人工智能期末复习资料全
- 格式:doc
- 大小:1.41 MB
- 文档页数:8
人工智能期末复习一、名词解释1、人工智能(学科):人工智能学科是计算机科学中涉及研究、设计和应用智能机器的一个分支,是一门综合性的交叉学科和边缘学科。
2、语义网络:语义网络是一种用实体及其语义关系来表达知识的有向图。
3、机器学习:机器学习就是让机器(计算机)来模拟和实现人类的学习功能。
4、正向推理产生式系统:正向推理也称数据驱动方式,它是从初始状态出发,朝着目标状态前进,正向使用规则的一种推理方法。
所谓正向使用规则,是指以问题的初始状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的前提时,该规则才被使用。
正向推理产生式系统简单明了,且能求出所有解,但是执行效率较低,具有一定的盲目性。
5、遗传算法:遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法。
6、人工智能(能力):是智能机器执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
7、机器学习系统:机器学习系统是指能够在一定程度上实现机器学习的系统。
8、逆向推理产生式系统:逆向推理也称目标驱动方式,它是从目标状态出发,朝着初始状态前进,反向使用规则的一种推理方法。
所谓逆向使用规则,是指以问题的目标状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的后件时,该规则才被使用。
逆向推理产生式系统不寻找无用数据,不使用与问题无关的规则。
9、演绎推理:演绎推理是从已知的一般性知识出发,去推出蕴含在这些已知知识中的适合于某种个别情况的结论。
是一种由一般到个别的推理方法,其核心是三段论,如假言推理、拒取式和假言三段论。
10、启发式搜索:状态空间的启发式搜索是一种能够利用搜索过程所得到的问题自身的一些特性信息来引导搜索过程尽快达到目标的搜索方法。
二、填空题1、目前人工智能的主要学派有下列三家:符号主义、联结主义和行为主义。
2、常用的知识表示方法有一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法和过程表示法。
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
《人工智能期末复习题》1.群智能与脑智能:脑智能是一种个体智能,是宏观心理层次上高级的智能。
群智能是一种社会智能(系统智能),属于微观生理层次上低级的神经元。
2.计算智能与符号智能:符号智能就是符号人工智能,它是模拟脑智能的人工智能,也就是所说的传统人工智能或经典人工智能。
计算智能就是计算人工智能,它是模拟群智能的人工智能。
3.搜索:顾名思义,就是从初始节点出发,沿着与之相连的边试探地前进,寻找目标节点的过程(也可以是反向进行)。
4.知识:就是人们对客观事物(包括自然的和人造的)及其规律的认识,知识还包括人们利用客观规律解决实际问题的方法和策略等。
5.自然计算:就是模仿或借鉴自然界的某种机理而设计计算模型,这类计算模型通常是一类具有自适应、自组织、自学习、自寻优能力的算法。
6.机器学习:顾名思义,机器学习就是让计算机模拟人的学习行为,或者说让计算机也具有学习的能力。
7.模式识别:则指的是用计算机进行物体识别。
8.决策树学习:决策树是一种知识表示形式,构造决策树可以由人来完成,但也可以由机器从一些实例中总结、归纳出来,即机器学习而得。
机器学习决策树也就是所说的决策树学习。
9.从系统结构看,智能计算机分为智能硬件平台和智能操作系统两大部分。
10.人工智能的三个最基本、最核心的技术实现人工智能的方法虽然很多,但归纳起来,“表示”、“运算”、“搜索”则是人工智能的三个最基本、最核心的技术。
11.从所承担的工作和任务性质来看,Agent的分类:信息型Agent、合作型Agent、接口型Agent、移动型Agent等。
12.用计算机来实现状态图的搜索,有两种最基本的方式:树式搜索和线式搜索。
13.智能机器人至少应具备哪四种机能?感知机能——获取外部环境信息以便进行自我行动监视的机能;运动机能——施加于外部环境的相当于人的手、脚底动作机能;思维机能——求解问题的认识、推理、判断机能;人—机通信机能——理解指示命令、输出内部状态,与人进行信息交换的机能。
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
人工智能导论复习资料一、什么是人工智能人工智能,简单来说,就是让机器像人一样思考和行动。
它不是一种单一的技术,而是一个涵盖了多种学科和技术的领域,包括计算机科学、数学、统计学、心理学、语言学等等。
想象一下,你有一个智能助手,它能理解你的需求,回答你的问题,甚至帮你完成一些复杂的任务,比如规划旅行、管理财务。
这就是人工智能在日常生活中的一种应用。
人工智能的目标是创建能够执行需要人类智能才能完成的任务的计算机系统。
这些任务包括学习、推理、解决问题、理解语言、识别图像和声音等等。
二、人工智能的发展历程人工智能的发展并非一蹴而就,它经历了几个重要的阶段。
在早期,科学家们就开始思考机器能否像人类一样思考。
20 世纪50 年代,人工智能的概念被正式提出,当时的研究主要集中在基于规则的系统和符号推理上。
然而,由于计算能力的限制和对智能本质理解的不足,人工智能在20 世纪 70 年代遭遇了第一次寒冬。
到了 20 世纪 80 年代,随着专家系统的出现,人工智能迎来了一次小的复兴。
专家系统是一种基于知识库和推理规则的系统,可以解决特定领域的问题。
但随着问题的复杂度增加,专家系统的局限性也逐渐显现。
近年来,由于大数据的出现、计算能力的大幅提升以及深度学习算法的突破,人工智能再次取得了巨大的进展。
图像识别、语音识别、自然语言处理等领域都取得了令人瞩目的成果。
三、人工智能的核心技术(一)机器学习机器学习是人工智能的核心领域之一。
它让计算机通过数据自动学习模式和规律。
机器学习有监督学习、无监督学习和强化学习等多种方法。
监督学习是最常见的一种,比如通过大量已标记的图片(比如猫和狗的图片)来训练计算机识别新的猫和狗的图片。
无监督学习则是让计算机在没有标记的数据中自己发现模式,例如将相似的客户分组。
强化学习是通过奖励和惩罚机制来训练智能体做出最优决策,比如让机器人学会走路。
(二)深度学习深度学习是机器学习的一个分支,它使用多层神经网络来学习数据的表示。
复习参考题一、填空I•构成产生式系统的基本元素有综合数据库、规则库、控制系统,控制策略按执行规则的方式分类,分为止向、逆向、双向三类。
2•归结过程中控制策略的作用是给出控制策略,以使仅对选择合适的子句间方可做归结,避免多余的、不必要的归结式出现或者说,少做些归结仍能导出空子句。
常见的控制策略有线性归结策略、支持集策略、单元归结、输入归结。
3.公式G和公式的子句集并不等值,但它们在不可满足的意义下是一致的。
4.与或图的启发式搜索算法(A0*算法)的两个过程分别是图生成过程即扩展节点和计算耗散值的过程。
5.人工智能的研究途径主要有两种不同的观点,一种观点称为符号主义,认为人类智能基木单元是符号。
另一种观点称为连接主义(仿牛主义),认为职能的基本单元是神经元。
6.集合{P(a, x, f (g(y))? P(z, f (z) ,f(u)))的mgu (最一般合一置换)为{z/a, f(x)/x, u/g(y)}o7•语义网络是对知识的有向图表示方法,一个最简单的语义网络是一个形如节点1、弧、节点2的三元组,语义网络可以描述事物间多种复杂的语义关系、常用ISA、AKO弧表示节点间具有类屈的分类关系。
语义网络下的推理是通过继承和匹配实现的。
8.当前人工智能研究的热点之一就是机器学习。
常见的机器学习方法可分为连接学习、归纳学习、分析学习和遗传算法与分类器系统等。
一个机器学习系统应有环境、知识库、学习环节和执行环节四个基本部分组成。
9•常用的知识表示法有逻辑表示法、产牛式规则表示法、语义网络表示法、框架理论表示法、过程表示法等。
10.有两个A*算法A1和A2,若A1比A2有较多的启发信息,贝9hl(n)>h2(n)oII.关于A算法与A*算法,若规定h(n)M0,并J1定义启发函数:P|c(n)=g*(n)+h*(n) 表示初始状态S。
经点n到Fl标状态Sg最优路径的费用。
其屮g*(n)为So到n的最小费用,h*(n)为到Sg的实际最小费用。
人工智能第一章1、智能(intelligence )人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
2、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
3、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。
4、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。
5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表人物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。
行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图人类 计算机认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。
研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。
7、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。
2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。
一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。
两者具有不可分割的关系,一方面,近期目标的实现为远期目标研究做好理论和技术准备,打下了必要的基础,并增强人们实现远期目标的信心。
第一章人工智能与空间技术、原子能技术一起被誉为20世纪三大科学技术成就。
智能的概念:智能是知识和智力的总和。
其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力。
智能的特征:1具有感知能力;2具有记忆和思维能力;3具有学习的能力;4具有行为能力。
其中思维能力分为:逻辑思维、形象思维、顿悟思维。
逻辑思维有如下特点:1.依靠逻辑进行思维2.思维过程是串行的,表现为一个线性过程3.容易形式化,其思维过程可以用符号串表达出来。
4.思维过程具有严密性、可靠性,能对事物未来的发展给出逻辑上合理的预测。
人工智能:用人工的方法在机器上(计算机)实现的智能,或者说人们使用机器具有类似人的智能。
又称为机器智能。
人工智能是一门研究如何制造智能机器(智能计算机)或智能系统,使它们能模拟、延伸、扩展人类智能的学科。
机器感知:机器感知就是使机器(计算机)具有累死人的感知能力,其中以机器视觉和机器听觉为主。
第二章知识的特性:1相对正确性2不确定性(①有随机性引起的不确定性;②由模糊性引起的不确定性;③由经验性引起的不确定性;④由不完全性引起的不确定性)3可表示性与可利用性。
4 按知识的确定性划分为确定性和不确定性知识。
知识的表示:知识表示就是将人类知识形式化或者模式化。
实际上就对知识的一种描述,或者说是一组约定,一种计算机可以接受的用于描述知识的数据结构。
一阶谓词逻辑表示法 P27---36谓词个体是变元,表示没有指定的一个或者一组个体个体是函数,表示一个个体到另一个个体的映射量词全称量词、存在量词一阶谓词逻辑表示法的优点:自然性、精确性、严密性、容易实现。
一阶谓词逻辑表示法的局限性:不能表示不确定的知识、组合爆炸、效率低。
语义网络表示法的语义联系:实体联系、泛化联系、聚集联系、属性联系。
第三章从推出结论的途径划分:演绎推理、归纳推理、默认推理。
1演绎推理是从全称判断推导出单称判断的过程,即由一般性知识推出适合于某一具体情况的结论。