而不扩增其他非特异性产物。
这可以通过BLAST或其他相似性工具来完成。
特异性分析的目的是排除可能存在的非特异性扩增产物,以确保PCR反应的准确性和特异性。
实验室pcr扩增操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!实验室 PCR 扩增操作流程。
1. 准备反应混合物。
根据目标基因序列设计引物,引物长度通常为 18-25bp,Tm 值为 58-65°C。
如何设计PCR扩增引物1.找出这种细胞物种的PTN全长核苷酸序列2.采⽤primer premier 5.0软件设计引物设计应注意如下要点:● 1. 引物的长度⼀般为15-30 bp,常⽤的是18-27 bp,但不应⼤于38,因为过长会导致其延伸温度⼤于74℃,不适于Taq DNA聚合酶进⾏反应[2]。
● 2. 引物序列在模板内应当没有相似性较⾼,尤其是3’端相似性较⾼的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加[2]。
● 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较⼤的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显⾼于其他3个碱基,因此应当避免在引物的3’端使⽤碱基A[3][4]。
另外,引物⼆聚体或发夹结构也可能导致PCR 反应失败。
5’端序列对PCR影响不太⼤,因此常⽤来引进修饰位点或标记物[2]。
● 4. 引物序列的GC含量⼀般为40-60%,过⾼或过低都不利于引发反应。
上下游引物的GC含量不能相差太⼤[2][5]。
● 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种⽅法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使⽤的是最邻近法(the nearest neighbor method) [6][7]。
● 6. ΔG值是指DNA双链形成所需的⾃由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选⽤3’端ΔG值较低(绝对值不超过9),⽽5’端和中间ΔG值相对较⾼的引物。
引物的3’端的ΔG值过⾼,容易在错配位点形成双链结构并引发DNA聚合反应[6]。
●7. 引物⼆聚体及发夹结构的能值过⾼(超过4.5kcal/mol)易导致产⽣引物⼆聚体带,并且降低引物有效浓度⽽使PCR反应不能正常进⾏[8]。
●8. 对引物的修饰⼀般是在5’端增加酶切位点,应根据下⼀步实验中要插⼊PCR产物的载体的相应序列⽽确定。
全基因扩增的引物设计步骤引言全基因扩增(Whole Genome Amplification,WGA)是一种将整个基因组进行扩增的技术,可以从极少量的DNA样本中获得足够的DNA量进行后续实验。
在全基因扩增过程中,引物设计是至关重要的一步,它直接影响扩增效率和特异性。
本文将详细介绍全基因扩增的引物设计步骤。
引物设计步骤1. 确定扩增目标在进行全基因扩增之前,首先需要确定扩增的目标。
可以是整个基因组的扩增,也可以是特定区域的扩增。
根据扩增目标的不同,可以选择不同的引物设计策略。
2. 引物长度选择引物的长度对扩增效率和特异性有重要影响。
通常,引物的长度在18-30个碱基对之间。
较短的引物可以提高扩增效率,但可能会导致非特异性扩增产物的产生;较长的引物可以提高特异性,但可能会降低扩增效率。
3. 引物序列选择引物序列的选择是引物设计中最关键的一步。
以下是引物序列选择的几个要点: - 引物应具有足够的特异性,避免非特异性扩增产物的产生。
可以通过比对基因组数据库或使用引物设计软件来评估引物的特异性。
- 引物的GC含量应适中,一般在40-60%之间。
过高或过低的GC含量可能会影响扩增效率。
- 引物的3’端应尽量避免出现重复序列或富含AT或GC碱基对的序列,以减少扩增的非特异性。
- 引物的3’端还可以加入一些特定的序列,如限制性酶切位点、引物标签等,以方便后续实验操作。
4. 引物的互补性检查在引物设计完成后,需要进行引物的互补性检查。
引物之间的互补性可能会导致二聚体的形成,影响扩增效率和特异性。
可以使用引物设计软件或进行体外实验来检查引物之间的互补性。
5. 引物的合成合成引物时,可以选择商业合成或自行合成。
在合成引物时,需要注意以下几个问题: - 引物的纯度要求较高,以避免污染对扩增结果的影响。
- 引物的浓度要适中,一般在10-100 μM之间。
引物设计实例以下是一个全基因扩增引物设计的实例:1.扩增目标:整个基因组的扩增。
pcr扩增目的基因的原理PCR扩增目的基因的原理引言:PCR(聚合酶链式反应)是一种常用的分子生物学技术,可以扩增目的基因的DNA序列。
其原理基于DNA的双链结构和聚合酶的催化作用,在体外模拟DNA的复制过程,使得目的基因的DNA序列得以扩增。
本文将详细介绍PCR扩增目的基因的原理及其各个步骤。
一、PCR扩增原理:PCR扩增的原理基于DNA的双链结构和聚合酶的催化作用。
PCR 反应体系主要包括模板DNA、引物、核苷酸、酶和缓冲液等组分。
PCR反应通过不断循环的温度变化,使DNA的双链在高温下解链,然后在低温下引物与目的基因的互补序列结合,聚合酶在适温下催化新链的合成,从而实现目的基因的扩增。
二、PCR扩增步骤:1. 反应体系的准备:将PCR反应所需的核酸模板、引物、核苷酸、聚合酶和缓冲液按照一定比例混合,并搅拌均匀。
其中,核酸模板是待扩增的目的基因的DNA序列,引物是与目的基因的两端互补的短链DNA,核苷酸是DNA合成的原料,聚合酶是催化DNA合成的酶,缓冲液用于维持反应体系的pH值稳定。
2. Denaturation(变性):将反应体系置于高温条件(通常为94-98℃),使DNA的双链解开,形成两个单链的DNA模板。
这一步骤是为了使模板DNA的两条链分离,为后续的引物结合提供单链DNA的模板。
3. Annealing(退火):将反应体系降温至50-65℃,使引物与目的基因的DNA模板的互补序列结合。
引物的选择非常重要,它们必须与目的基因的两端互补,以确保引物能够特异性地结合到目的基因上。
4. Extension(延伸):将反应体系升温至72℃,使聚合酶在适温下催化新链的合成。
聚合酶以引物为模板,合成与目的基因DNA互补的新链。
这一步骤是PCR反应的关键步骤,也是目的基因扩增的过程。
5. 循环反应:将上述三个步骤循环重复,通常需要进行20-40个循环,以扩增足够数量的目的基因。
三、PCR扩增的影响因素:1. 引物的设计:引物的选择非常重要,它们必须与目的基因的两端互补,且长度适当。
简述pcr引物设计的基本步骤
PCR引物设计是PCR技术中至关重要的一步,它直接影响到PCR 反应的特异性和效率。
以下是PCR引物设计的基本步骤:
1. 确定目标序列,首先需要确定要扩增的目标DNA序列,这可以是基因、片段或者其他特定的DNA区域。
2. 引物长度,一般来说,PCR引物的长度应在18-25个碱基对之间,太短会影响特异性,太长则会影响引物的合成效率。
3. 引物的GC含量,引物的GC含量应在40-60%之间,这有助于提高引物与模板DNA的亲和力。
4. 引物特异性,引物应该与目标DNA序列高度特异性地结合,避免与其他非特异性DNA结合。
5. 引物序列的避让,避免引物序列中出现相互补的碱基对,以免引物之间发生非特异性结合。
6. 引物的末端,引物的末端应该避免出现多余的碱基对,以免
影响PCR扩增的效率。
7. 引物的Tm值,引物的熔解温度(Tm值)应该相似,一般来说,它们之间的差异不应超过5摄氏度。
在进行PCR引物设计时,以上这些基本步骤可以帮助确保PCR 反应的特异性和效率。
同时,也可以利用一些生物信息学工具来辅助引物设计,如NCBI的Primer-BLAST、IDT的PrimerQuest等。
PCR引物设计的好坏直接关系到PCR扩增的成功与否,因此在实验前务必进行充分的设计和验证。
pcr技术扩增目的基因的步骤
PCR(聚合酶链式反应)技术是一种用于扩增特定DNA 片段的技术。
以下是一般PCR 技术扩增目的基因的步骤:
1. 设计引物:根据目的基因的序列,设计一对特异性的引物。
引物是一小段DNA 序列,与目的基因的两端互补。
2. 制备模板DNA:从含有目的基因的样本中提取DNA 作为模板。
可以使用各种方法,如苯酚-氯仿提取法或商业试剂盒。
3. 反应体系准备:将模板DNA、引物、PCR 反应缓冲液、dNTP(脱氧核苷酸三磷酸)、DNA 聚合酶等试剂按照适当的比例混合在一起,形成PCR 反应体系。
4. 热循环:将反应体系放入PCR 仪中,进行热循环。
热循环包括三个步骤:变性、退火和延伸。
在变性步骤中,模板DNA 被加热至高温,使双链DNA 解开成为单链。
在退火步骤中,温度降低,引物与模板DNA 互补结合。
在延伸步骤中,温度再次升高,DNA 聚合酶开始合成新的DNA 链。
5. 循环次数:热循环通常进行多个循环,每个循环包括变性、退火和延伸步骤。
循环次数取决于目的基因的长度和扩增效率。
6. 产物分析:经过一定的循环次数后,PCR 反应产生大量的扩增产物。
可以通过琼脂糖凝胶电泳或其他方法对产物进行分析,以确认目的基因的扩增。
PCR 技术的具体步骤和条件可能因不同的实验目的和设备而有所差
异。
在进行PCR 实验之前,建议仔细阅读相关的实验指南和操作手册,并根据实际情况进行调整。
引物设计步骤与要点引物(primer)是在 DNA 或 RNA 聚合酶链式反应(PCR)或逆转录聚合酶链式反应(RT-PCR)中使用的短的 DNA 或 RNA 片段。
引物通过与目标序列的互补配对,为 PCR 或 RT-PCR 提供起始点,使得复制过程能够在目标序列上进行。
引物的设计是 PCR 或 RT-PCR 的关键步骤,影响其特异性和效率。
下面将介绍引物设计的步骤与要点。
引物设计的步骤如下:1.确定目标序列:首先要明确所需扩增的目标DNA或RNA序列。
例如,目标序列可以是特定基因的编码区域,或者是需要检测的病原体的DNA片段。
2. 引物长度:引物的长度通常在 18-30 bp 之间。
长度较长的引物可能会导致非特异性扩增,而较短的引物可能会导致不够稳定,产生非特异性扩增产物。
在设计引物时,应注意避免引物间或引物与模板间的互相互补性。
3.GC含量:引物的GC含量应在40-60%之间。
GC含量过高可能导致引物之间的二聚体形成,而GC含量过低可能导致引物的稳定性不足。
4.特异性:引物应与目标序列的特定部分互补配对,以确保特异性扩增。
在设计引物时,通常选择序列中的保守区域作为互补匹配的区域,以确保其在各物种或基因型中的适用性。
此外,可以通过使用在线工具,如NCBIBLAST,对引物进行特异性检测,以避免与非目标序列互补匹配。
5. 引物之间的互补配对:在 PCR 扩增中,引物通常成对使用,所以引物之间不应存在互补配对,以避免二聚体形成。
另外,引物对之间的距离应合适,通常在 100-300 bp 之间。
6.引物的末端设计:引物的末端设计直接影响PCR的效率和特异性。
在设计引物时,应注意避免末端的一些特定的串扰序列,如GGGG、CCCC、AAAA、TTTT等。
此外,引物的末端可以添加一些特定的序列,如引物标记和引物序列的识别序列,以便进一步的实验操作。
引物设计的要点如下:1.使用专业软件或在线工具进行辅助设计:可以使用一些专业的引物设计软件或在线工具来辅助引物的设计。
全基因扩增的引物设计步骤
全基因扩增是一种常用的基因组测序方法,它可以同时扩增整个基因组或某些特定区域的DNA序列。
在进行全基因扩增前,需要设计适合的引物。
下面将详细介绍全基因扩增的引物设计步骤。
一、确定目标基因组或区域
首先需要确定要扩增的目标基因组或区域。
这可以通过文献资料、数据库查询、实验经验等方式获得。
在确定目标基因组或区域时,需要考虑以下几个方面:
1. 目标基因组或区域的大小:全基因扩增需要设计一对引物,其长度通常为20-30个碱基对,能够覆盖目标序列的全部或大部分区域。
2. 目标序列的GC含量:GC含量高于50%或低于30%时,引物设计会更具挑战性。
3. 目标序列中是否存在重复序列:重复序列会使得引物无法特异性地结合到目标DNA上,从而导致非特异性扩增。
二、获取参考序列
获取参考序列是进行引物设计的关键步骤之一。
常用的参考序列包括已知基因组测序数据、转录本数据和EST(表达顺反转录本)序列。
在获取参考序列时,需要注意以下几个方面:
1. 确定参考序列的来源:不同来源的参考序列可能存在差异,需要根据实际情况选择合适的来源。
2. 确定参考序列的版本:同一基因组或转录本可能存在多个版本,需要选择最新、最全面、最准确的版本作为参考序列。
3. 确定参考序列的长度:通常选择包含目标区域或基因组全部或大部分区域的参考序列。
三、引物设计
引物设计是全基因扩增中最重要和最复杂的步骤之一。
引物设计需要满足以下几个要求:
1. 引物长度:引物长度通常为20-30个碱基对,太短会导致特异性不足,太长则会影响扩增效率。
2. 引物特异性:引物应该特异性地结合到目标DNA上,避免非特异
性扩增。
可以通过BLAST等软件进行引物特异性检测。
3. 引物Tm值:引物Tm值应该在50-65℃之间,过高或过低都会影响扩增效率。
4. 引物末端结构:引物末端应该避免出现稳定的二聚体结构或自身互补结构,以免影响扩增效率。
5. 引物位置:引物应该位于目标序列的两端,避免扩增出不必要的片段。
在进行引物设计时,可以使用一些软件辅助设计,如Primer3、Primer-BLAST等。
四、引物评价和验证
完成引物设计后,需要对设计的引物进行评价和验证。
常用的方法包括:
1. 特异性检测:使用PCR扩增目标序列和其他相关序列,检测引物是否特异性地扩增目标序列。
2. 效率评估:使用PCR扩增目标序列,观察扩增效果,并比较不同引
物的扩增效率。
3. 重复性测试:多次重复PCR反应,观察结果是否一致。
4. 测序验证:对PCR产物进行测序验证,确认是否为目标序列。
五、总结
全基因扩增是一种广泛应用于基因组学研究的方法。
在进行全基因扩
增前,需要进行引物设计。
引物设计是全基因扩增中最重要和最复杂
的步骤之一,需要满足长度、特异性、Tm值、末端结构、位置等要求。
完成引物设计后还需要进行评价和验证。
通过以上步骤的合理设计和
验证,可以获得高效、特异性的全基因扩增引物,为后续研究提供可
靠的数据支持。