勾股定理9种证明(有图)
- 格式:doc
- 大小:78.59 KB
- 文档页数:5
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE=∠BEF.∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º. ∴∠HEF=180º―90º=90º.∴四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2.∵Rt ΔGDH ≌Rt ΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º, ∴∠EHA+∠GHD=90º. 又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD 是一个边长为a+b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+.∴222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上.过C 作AC 的延长线交DF 于点P. ∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt Δ∴∠EGF=∠BED , ∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º―90º=90º. 又∵AB=BE=EG=GA=c ,∴ABEG 是一个边长为c 的正方形.∴∠ABC+∠CBE=90º.∵Rt ΔABC ≌Rt ΔEBD, ∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º. 即∠CBD=90º.又∵∠BDE=90º,∠BCP=90º,BC=BD=a.∴BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴222c b a =+. 【证法3】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵∠BCA=90º,QP ∥BC ,∴∠MPC=90º,∵BM ⊥PQ , ∴∠BMP=90º,∴BCPM 是一个矩形,即∠MBC=90º.∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º, ∴∠QBM=∠ABC ,又∵∠BMP=90º,∠BCA=90º,BQ=BA=c , ∴Rt ΔBMQ ≌Rt ΔBCA.同理可证Rt ΔQNF ≌Rt ΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD.过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵AF=AC ,AB=AD ,∠FAB=∠GAD , ∴ΔFAB ≌ΔGAD ,∵ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴矩形ADLM 的面积=2a .同理可证,矩形MLEB 的面积=2b .∵正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB 的面积 ∴222b a c +=,即222c b a =+. 【证法5】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R.过B 作BP ⊥AF ,垂足为P.过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵∠BAD=90º,∠PAC=90º,∴∠DAH=∠BAC.又∵∠DHA=90º,∠BCA=90º, AD=AB=c , ∴Rt ΔDHA ≌Rt ΔBCA.∴DH=BC=a ,AH=AC=b.由作法可知,PBCA 是一个矩形, 所以Rt ΔAPB ≌Rt ΔBCA.即PB= CA=b ,AP=a ,从而PH=b ―a.∵Rt ΔDGT ≌Rt ΔBCA, Rt ΔDHA ≌Rt ΔBCA.∴Rt ΔDGT ≌Rt ΔDHA.∴DH=DG=a ,∠GDT=∠HDA. 又∵∠DGT=90º,∠DHF=90º,∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90º, ∴DGFH 是一个边长为a 的正方形. ∴GF=FH=a.TF ⊥AF ,TF=GT ―GF=b ―a. ∴TFPB 是一个直角梯形,上底TF=b ―a ,下底BP=b ,高FP=a+(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++=①∵()[]()[]a b a a b b S S S -+∙-+=++21438=ab b 212-, 985S S S +=,∴824321S ab b S S --=+=812SS b --.② 把②代入①,得=922S S b ++=22a b +.∴222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c.做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上.用数字表示面积的编号(如图).∵∠TBE=∠ABH=90º, ∴∠TBH=∠ABE. 又∵∠BTH=∠BEA=90º,BT=BE=b , ∴Rt ΔHBT ≌Rt ΔABE. ∴HT=AE=a. ∴GH=GT ―HT=b ―a.又∵∠GHF+∠BHT=90º,∠DBC+∠BHT=∠TBH+∠BHT=90∴∠GHF=∠DBC.∵DB=EB ―ED=b ―a ,∠HGF=∠BDC=90º, ∴Rt ΔHGF ≌Rt ΔBDC.即27S S =.过Q 作QM ⊥AG ,垂足是M.由∠BAQ=∠BEA=90º,可知∠ABE =∠QAM ,而AB=AQ=c ,所以Rt ΔABE ≌Rt ΔQAM.又Rt ΔHBT ≌ Rt ΔABE.所以Rt ΔHBT ≌Rt ΔQAM.即58S S =.由Rt ΔABE ≌Rt ΔQAM ,又得QM=AE=a ,∠AQM=∠BAE. ∵∠AQM+∠FQM=90º,∠BAE+∠CAR=90º,∠AQM=∠BAE , ∴∠FQM=∠CAR.又∵∠QMF=∠ARC=90º,QM=AR=a ,∴Rt ΔQMF ≌Rt ΔARC.即64S S =.∵543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c ,即222c b a =+. 【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC=a ,AC=b ,斜边AB=c (如图).过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙, ∵AB=DC=c ,AD=BC=a , AC=BD=b , ∴222AC BC AB +=,即222b a c +=, ∴222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BCb ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知AD AB AC ∙≠2,或者BD AB BC ∙≠2.即AD :AC ≠AC :AB ,或者BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵∠A=∠A ,∴若AD :AC ≠AC :AB ,则∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵∠B=∠B , ∴若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB. 又∵∠ACB=90º,∴∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾.所以,222AB BC AC ≠+的假设不能成立.∴222c b a =+. 【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c.作边长是a+b 的正方形ABCD.把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+=22c ab +.∴22222c ab ab b a +=++,∴222c b a =+.。
板块一 勾股定理1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cba勾股定理3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
4.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
板块一、勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .【例3】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为【例4】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .【例5】 已知直角三角形的两边长分别为3、4,求第三边长.【例6】 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.【例7】 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20【例8】 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为【例9】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例10】 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)68【例11】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.8【例12】 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为【例13】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例14】 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为CBA【例15】 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,求EC 的长.【例16】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例17】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例18】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )cbaCBAA. a b c <<B. c a b <<C. c b a <<D. b a c <<【例19】 设,,,a b c d 都是正数。
勾股定理的十六种的证明方法【证法1】(课本的证明)做g 个全等的宜角三角形,设它们的两条直角边长分别为注、b ,斜边长为6再做 三牛边长分别为已、氐C 的正方形,把它们®上图那样拼成两个正方形*从图上可以看到,这两个正方形的边长都是& + b-所以面枳相筹•即整理得/+护二口f 证法21 (邹元治证明)以包、b 为直角边,以亡为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于2 •把这四个宜角三角形拼成如图所示形状,使乩E. B 三点在一条直线上,B. F 、 C 三点在一条直线上,C 、S D 三点在一条直线上.二ZAHE 二 ZBEF. T ZAEH - ZAHE 二 90° , 二 ZAEH 」 -ZBEF 二 90\ :• ZHEF = 180=90〃二 9' 0\ 二四边形EFGH 是一个边长为亡的 正方形. 它的面积等于 T Rt i GDH 空 Rt 2 HAE, 二 ZHGD ZEHA. T ZHGD ZGHD - 9(r 二 ZEHA ZGHD 二 90\ 又丁 ZGHE二 ZDHA QO° 亠%『二T RtMJAE 空抵扣澱,-ABCD是一个边长为a + b的正方形,它的面积等于W-(fl +i) ' = 4x—di■ a ♦2【证法3】(赵爽证明〉以弘b为直角边Cb>a),以C为斜边作四个全等的直角三角形,则每个直角图所示形状-T RMDAH■wr*AMjn*4UU.二ZHDA 二■ / ZHAD +/. ZEAB +二ABCD是一个边长为C的正方形,它的面积等于c\ ■ / EF = FG =GH =HE 二b—a ,ZHEF = 90° —A EFGH是一个边长为b—自的正方形,它的面积等于0•由)1 ” 4x jait证法4] (1876年美国JS统Carfield证明)以窝、b为直角边,以C为斜边作两个全等的直角三角形,则每个直角三角形的使g. B三点在一条直线上.积尊于2 ,把这两个直角三角形拼成如图亦示形状,T RtAEAD 丝Rt A CBE.:、ZADE 二ZBEL■ : ZAED + ZADE 二90° ,:.ZAED + ZBEC 二90\/. ZDEC 二180° 一90〃二90〃・ /・卫§£提一个等©直角三角形,三角形的面积等于2 •把这H个直角三角形拼成如丝Rt A ABE,ZEAB.ZRAD =90〃,DB它的而积等于2.又丁ZDAE 二90% ZEBC 二:・ AD/ZBC・L &1+护二2 X —abA ABCD是一个直角梯形,它的面积等于朮口 +疔-:2 2 2,d十b'八t 证法5】(梅文鼎证明)做四个全等的直角三角形,段它们的两条直角边长分别为罕b ,斜边长为s 把它们拼 成如图那样的一个多边形,使D 、E. F 在一条亘线上•过C 作AC 的延长銭交DF 于点P.■ / D. E 、F 在一条直线上,且 RtAGEF 全 Rt A EBD, ■ HV—VWWVWMW-V.:・ ZEGF = ZBED,*/ ZEGF 亠 ZGEF 二 ,:* ZBED + ZGEF 二 9tr ,:.ZBEG 二 1SO 〃—90〃二 9(r ・又 T ・ 4B 二 BE 二 EG 二 GA 二c, g -ABEG 是一个边长为c 的正方形「 ;> ZABC + ZCBE 二 90\* 二 BxAXBOz :・ ZABC = ZEBD.:.ZEBD 十 ZCBE 二 90\即 ZCBD 二 9(r ・又 T ZBDE 二 90〃,ZBCP 二 9(7 , BC 二BD 二比 二 a *BDPC 是一亍边长为a 的正方形.同理,HPFG 是 一伞边长为b 的正方形〃设多边形GHCBE 的面积为&则L ■! ■时二5 斗 2 X i 血* r*设它们的两条直角边长分别为旦、b (b>a),斜边长为 把它们拼成如图所示的多边形,使臥A. C 三点在一条过点Q 作QP//BC,兗代匚于点F. 过点B 作册丄PQ,垂足为地再过点F 作FX 丄P0垂足为工T ZBCA - 9(r, QpyzBC,二 Z«PC 二 9 化T 创丄F0二 ZBMP 二 90\-BCP 订是一个矩形,即ZMBC 二■ / ZQBM + ZMBA = ZQBA 二 9『, ZMBA 二 ZN1BC 二 9(r,化 ZQBM 二 ZABC,又丁 Z5MP 二 90\ ZBCA 二迅 BQ 二 BA 二 c>二 Rt A B 订Q 旦 Et A BCA.同理可证S1295E -肚虫睡:从而箱问题转化为f 応落疔7梅文灿证明).,/+止_【证法6】(项明达证明〉做两个全等的直角三角形,再做硏个边长为C 的正方形.直线上. ZABC +FC BE在一条直线上,连结 °的?F 肯形护立们拼咸如團斫示形状,使乐C. BF. CD •过 C 作 CL±DE,交;m 于点此交DE 于点L,T AF 二 AC,・AB 二 AD,虫ZFAB 二 ZCAD,代・A 復&望T iFAB 的面积等于空“・乂吐的面积等于矩形ADLM 的面积的一半, 二矩形ADUI 的面积同理可证,矩形MLEB 的面积二戸.T 正方形ADEB 的面积二葩形ADUI 的面积+矩形MLEB 的面积/,护,即护+占V/*E 证法町(利用相似三竟形性质证明)如图,在肚丄A 匹中,设直角边AS 反的长度分别为点C a. b ・斜边AB 的长为Ga 作CD1AB,垂足是D*在i ADC 和iACE 中, V ZADC - ZACB 二 90〃, ZC.AD 二 ZB AC,二 AASC s A A®*AD : AC H AC : AB,艮卩HC : =4D •一毎- 同理可证FASflS s二 HC*=(川 D + D£)・川占二討$1,即 o'+i ) i 二匚I 【证法9】(畅作玫证明)做两个全等的直角三角形•设它们的两条直角边长分别为吐、b Cb>a\斜边长为亡.再做 一个边长为U 的正方形•把它们拼成如图所示的多边形-过丄作AF 丄AG AF 交GT 于F ・・・IF 交 DT 于R.过B 作肝丄左F, 垂足为巴过D 作DE 与CB 的延长线垂直,垂足为 E, DE 交AF 于乩T ZBAD 二 90〃,ZPAC 二 W,二 ZDAH 二 ZEAC.又■/ ZDHA 二 90〃,ZBCA 二 9「,AD 二 AB 二 C ;二 Rt 业 DHA ◎ Rt 也 BCA.二 DH 二 BC 二 a, AH 二 AC 二 b・由作法可知,PECA 是一个矩形, 所以 R T A AFB 丝 RtAgCA.即 PB 二 CA二 b, AP 二 a,从而卩 H 二 b 一au*; Rt i DGT 瓷 Rt i BCA , g 卫與•奉廳2瞬二 Dtr^T?G 二 a™2S5?二 ZHDA ・ 又 T ZDGT 二 90° , ZDHF 二 W fB 三点C二愍空•匹I竺雛屯哪,二DGFH是一亍边故为a的止万形.二GF 二FH 二 a ・TF±AF. TF = GT-GF = b—a ・二TFPB是一个直角梯形,上底TF二b-E下底SP= b,高FP P +(b-G・用数字表示面积的编号(如图九则以C为边长的正方形的面积为G 二S] + Sj + Sj + S 耳 + S 了①** 场+ 昂 + Sq 二挣 + 0-口)」讥+0-13 ) ^--ab―* S, + S, = b*―ab—S,护-S] f 把②代入①,得=5 + 5] + F - S] F S J +S J +Sp-时+男+男-酹+/,-盼+沪二八【证法10] t李钱ffi明)设直角三角形两直角边的长分别为a・b (b>a),斜边的长为二做三个边长分别为包、b. C 的正方形,把它忙I拼成如S所示形状,使爪E・G三点在一条直线上•用数字表示面积的编号(如图).T ZTBE 二ZABH 二9tr :・ZTBH 二r 乙ABE.又T ZBTH 二BZBEABE - 人RtAHBT ^ORt, AHBBj 人HT二AE二比:、GH 二GT-HT 二b-a.又T ZGHF + ZBEI 二90\ZDBC + ZBHT 二ZTBH + 二ZGHF 二ZDBC J DB 二ER —ED二b-a>ZHGF 二ZBX 二9 呼,・•、gt A HGF 丝RtA. jBgC 即工二$2.过Q作Q蛆丄AL垂足是乩由ZBAQ二ZBEA二二ZQAM T而AB 二AQ 二0 9Cn 可知ZABER貯避•所以陆Ajj甲.公'Rt •斷以驰玉賤旦陆29迪••又5x2JSSI —細SE百屁卫滋又得QM二A£二a, ZAQM二ZBAE.ZHGF 二 ZBDC 二 90%二Rt A HGF 竺Rt A BDC.即思产h ・过Q 作QNLLAG,垂足是底由ZBAQ 二ZBEA 二9化可知ZABE =ZQAM,而壷B 二AQ 二C.所以Rt AABE 竺 肚綁M -又RMHET 空Rt A ABE.所以Rt A HBT 竺班 色QM .即况二匹.由 Rt A ABE 竺 Rt A Q. W,又得 QM = AE = a, ZAQM 二 ZEAE.T ZAQM + ZFQM 二 90% ZBAE + ZCAR 二 90% ZAQM = NBAE,二 ZFQM 二ZCAR.又丁 ZQitF 二 ZARC 二 90% QM = AR = a ,二 Rt A q"fF 竺 Rt A ARC.即 $严耳-丁 亡 2=$1 +昂 + 爲+ S 斗+ 5; , /二S] + Ssj 二S ・ +S- + S,V ' *二A 易二壬乌二斗二宀 7/ =S\ +S5 + Sm + 斗 + 禺二 S] + rS 斗 + $2 + S j—r在d 磁中「设直珀边BC 二a, AC 二b,斜边AB 二c,如图 C, 径作圆,交AB 及AB 的延长线分别于Ik E,则ED 二BE 二BC 二 C 在©B 上,所以扛是©B 的切线,由切割线是理,得t 证法12】(利用雾列米定理证明}在R2ABC 中,设直角边BC 二a. AC 二b,斜边AB 二c (如图)*过点〃&作AD//CB,过 点B 作BD>ZCA,则ACBD 为矩形,矩形ACBD 内接于一个圆,根据多列米定理,圆内接 四边形对角线的乘积等于两对边乘积之和,有=JD*5C5£Z?,T AB 二 DC 二 c, AD - BC =乩AC 二 BD 二 b,二且0’二占c'+」c',即/吕口: +盼,「以0为圆心a 为半 孔比因为ZE 仙二90\点 屁;二毘£〉3二{AS+SE’AS -SD )-(c + d) (c 一d)二£?+, =/【证法13】(作直角三角形的内切圆证明)在吐黒照中,设直角边EC = a, AC二b,斜边託二切点C. 分W?D7E> F (如圏人设©0的半径为r.T AE 二AF, BF 二BD, CD = CE,二MC+ BC-AB二{AE+CE}+[SD +CD)—(討戸+EF)二CE + CD 二工 + 工=2丫,即a +二2r,r* a + b 二2F + f ・A ~ (2r + c) \gp ■”2aif = 4 (r* +rc) +c*又T Sg 厂匚沪Sae+Sse 二2 2 -(4 + 0 + 亡)严—{2r + C + c丿r/, 4 (宀n: )=4£sr,*・》4卜’+临)=2胡'「■ /+ 即+2 口& 二2e 占+(;'』【证法14】(利用反证法证明)如图,在§1卫匸中「设直角边AG阮的长度分别为已、点C作CD丄AE.垂足是D.假设/十护乂蔦即假设也'+證2厂护「则由二AJ*.』5 二M (a + AD)二A B• A D + AB• BDb・斜边啊的长为G过可知-心5扭-M,或者在AAK和1ACB中,肋・ED•即AD: AC^AC: AB•或者BD: BC?^BC:AB.丁ZA 二ZA,二若AD: AC^AC: AB,则ZADCH ZACE.在・AC咀和・A他中,T ZB 二ZE>二若BD: BC T^BC:AB X贝JZCDB^ZACB.C又T ZACB 二9Cr ,二Z: ADCH9 (r, ZCDEHgcr这与作法CD丄AB矛盾•所以「e +恥' *曲谢假设不能成立作吐丄Age的内切圆00,设直角三角形两直角边的长分别为已*,斜边的长为⑺作边长是a 吒的正方形ABCD*把 正方形ABB 划分咸上方左图所示的几个部分,则正方形ABCD 的积为(》疔二/+护+滋•把正 方形.〈BCD 划分成上方右图所示的几个部分「则正方形ABCD 的 (a + 4 X —ab + T 面积为, 2 二2如i ・小十护十2aij = 2ab 十F, [证法祐】(陈杰证明) 设直甬三角形两直角边的长分别为a. b b 的正方形<b>a ).把它们拼成如图所示形状, 图). 在EH - b 上截取ED - a,连结加、DC,. 则 AD 二 B T EH = EH + HM = b 十 a , ED = 二 DM 二 EM-ED 二(b + 切一 a 二 ZAED 三 9 少,CM 二 a. :・R t A A 鲍\ AE 二 b, A ZEAD V ZADE ZADE :.ZAX 二作AB/7DC, CB?/DA,则期5是一个边长为c 的正方激 ':ZBAF + ZFAD 二 ZDAE + ZFAD 二 9(r, ZMDC T D T= AD = c. ZAX+ ZMDC 二1SO\ ZMDC 二 ZADE - ZEAD A ZBAF 二ZD. \E, 连结FB,在厶ABF 和i ADE 中,(b>aX 斜边的长为B 做两亍边长分别为包、 砌积的縄用傲点在一条宜线上•用数字表 E 、 B b b E —b a, J MD G 1 二 90J 90\gs)+T 十 £十占 ■ os+ls 十 34 ■ • 8 •心 + •JS+GSHFSH—SHTSf EK 扌s+r s *+=・£:•叶・• ・ 「r i> ・law :抵八・u II % + qb aa ab a b方2 ab bb aA C Bb E。
证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得.【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于•把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上, C G D三点在一条直线上••/ Rt △ HAE 也Rt △ EBF,••• / AHE = / BEF•/ / AEH + / AHE = 90o,•/ AEH + / BEF = 90 o.•/ HEF = 180o—90o= 90 o.•四边形EFGH是一个边长为c的正方形. 它的面积等于c2.•/ Rt △ GDH B Rt △ HAE,•/ HGD = / EHA•/ / HGD + / GHD = 90o,•/ EHA + / GHD = 90o.又••• / GHE = 90o,•/ DHA = 90o+ 90 o= 180 o.•ABCD是一个边长为a + b的正方形,它的面积等于.【证法3】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.•/ Rt △ DAH 也Rt △ ABE,•/ HDA = / EAB•/ / HAD + / HAD = 90o,•/ EAB + / HAD = 90o,•ABCD是一个边长为c的正方形,它的面积等于c2.•/ EF = FG =GH =HE = b —a ,/ HEF = 90 o.•EFGH是一个边长为b—a的正方形,它的面积等于.【证法4】(1876 年美国总统Garfield 证明)以a、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A E、B三点在一条直线上.•/ Rt △ EAD 也Rt △ CBE,••• / ADE = / BEC•/ / AED + / ADE = 90o,•/ AED + / BEC = 90 o.•/ DEC = 180o—90o= 90 o.•△ DEC是一个等腰直角三角形, 它的面积等于.又••/ DAE = 90o, / EBC = 90 o,AD // BCABCD是一个直角梯形,它的面积等于【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D E、F在一条直线上.过C作AC的延长线交DF于点P.•/ D、E、F 在一条直线上,且Rt △ GEF 也Rt △ EBD,•/ EGF = / BED•/ / EGF + / GEF = 90 ° ,•/ BED+ / GEF = 90 ° ,•/ BEG =180o—90o= 90 o.又••• AB = BE = EG = GA = c ,•ABEG是一个边长为c的正方形.•/ ABC + / CBE = 90 o.•/ Rt △ ABC 也Rt △ EBD,•/ ABC = / EBD•/ EBD + / CBE = 90 o.即 / CBD= 90o.又••• / BDE = 900,/ BCP = 90 o,BC = BD = a .•BDPC是一个边长为a的正方形.同理,HPFG是—个边长为b的正方形.设多边形GHCB的面积为S,则【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP// BC,交AC于点P 过点B作BM L PQ垂足为M;再过点F作FN^ PQ垂足为N.•/ / BCA = 90 o, QP// BC•/MPC = 90o,•/ BM丄PQ•/BMP = 90o•BCPM是一个矩形,即/ MBC = 90o.•/ / QBM + / MBA = / QBA = 90o ,/ABC + /MBA = /MBC = 90o•/ QBM = / ABC又••• / BMP = 90o , / BCA = 90 o , BQ = BA = c ,•Rt △ BMQ B Rt △ BCA同理可证Rt △ QNF也Rt △ AEF从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H C、B三点在一条直线上,连结BF、CD 过C作CL丄DE 交AB于点M 交DE于点L.•/ AF = AC , AB = AD,/ FAB = / GAD••• △ FAB 也△ GAD••• △ FAB的面积等于,△ GAD的面积等于矩形ADLM 的面积的一半,•矩形ADLM的面积=. 同理可证,矩形MLEB的面积=.•••正方形ADEB的面积=矩形ADLM勺面积+矩形MLEB的面积• ,即.【证法8】(利用相似三角形性质证明)如图,在Rt△ ABC中,设直角边AC BC的长度分别为a、b,斜边AB的长为c,过点C作CDLAB,垂足是D. 在厶ADC^D^ ACB 中,•/ / ADC = / ACB = 90o,/ CAD = / BAC△ ADC s △ ACB AD: AC = AC : AB,即.同理可证,△ CDB s △ ACB从而有.• ,即.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b (b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF丄AC AF交GT于F, AF交DT于R 过B作BP丄AF,垂足为P 过D作DE 与CB的延长线垂直,垂足为E , DE交AF于H•/ / BAD = 90o, / PAC = 90o,•/ DAH = / BAC又••• / DHA = 90o,/ BCA = 90 o,AD = AB = c ,•Rt △ DHA 也Rt △ BCA•DH = BC = a ,AH = AC = b .由作法可知,PBCA 是一个矩形,所以Rt △ APB 也Rt △ BCA 即PB = CA = b , AP= a,从而PH = b —a.•/ Rt △ DGT 也Rt △ BCA ,Rt △ DHA 也Rt △ BCA•Rt △ DGT 也Rt △ DHA .•DH = DG = a,/ GDT = / HDA .又••• / DGT = 90o , / DHF = 90 o ,/ GDH = / GDT + / TDH = / HDA+ / TDH = 90o ,•DGFH是一个边长为a的正方形.•GF = FH = a . TF丄AF, TF = GT —GF = b —a .•TFPB是一个直角梯形,上底TF=b—a,下底BP= b,高FP=a + (b—a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为①T =,•= . ②把②代入① 得【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b (b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).•/ / TBE = / ABH = 90o,••• / TBH = / ABE又••• / BTH = / BEA = 90 o,BT = BE = b ,•Rt △ HBT 也Rt △ ABE•HT = AE = a .•GH = GT —HT = b —a.又••• / GHF + / BHT = 90 o,/ DBC + / BHT = / TBH + / BHT = 90 o,•/ GHF = / DBC•/ DB = EB —ED = b —a,/ HGF = / BDC = 90o,•Rt △ HGF 也Rt △ BDC 即.过Q作QM L AG 垂足是M 由/BAQ = / BEA = 90 o,可知 / ABE=/ QAM 而AB = AQ = c,所以Rt △ ABE 也Rt △ QAM.又Rt △ HBT 也Rt △ ABE 所以Rt △ HBT 也Rt △ QAM.即.由Rt △ ABE 也Rt △ QAM 又得QM = AE = a,/ AQM = / BAE•/ / AQM + / FQM = 90o , / BAE + / CAR = 90o , / AQM = / BAE•/ FQM = / CAR又•••/ QMF = / ARC = 90o , QM = AR = a ,•Rt △ QMF B Rt △ ARC 即.•,,,又•••,,,【证法11】(利用切割线定理证明)在Rt △ ABC中,设直角边BC = a , AC = b ,斜边AB = c .如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,贝U BD = BE = BC = a .因为/ BCA = 90o,点C在O B上,所以AC是O B的切线.由切割线定理,得即,【证法12】(利用多列米定理证明)在Rt △ ABC中,设直角边BC = a , AC = b ,斜边AB = c (如图).过点A作AD// CB过点B作BD// CA贝U ACBD 为矩形,矩形ACBD内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有•AB = DC = c AD = BC = a AC = BD = b ,•,即,【证法13】(作直角三角形的内切圆证明)在Rt △ ABC中,设直角边BC = a , AC = b,斜边AB = c.作Rt △ ABC的内切圆O O,切点分别为D E、F (如图),设O O的半径为r.•/ AE = AF , BF = BD , CD = CE,= = r + r = 2r, 即,即,又•••==【证法14】(利用反证法证明)如图,在Rt△ ABC中,设直角边AC BC的长度分别为a、b,斜边AB的长为c,过点C作CDLAB,垂足是D. 假设,即假设 ,则由可知,或者•即AD: AO AC: AB 或者BD: BC^ BC: AB在A ADC^D A ACB中,•/ / A = / A•••若AD: AC M AC: AB,贝U/ ADO / ACB在A CDB和A ACB中,•/ / B = / B,•若BD BC M BC: AB,贝U/ CDB^Z ACB又••• / ACB = 90o,• / ADO 90o,/ CD M 90o.这与作法CDL AB矛盾.所以,的假设不能成立.证法15】(辛卜松证明)设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为= .【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b (b>a),斜边的长为c.做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上.用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA、DC, 则AD = c .•/ EM = EH + HM = b + a , ED = a ,••• DM = EM —ED = —a = b .又••• / CMD = 90o, CM = a,/ AED = 90o, AE = b ,•Rt △ AED 也Rt △ DMC•/ EAD = / MDC DC = AD = c .•/ / ADE + / ADC+ / MDC =18Gb,/ ADE + / MDC = / ADE + / EAD = 90 o, / ADC = 90 o.•作AB// DC CB// DA 贝U ABCD是一个边长为c 的正方形.•/ / BAF + / FAD = / DAE + / FAD = 90 o,•/ BAF=/ DAE连结FB"A ABF和A ADE中,••• AB =AD = c , AE = AF = b,/ BAF=/ DAE• A ABF 也A ADE•/ AFB = / AED = 90o,BF = DE = a .•点B、F、G H在一条直线上.在Rt A ABF和Rt A BCG中,AB = BC = c , BF = CG = a , •Rt A ABF 也Rt A BCG•, , ,。
初中勾股定理16种证明方法姓名: __________指导: ___________日期: __________【证法1】(课本的证明)勾股定理的证明a b做8个全等的贞角三角形, 设它们的两条百角边长分别为冬b,斜边I 三个边长分别为a 、b. c 的正方形,把它们像上图那样拼成两个正方形. 从图匕可以看到.这两个正方形的边长都是a + b.所以而积相等.即 / "2 + 4x —= /+4X —" , 、 、 2 2 ,整理得“""I 【证法2】(邹元治证明)以3、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三 等于2 •把这四个宜角三角形拼成如图所示形状,使八E 、B 三点在-条£ C 三点在一条直线上.C 、G 、D 三点在一条直线上. V RtAHAE 竺 RtAEBI ; ••• ZAHE = ZBEF. ••• ZADI 十 ZAIIE = 90°, ••• ZAEH 4 ZBEF = 9『・ ••• ZHEF = 180°-9(T= 90°. •••四边形EFG1I 是个边心为c 正方形. V RIAGDH ••• ZHGD = ••• ZHGD + ••• ZEIIA 十 乂 I ZGHE 二 ••• ZDHA = 它的而积等于c ・ M RIAI1AE, ZEI1A. ZGHD 二 90°, ZGIID = 90°. 9(T, 9(T + 90° 二 180\ ••• ABCD 是•个边长为a + .=4x 丄"力十 F • • 2 • 【证法3】(赵爽证明) 以。
、b 为直角边(b>a ),边作四个全等的直角三角形,则每个貢角L ab三角形的而积等于2 •把这四个自角:.角形拼成如图所示形状•・• Rt ADAH 仝Rt AABE,••• ZHDA = ZEAB.••• ZUAD + ZHAD = 90°,••• ZE AB + ZHAD = 90°,••• ABCD是f边长为c的正方形,它的而积等丁• JI EF = FG =GH =HE = b-a ,ZIIEH = 90°.・•・EFGH是•个边长为b—“的正方形,它的血枳等门力-“匚4x丄“5+(力一“尸二疋• • 2 ••••【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的而积等于2 .把这两个/iff] •:角形拼成如图所示形状.使A、卜Rt AEAD 也Rt ACBE,ZADE = ZBEC.ZAED + ZADE = 90°,ZAEI) + ZBEC = 90°.ZDEC = 180°-9Cf = 90°•A DEC是一个等腰直角三角形.丄,它的面积等于产•乂••• /DAE = 9(T, ZEBC - 90°,B [点在一条直线上.ABCD 是•个直角梯形,它的面积爭Jd"勿【证法5】(梅文鼎证明)做四个全等的rt角上角设它们的两条直角边长分别为a. b ,斜边长为c.把它们拼成如图那样的•个多边形. 点P.••• D、E.【;在-•条直线匕使D、E、F在条直线上.过C作AC的延长线交DF于ILRt AGEF 丝RtAEBD,••• ZEGF 二 NRED,I ZEGF + ZGEF = 90° , ••• ZBED + NCEF = 90° , ••• ZBEG =180°-90°= 90°.又••• AB ■ BE ••• ABEG 是 ••• ZABC 十 T RtAABC /. ZABC = ••• ZEBD + 即 ZCBD= 90°.XV ZBDE = 9(T, ZBCP = 90% BC = BD = a.••• BDPC 是•个边长为a 的正方形・ 同理,HPFG 是•个边长为b 的正方形. 设多边形GHCBE 的面积为S,则/ +力’ =S+2x 丄 “A 2c 2 =5"+ 2x 丄“力2 , 宀宀【证法6】(项明达证明)做两个金筹的直角三角形. c.再做•个边长为c 的正方形. 直线上过点Q 作QP/ZBC,交AC 于点P.过点B 作BM 丄PQ,垂足为再过点 F作FN 丄PQ,垂足为N.•/ ZBCA = 90% QP//BC,・•・ Z\1PC - 90%V BJI 丄 PQ,••• ZBMP = 90°,••• BCPM 是一个矩形,即ZHBC =I ZQBM 十 ZMBA 二 ZQBA 二 9『,ZABC + ZMBA = ZM13C = 90°, ••• ZQBM = ZABC,XV ZBMP = 9(f, ZBCA = 90°, BQ = BA = c, ••• RtABMQ 9 RtABCA.同理可证RtAQNF 丝RtAAEF.=EG = GA = c,•个边长为c 的疋方形.ZCBE = 90°. 9 RtAEBD,ZEBD. ZCBE 二 90°. 设它们的两条fi 角边长分别为“ b (b>a ) •斜边K 为把它们拼成如图所示的多边形,使E. A. C 三点在•条D 90°(从而将问题转化为【证法4】(梅文勵证明)•【证法7】(欧几里得证明)做三个边长分别为肚b. c 的正方形.把它们拼成如图所示形状,使H 、C 、B 三点 在一条直线匕连结 BE. CD.过 C作 CLIDE, 交 AB J :点 \〔,••• AF 二ZFAB ••• A EAB 9 A GAD, I A FAB 的面积等于2 ,△ GAD 的面积等于矩形ADLH的而积的一半.•••矩形ADLM 的面积同理可证,矩形MLEB 的而积二几•••止方形ADEB 的闻枳二矩形ADUI 的面积+矩形MLEB 的面积.・• C :=店",即仗七什二c\ 【证法8】(利用相似三角形性质证明)如图,/ERtAABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过 点C 作CD 丄AB,垂足是D.在AADC 和厶ACB 中,••• ZADC = ZACB = 90°,ZCAD = ZBAC,••• A ADC s A ACB.AD : AC = AC : AB,[!|J AC ^AD ・AB.同理可证,ACDB s AACB,从而有BC ・BD •人B.g * BC^1 -(AD ♦ ・4B ・4圧.即/十夕二丁.【证法9】(杨作玫证明) '做两个全等的宜角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做•个边长为c 的正方形・把它们拼成如图所示的多边形.过A 作AF 丄AC, AF 交GT FF, AF 交DT 于R.过B 作BP 丄AH 垂足为P.过I )作DE 与CB 的延长线垂直,韭足为 氏 DE 交 AF fll.AC, AB 二 AIX =ZGAD, M BED••• ZBAl) = 9(T , ZPAC = 90°, ••• ZDAll ZBAG9(T.又I ZDHAAD = AB••• RtADHA 9 RtABCA.••• DH = BC = a, AH = AC = b.由作法可知• PBCA是•个矩形,所以Rt AAPB 竺RtABCA 即PB =CA = b, AP= a,从而PH = b—a.••• Rt ADGT < RtABCA ,RtADHA 竺RtABCA.:• Rt ADGT 竺RtADHA •••• DH = DG = a, ZGDT = ZHDA •又丁ZDGT = 9(T, ZDHF = 90°.ZGDH = ZGDT + ZTDH = ZHDA+ ZTDII = 9(T,••• DGEII是一个边长为a的止方形.•I(;F = HI = a• TF±AF・ Tl; = GT-GF = h-a .••• TPPB 是•个直角梯形,上底TF=b-a, F底BP= b, ?^5FP=a + (b-a)• 用数字农示而积的编号(如图).则以c为边长的正方形的面积为• • d" _扣十(力-“)卜二护_*=力 2 ■丄“力■ £ A? C C ~/. 1 2 J b -S\-S、.②把②代入①.得=力• + £ + 5;=沪 + /.【证法10】(李鋭证明)设苴角三角形两直角边的长分别为a、b (b>a),斜边的长为c•做・:个边长分别为a.b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上•用数字表示面积的编号(如图).V ZTBE = ZABII = 90° >••• ZTBH = ZABEe乂I ZBTH = ZBEA = 90\ BT - BE =b,/. RtAHBT 9 RtAABE.A 1IT = AE = a.••• GH = GT-HT = b-a.XV ZGHF + ZBirr = 90°, ZDBC +ZBirr = zrBH +••• ZGIIF = ZDBC ・I DB = EB-ED = b-a,NHGF = ZBDC = 90°,••• RtAHGE 竺RtABDC.即禺讥过Q 作QM1AG,垂足是M.由ZBAQ - ZBEA - 90°,可知ZABE =ZQAM,而八B = AQ = c,所以Rt AABE 竺RtAQAM • 乂RtAHBT 竺RtAABE.所以RtAHBT 3 RtAQAM.即III Rt A ABE 丝RtAQAM,又得QM = AE = a. ZAQM 二ZBALT ZAQM + ZEQM = 90°, ZBAE + ZCAR = 90\ ZAQM = ZBAE, ••• ZEQM = ZCAR.又••• ZQME = ZARC = 9(T , QM = AR = a,A RtAQMF 竺RtAARC.即•• w = 5^ + £ + 4人 + 6 + 送"'=$+£ 斤=s、* s. * s*又・.•刀•+ 力’=£ + £ + £ + ・久+ £二£ + £ + 5 + 二 4V,即夕+力'* •【证法11](利用切割线定理证明)d:RlAABC«|^设血和边BC = a, AC = b,斜边AB = c.如图,以B为阴I心s为半径作圆,交AB及AB的延长线分别FD、E,则BD = BE二BC = a.因为ZBCA = 90°, 点C在OB h,所以AC是OB的切线.由切割线定理.得AC = AE・AD/ERtAABC中.设直角边BC = a, AC = b,斜边AB二c (如图).过点A作AD〃CB 过点B作BD〃CA・贝ij ACBD为矩形,矩形ACBD内接于-个隊根期多列米定理,鬪内按四边形对处线的乘积等于两对边乘积Z和,有DC = BO AC^ BD ,••• AB = DC = c, AD = BC 二a.AC = BD = b-/.击=ffc 1 +必,即K =宀几 ••• W".【证法13】(作直角三角形的内切圆证明)在 RtAABC 中,设直角边 BC = a, AC = b,斜边 AB = c.作 RtAABC 的内 VJMOO. 切点分别为D 、E 、F (如图人设G«0的半径为r.T AE = AF, BF = BD, CD = CE,••• AC^ RC - AB =( //£+ 8 + (加 + 8 - (B 叭二 CE* CD 二 r + r = 2r,-(2r+r+r )r 、 =2 =/・・+“,:.4(X +“) = 45;%彳尸+胡=2“力/ + 力'+ 2“力=2a/> + c 2 9 /. / + 力‘ =c :.【证法14】(利用反证法证明) ^如图,在Rt AABC 中.设直角边AC 、BC 的长度分别为a. b,斜边AB 的肉为c,过 点C 作CD 丄AB,垂足是D.假设“ 即假设,心+必则由ABr = AB 二個BD\二 A/i .川)-AB ・ 8D可知 Ae^AB^AD.或者 BC ,丰 AB ・BD.即 AD : ACHAC : AB,或者 BD : BCHBC : AB.AAI)C 和 AACR 中.V ZA = ZA,・••若 AD : ACMAC : AB,则 ZADCHZACB.ACDB 和厶 ACB 中,I ZB = ZB,•••若 BD : BCHBC : AB,则ZCDB^ZACB. =S WB + \£(H + SEl|j “十力一°=2/・,/. c 、化 s +力):=(2/・w)[即 </:4•力'* 2"力一 4|r'4 /r| +/ Mb = AS 、叫乂 ••• ZACB = 90P,••• ZADC^90°, ZCDB^90°.这9作法CI )丄冊孑盾•所以,(广+力工力的假设不能成'匕:.MM".【证法⑸(辛卜松证明)设直角三角形两直角边的长分别为a.b,斜边的长为c •作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成L :方左图所示的儿个部分,则止方形ABCD 的面枳为 (“+砺=/+,+ 2巾:把|F 方形ABCD 划分成I ••方右图所示的儿个部分,则iF •方形ABCD 的 而积为 ■ • •(“ +丹=4x ・“力+ " 〉2 =2“ +几a' + fy + 2" = 2〃力+ e, b 的正方形(b>a),把它们拼成如图所示形状, 示而积的编号(如图〉•在EH = b 上截取ED = a,连结DA 、DC, 则 AD = c. EM = EH + HM = b + a ,ED = a EM-ED - “+")-a - b. A 9CT, CM = a, 9Cf , AE - b, 幻 RtADMC. ZNDC, DC - AD - c ・ E ZADC+ ZMI)C =18(T , ZNDC = ZADE + ZEAD = 9(T , 9(T. •••作AB 〃DC, CB 〃DA,则ABCD 是一个边长为c 的正方形. ab*ab【证法16】(陈杰证明)设颠三角形两奁角边的长分别为a. b (b>a ),斜边的长为c.做两个边长分别为a. H> M 0点在•条直线上•用数字农 ••• DMXV ZCMD = ZAED = ••• RtAAED ••• ZE AD - ••• ZADE + ZADE + ••• ZAI)C = 使E. b b••• ZBAF + ZFAD 二ZDAE + ZFAD 二90°, ・•• ZBAF二ZDAE.连结FB,在A ABF和△ ADE中,••• AB =AD = c, AE = AF = b, ZBAF二ZDAE, ••• A ABF 9 A ADE.・•• ZAFB 二ZAED 二90°, BE = DE = a.•・・点B、F、G、H在一条直线上•在Rt AABF 和RtABCG 中,••• AB = BC = c, BF 二CG 二a,Rt AABF 竺Rt A BCG.•・R = &十£十G十送夕=①十$十送CT § = $5 = Si = $6 + $7 ,•4~+〃~=送+$7+,|+&+/二另+尻+ £ +(/ +另)_ Sc + Sy + £ + £。
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,∴ ∠MPC = 90º,∵ BM ⊥PQ , ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD , ∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE. ∴ HT = AE = a. ∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC. 即 27S S =.过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB. 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.。
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形, 则每个直角三角形的面积 等于2ab .把这四个直角三角形拼成如图所示形状, 使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEF.v / AEH + / AHE = 90o, • / AEH + / BEF = 90o.• / HEF = 180o — 90o= 90o.•四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2.v Rt △ GDH 坐 Rt △ HAE, • / HGD = / EHA. v / HGD + / GHD = 90o,• / EHA + / GHD = 90o. 又v / GHE = 90o, • / DHA = 90o+ 90o= 180o.2• ABCD 是一个边长为a + b 的正方形,它的面积等于(a + b ).21 2a b 4 ab c222•2. • a b = c .【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c.把它 们拼成如图那样的一个多边形,使 D E 、F 在一条直线上.过C 作AC 的延长线交DF 于/ EGF + / GEF = 90°, / BED + / GEF = 90 ° , / BEG =18(b — 90o= 90 o. 又 v AB = BE = EG = GA = c• / ABC + / CBE = 90o.v Rt △ ABC 坐 Rt △ EBD, • / ABC = / EBD.• / EBD + / CBE = 90o. 即 / CBD= 9Gb. 又 v / BDE = 90o ,Z BCP = 90o ,D 、E 、F 在一条直线上,且Rt △ GEF 幻Rt △ EBD, ABEG 是一个边长为c 的正方形.a b HH匕DA FbaP bCBC = BD = a.••• BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCB 的面积为S,则21 b S2 ab, 2 1=S 2 ab2 ,a 2 +b 2 =c 2【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a )c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使 直线上. 过点Q 作QP// BC 交AC 于点P. 过点B 作BML PQ 垂足为M ;再过点 F 作FNL PQ 垂足为N.v / BCA = 90o , QP// BC • / MPC = 90o , v BM 丄 PQ• / BMP = 90o ,• BCPM 是一个矩形,即/ MBC = 90o.v / QBM + / MBA = / QBA = 90o , / ABC + / MBA = / MBC = 90o , • / QBM = / ABC又 v / BMP = 90o ,/ BCA = 90o , BQ = BA = c , • Rt △ BMQ 坐 Rt △ BCA.同理可证Rt △ QNF 幻Rt △ AEF.从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使 在一条直线上,连结BF CD.过 C 作 CL L DE 交AB 于点M 交DE 于点L.v AF = AC , AB = AD,/ FAB = / GAD• △ FAB 坐△ GADE 、A ,斜边长为C 三点在一条 H 、C B 三点 v △ FAB 的面积等于K△ GAD 的面积等于矩形ADLM 的面积的一半,二矩形ADLM 的面积二 同理可证,矩形 MLEE 的面积 v 正方形ADEB 勺面积 =矩形ADLM!勺面积+ /. c 2 a 2 b 2,即 a 2 -【证法5】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF 丄AC AF 交GT 于F , AF 交DT 于 R.过B 作BP 丄AF,垂足为 E , DE 交 AF 于 H. v / BAD = 90o ,Z PAC = 90o , ••• / DAH = / BAC. 又 v / DHA = 90o ,Z BCA = 90o , AD = AB = c ,• Rt △ DHA 坐 Rt △ BCA. • DH = BC = a , AH = AC = b. 由作法可知,PBCA 是一个矩形, 所以 Rt △ APB 坐 Rt △ BCA.即 PB = CA = b , AP= a ,从v Rt △ DGT 坐 RtRt △ DHA 坐 Rt• Rt △ DGT 坐 Rt • DH = DG = a , 又 v / DGT = 90o ,2 a . =b 2 矩形MLEB 勺面积 b 2 =c 2. PH = b — a. △ BCA , △ BCA. △ DHA . / GDT = / HDA . / DHF = 90o ,P.过D 作DE 与CB 的延长线垂直,垂足为 / GDH = / GDT + / TDH = / HDA+Z TDH = 90o ,• DGFH 是一个边长为a 的正方形.• GF = FH = a . TF 丄AF , TF = GT — GF = b — a .• TFPB 是一个直角梯形,上底 TF=b-a ,下底BP= b ,高FP=a + (b —a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 c 2 = Si S 2 S 3 S 4 S 51S 8 +S 3 +S 4 =- b + (b - a )】• a + (b -a /v2S5 - S 8' S 9丄21 .S 3S 4-b 2 ab・・ 2把②代入①,得c^S iS 2b 2 -S^S 8S 8S 9①b 2 -1 ab2 ,2=bS2S 9 = b 2 川 a 2【证法6】(李锐证明)设直角三角形两直角边的长分别为 a 、b (b>a ),斜边的长为c.做三个边长分别为a 、 b 、c 的正方形,把它们拼成如图所示形状,使 A 、E 、G 三点在一条直线上.用数字表示 面积的编号(如图).v / TBE = / ABH = 900, ••• / TBH = / ABE. 又 v / BTH = / BEA = 900,BT = BE = b , • Rt △ HBT 坐 Rt △ ABE. • HT = AE = a. • GH = GT — HT = b — a. 又 v / GHF + / BHT = 900,/ DBC + / BHT = / TBH + • / GHF = / DBC.v DB = EB — ED = b — a , / HGF = / BDC = 90o , • Rt △ HGF 坐 Rt △ BDC.即 S ^ S 2.过 Q 作 QM L AG 垂足是 M.由/ BAQ = / BEA = 90o ,可知 / ABE =/ QAM 而 AB = AQ = c ,所以 Rt △ ABE 幻 Rt △ QAM .又 Rt △ HBT 幻Rt △ ABE.所以 Rt △ HBT 幻 Rt △ QAM .即 S 8 二 S 5.由 Rt △ ABE 坐 Rt △ QAM 又得 QM = AE = a ,/ AQM = / BAE.v / AQM + / FQM = 90o ,Z BAE + / CAR = 90o ,Z AQM = / BAE • / FQM = / CAR.【证法7】(利用多列米定理证明)• Rt △ QMF 坐 Rt △ ARC.即 S 4 =S6.• • c 2 =S 1 S 2 S 3 S 4 S 5 a 2 S 6又v S 7 二 S 2 S g 二 S 5 S 4 二 S 6> > >• a 2 b 2 = S ! S 6 S 3 S 7 S 8=S iS 4 S 3 S 2 S 52=c ,即a 2 + b 2 =c 2.又 v / QMF = / ARC = 90o , QM = AR = a , b^ S 3 S 7 S 8R a A在Rt △ ABC 中,设直角边 BC= a , AC= b ,斜边AB = c (如图).过点A 作AD// CB, 过点B 作BD//CA 则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接 四边形对角线的乘积等于两对边乘积之和,有AB ・DC 二 AD ・BC AC *BD ,AB = DC = c , AD = BC = a , AC = BD = b ,AB 2 =BC 2 +AC 2,即 c 2 =a 2 +b 2 a 2 +b 2 =c 2【证法8】(利用反证法证明) 如图,在Rt △ ABC 中,设直角边 AG点C 作CDL AB 垂足是D.假设a 2 b 2=c 2,即假设AC 2 BC —AB 2,则由AB^AB *AB =AB AD BD =AB ・AD AB * BD可知 AC 2 式 AB ・AD ,或者 BC 2 式 AB ・BD .即 AD : AO AG AB 或者 BD : BO BC AB. 在厶ADC 和△ ACB 中, v / A = / A,.若 AD : AW AC AB 」 / AD 字/ ACB.在厶CDB 和△ ACB 中, v / B = / B ,.若 BD BW BC AB,贝S / CDB^Z ACB. 又v / ACB = 90o ,. / AD& 90o ,Z CD 字 90o. 这与作法CDLAB 矛盾.所以,/. a 2 b 2 = c 2.【证法9](辛卜松证明)设直角三角形两直角边的长分别为 a 、b,斜边的长为c.作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 (a +bf =a +b +2ab ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形 ABCD 勺21 2,.十.(a +b 『=4 乂一ab+c 2面积为 2= 2ab c .2 2 2.. a b 2ab 二 2ab c ,BC 的长度分别为a 、b ,斜边AB 的长为c ,过 AC 2 • BC 2 = AB 2的假设不能成立..a2+b2=c2.。
【证法I)(课本的证明)做8个全等的宜角三角形•设它们的两条直角边长分別为」b •斜边长为c・再做三个边长分别为黑b. c的正方形.把它们像上图那样拼成衲个正方形.从图上可以石到•这两个正方形的边长都是a + b.所以面积相等・即(=+4x 丄ab »2 •整理得卅+尸二代【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角•把这四个直角三角形拼成如图所示形状,使A、E. B三点形0勺面积等于严在一条直线上,B、F、C三点在一条亘线上,C、G、D三点在一条直线上.VRt A HAE 竺Rf A EBF, :.ZAHE= ZBEF.I ZAEH+ ZAHE = 90°, ••• ZAEH+ ZBEF = 90°. ••ZHEF= 180°-90°= 90° ••・四边形EFGH是一个边长为c的正方形・它的血积等于•R“GDH 竺Rt A HAE,•ZHGD= ZEHA.•ZHGD+ ZGHD = 90°,•ZEHA+ ZGHD = 90°.•ZGHE = 90°f•ZDHA=90°+90°= 180°.• ABCD是一个边长为a + b的正方形,它的面积等于G +疔.(a + 方)+ c 22【证法3】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作 四个全等的直角三角形,则每个直角成如图所示形状.I Rt A DAH 今 Rt A ABE,:.ZHDA= ZE AB.…ZHAD+ ZHAD = 90°,••• ABCD 是一个边长为c 的正方形,它的血积等于心••• EF = FG =GH =HE = b-a,ZHEF 二 90°.・・・EFGH 是一个边长为b ・a 的正方形,它的面积等于直一切[4xga/> + (〃一 G] ;2一 V【证法4] (1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角•把 这两个直角三角形拼成如图所示形状,使A> E 、CB 三点•“ ZADE= ZBEC.••• ZAED+ ZADE = 90°, ••• ZAED+ ZBEC = 90°.•“ ZDEC= 180°-90°= 90°.-A DEC 是个等腰・酬三角形,乂 I ZDAE = 90°, ZEBC = 90°, : • AD 〃 它的面积等于2BC.三角形的面积等于2 •把这四个直角三勿形拼AbEaB【证法5】(梅文鼎证明)做四个全等的N 角三角形•设它们的两条自旳边长分别为a 、b •斜边长为c. 把它们拼成如图那样的一个名边形•使IX E. F 在一条直线上•过C 作AC 的延长线 交DF 于点P.• • • D. E. F 在一条玄线上,fl. Rf A GEF Q ROEPD :.ZEGF= ZBED.V ZEGF+ ZGEF-9O 0,:.ZBED+ ZGEF = 9()a •••• ZBEG=180o -90°=90°< 又 I AB 二 BE = EG = GA = c •••• ABEG 是一个边长为c 的iE 方形.••• ZABC+ ZCBE = 90n .V Rt A ABC £ Rt A EBD,:.ZABC= ZEBD.••• ZEBD+ ZCBE = 90°<即 ZCBD= 90n .XV ZBDE = 90° • ZBCP = 9 (r •BC ■ BD ■ a.:BDPC 是一个边长为a 的正方形• 同理・HPFG 是一个边长为b 的止方形. 设多边形GHCBE 的面积为S.则a 2+b 2 =5 + 2x 丄”九2【证法6】(顶明达证明)做两个全等的耳用三角形•设它们的两条玄角边长分别为a 、b (b>a>・斜边长为 G 再做■个边长为c 的正方形•把它们拼成如图所示的多边形•使E.A. C 三点在一条直线上.过点Q 作QP 〃BC •交 AC于点P.过点?作15\1丄PQ.垂定头JM :再过点…ABCD 是■个直角梯形, 丄 它的面积等于㊁FA C BF作FN丄PQ・垂足为N.V ZBCA = 90° . QP 〃BC • ZMPC = 90° ・V BM 丄PQ -:.ZBMP = 9fT ・BCPM 是一个矩形.HI1ZMBC = 90°.V ZQBM+ ZMBA・ ZQBA * 90°・ ZABC+ZMBA= ZMBC = 9(T •••• ZQBM・ ZABC.乂IZBMP = 9(r・ ZBCA = 9(r ・ BQ = BA=c ・【证法7】(欧几里得证明)做三个边长分别为氛b、c的正方形・把它们拼成如图所示形状•使Fk C、B三点在一条宜线上•连结BF ・ CD.过 C 作CL 丄DE.交AB于点交DE于点H /V AF= AC. AB = AD. yZFAB二ZGAD< cZ 来、/A FAB 今AGAD.丄a,V AFAB的面积等丁込“AGAD的面积等弓矩形ADLM的面积的一半.・・•矩形ADLM的面八同理可证•矩形MLEB的面积L・・・正方形ADEB的血积二矩形ADLM的啲枳+矩形MLEB的面积c2 = ♦ b1 . l!|l a2 + = c'.【证法《〕(利用相似三介形性质证如图•在RtAABC中,设直角边AC. BC的长度分别为a. b •斜边AB的长为c・过点C作CD丄AB・垂足是D.在AADC和’ACB中・I ZADC= Z ACB = 90° . ZCAD・ ZBAC.:.A ADC s A ACB.AD : AC = AC : AB.即AC2 =同理町证'ACDB s & ACB.从而竹BC—BD.AB.:.AC1 + HC l = (JD+ DB)A AB・A” 即a,【证法9】(杨作玫证明〉做两个全零的直角三和形•设它们的两条直角边K分别为a、bvb>a) ■斜边长为c •再做■个边长为c的肪0形.把它们拼成如图所示的多边形•过A作AF丄AC. AF交GT于F・AF空2)T于R.过B作BP丄AF.乖足为P.过D作DE与CB的证长线垂直•垂足为E. DE交AF于H.V ZBAD-9 (r\ ZPAC ・ 90匕••• ZDAH= ZB AC.又:・ZDHA = 90°. ZBCA = 90° .AD = AB = c •Rt \ DHA £Rt A BCA<•: DH = BC = a. AH = AC = b.Lh作法可矩.PBCA是一个矩形. 所以RtAAPB 耳Rt A BCA. UP PB = CA = b< AP= a •从而PH = b一a.V Rt A DGT 9 R1 A BCA ■ Rt \ DHA 今RtA BCA. RMDGT 竺Rt DHA.••• DH = DG = a. ZGDT= ZHDA.又I ZDGT-9O0. ZDHF ・ 90卜•ZGDH= ZGDT+ ZTDH = ZHDA+ ZTDH = 90°.••• DGFH定一个边长为a的正方形.••• GF=FH = a.TF 丄AF. TF = GT-GF = b-a.TFPB是一个直角梯形•上底TF-b-a・卞底BPf高FP-a+ (b-a).用数字表示面积的编号(如图片则以c为边长的正方形的面积为=Sn + S人=5, +S、+/>2U +5:+Sqa2 =c2S ' + Sy + 54 =-[/> + (/>・a)] • [a + (b _ a)] Ir•丄a”2 =2 a把②代入①.W【证法10)(李稅证明)设直角三角形两直角边的长分别为a、b (b>a).斜边的长为c •做三个边长分别为a、b、c的正方形•把它们拼成如图所示形状•使A. E. G三点在•条亢线上•用数字农示面积的编号(如图)・IZTBE 工ZABHf.••• ZTBH= ZABE.又・・・ZBTH・ ZBEA・ 90°.BT=BE = b.:.R( AHBT 竺R( A ABE.••• HT = AE =〜••• GH = GT-HT=b-x XV ZGHE+ ZBHT = 90°.ZDBC + ZBHT= ZTBH+ ZBHT = 90%••• ZGHF= ZDBC ・VDB = EB-ED = b-a.ZHGE= ZBDC = 90°.••• RtAHGF 丝RtABDC.即w2.过QftQM 丄AG •垂足是M. rf]ZBAQ= ZBEA = 90°.町知ZABE ZQAM. rtl AB-AQ-c.所以RfAABE 幻RcAQAM. X Rt \ HBT £Rt A ABE.所以Rt A HBT 0 Rt A QAM ・即ft] Rt A ABE 旦Rt AQAM.又QM = AE = a. ZAQM = ZBAE.•: ZAQM+ ZFQM ・ W . ZBAE + ZCAR ・ VX)U. ZAQM ・ ZBAE. :.ZFQM=ZCAR.又I ZQMF- Z ARC ・90° • QM • AR • a •:.Rt AQMF9Rt A ARC.g卩•: c*=£ + S, + +S.+ S,.X = S ' 七 S&.b° = S、七 S=± S* =&令+s? + s》+即cr =c2.【证法11】(利用切割线定理证明)在R1AABC中•设垃角边BC = a. AC = b •斛边AB = c.如图•以B为圆心3为半径作例•交AB及AB的延长线分別于D E • WJ BD = BE = BC = a.因为ZBCA = 9(T.点C在0B上•所以AC是OB的切线・由切割线定理•得AC2 =AE^ADA cT =t\【证法12](利用多列米定理证明)在Rt A ABC中•设口角边BC = a. AC = b •料边AB = c •过点A作AD // CB •过点B作BD 〃CA・则ACBD为炉形.炉形ACBD内接丁一个阕. 根据£列米定理・岡内接阿边形对如线的乘积等丁两对边乘枳之和.冇NB • DC=AD • BC*C • BL>.I AB-DC-c. AD-BC-a.AC = BD = b.AB2 ^BC2 + AC29即c2 =a2+Z>\【证法13】(作直角三角形的内切圆证明)在Rt A ABC中•设宜如边BC • a • AC-b V斜边AB・c・\\ Rt A ADC“勺内切風OCX切点分别为D. E.F (如图)•设OO的半径为「・V AE = AF. BF = BD. CD = CE.:.AC+ BC・ J5 = (JE + CE) + (BD + CD) - (JF + BF)CE + CD = r + r = 2r,HP <J + /) -c = 2r.:,a 4- b-2r + c.• .(€/A Z?y = (2r + c)\ 即 a 2 +62 + lab = 4 (r 2 + rc)+ c 2...s.w r*ny (2r+ c + c)r.・・.・.4(r ? 4-rc)= lab.•: a 2 +/> + 2ab = lab + c 2,【证法14](利用反证法证明)如图•在R ( A ABC 中.设口角边AC. BC 的K 度分别为a. b •斜边AB 的 长为 c •过点C 作CD 丄AB •垂足是D.假设/+» 斗 '・即假设AC 2 + B^AB 2・则由可如 AC 2 AB^AD 9 或者 BC • BD. Ull AD : AC A AC : AB.或者 BD : BC A BC : AB.在A ADC 和A ACB 中.I ZA= ZA.・••若 AD : ACHAC : AB.则ZADCAZACB.在 ACDB 和 AACB 中.V ZB= ZB. ・・・若BD : BCHBC : AB.则 ZCDBHZACB.乂 IZACB-W. 3 (” + b + “AB 2 = AB •AB 二”(初 + BD)AB^AD + AB^ BD A d A• • ZADC A 90 ・形ABCD 把疋方形ABCD 划分成上方左图所示的儿个部分・则匸方形ABCD 的面 枳为© + 6)、二/「+2“;把jE 方形ABCD 划分成上方右图所示的儿个部分•则正方形ABCD 的向积为:+ />" + lab = 2ab + c 2.:.a 2 +b 2 =c\ (« + 疔=4x —ab + c 2 , 2 =2血+ "・【证法16](陈杰证明)设H 角三角形两胃角边的长分别为a 、b vb>a ).斜边的长为c.做两个边长分别为冬b 的正方形(b>a ).把它们拼成如图所示形状•使E. H. M 三点在一条直线上•用数字表示面积的编号(如图〉・ 在EH = b 」.祓取ED = a •连结DA. DC.则 AD = c-I EM = EH + HM = b + a • ED = a ・••• DM -EM-ED = (b + °)-a = b •又 I ZCMD * 90”. CM • a • ZAED = 90°.AE=b. :.Rt A AED 丝 Rt ADMC./. ZEAD= ZMDC • DC = AD = c.VZADE+”DC 十 ZMDC =180°.这与作法CD 丄AB 矛曲・所以・+ 的假设不能成立.【证法15】(辛卜松证明)BZADE+ ZMDC= ZADE+ ZEAD = 90°・••• ZADC = 9 (r.・・・作AB//DC*.CB〃DA •则ABCD是一个边K为c的正方形.V ZBAF+ ZFAD= ZDAE + ZEAD = 90°.••• ZBA F=ZDAE •连纟吉FB・在AABF禾口 A ADE中.V AB =AD = c. AE = AF = b. ZBAF=ZDAE.••• A ABF 也A ADE.:.ZAFB 二ZAED = 90°. BF = DE = a.•…点B、F. G. H在一条直线上.在R( A ABF和Rt A BCG中・T AB * BC * c • BF - CG ・ a.:.Rt A ABF 耳Rt A BCG.•: c2 = S? + + S. + Sq. b2 = S、+S2 + 56. a2 = S=、$ 話=S4 =56+S.•+ />* = S§ + S= + + 5, + 56■s?+S3+s]+ 仅+S?)。
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c.又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴ 222c b a =+. 【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得= 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+. 【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a cb -=, ∴ 222c b a =+. 【证法12】在Rt ΔABC 中,设直角边BC . 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法13】在Rt ΔABC 中,设直角边BC = a ,作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+. 【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
【证法1】(课本的证明)勾股定理的证明做8个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c ,再做 三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等.即2 21 2 1a 2b 2 4 ab 二c 2 4 ab22, 整理得【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积ab等于2 .把这四个直角三角形拼成如图所示形状, 使A E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEFv / AEH + / AHE = 90o,• / AEH + / BEF = 90o.• / HEF = 180o — 90o= 90o. •四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2. v Rt △ GDH 坐 Rt △ HAE,D b G a C bF a Bv / HGD + / GHD = 98,• / EHA + / GHD = 98. 又v /GHE = 90o,• / DHA = 90o+ 90o= 180o.2• ABCD 是一个边长为a + b 的正方形,它的面积等于(a +a b 2 =4 -ab c 22【证法3】(赵爽证明)以a 、b 为直角边(b>a ), a 2 =c 2ac\ca 2b 2以c 为斜边作四个全等的直角三角形,则每个直角1ab三角形的面积等于2 .把这四个直角三角形拼成如图所示形状•v Rt △ DAH 坐 Rt △ ABE,••• / HDA = / EABv / HAD + / HAD = 90o , • / EAB + / HAD = 900,• ABCD 是一个边长为c 的正方形,它的面积等于c 2. v EF = FG =GH =HE = b — a , / HEF = 900.2• EFGH 是一个边长为b —a 的正方形,它的面积等于(b -a ).1 2 2 4 疋一ab + (b —a f = c 2• 2【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面1 c 它的面积等于2又 v / DAE = 90o, / EBC = 90o, • AD // BC• ABCD 是 一个直角梯形,它的面积等于1 1 12(a +b 32^ab *c 2• a 2 +b 2 = c 2.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c.把它 们拼成如图那样的一个多边形,使 D E 、F 在一条直线上.过C 作AC 的延长线交DF 于 点P 八、、■・a 2b 2二 c 2积等于2ab把这两个直角三角形拼成如图所示形状,使B 三点在一条直线上v Rt △ EAD 坐 Rt △ CBE,• / ADE = / BECv / AED + / ADE = 90o,• / AED + / BEC = 90o.• / DEC = 180o — 90o= 90o. • △ DEC 是 一个等腰直角三A Ecav D、E、F在一条直线上,且Rt △ GEF幻Rt △ EBD,v / EGF + / GEF = 90°, •• / BED + / GEF = 90°, •• / BEG =18(0—90o= 90o./ AB = BE = EG = GA = c , •• ABEG 是•• / ABC + / CBE = 900.•• Rt △ ABC 刍 Rt △ EBD, •• / ABC = / EBD•• / EBD + / CBE = 900.即 / CBD= 9(0.又 v / BDE = 900,/ BCP = 900,BC = BD = a .••• BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCB 的面积为S ,则2 21a b = S 2 ab,2c 2二 S 21ab2【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a )c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使 E 、A 、 直线上.过点Q 作QP// BC 交AC 于点P. 过点B 作BM L PQ 垂足为M ;再过点 F 作FNL PQ 垂足为Nv / BCA = 900 , QP// BC• / MPC = 900 , v BM 丄 PQ• / BMP = 900 ,• BCPM 是一个矩形,即/ MBC = 9 v / QBM + / MBA = / QBA = 900 ,/ ABC + / MBA = / MBC = 900 , • / QBM = / ABC又 v / BMP = 900 , / BCA = 900 , BQ = BA = c ,a 2b 2 =c 2G 个边长为c 的正方形. a bHa,斜边长为 C 三点在一条ccacP bba、• Rt △ BMQ坐Rt △ BCA 同理可证Rt △ QNF坐Rt △ AEF从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、 在一条直线上,连结 BF CD 过 C 作 CL ± DE 交AB 于点M 交DE 于点 L.v AF = AC , AB = AD ,/FAB = / GAD••• △ FAB 坐 △ GAD1av △ FAB 的面积等于2△ GAD 勺面积等于矩形ADLM 的面积的一半,•矩形ADLM 勺面积二a同理可证,矩形MLEE 的面积v 正方形ADEB 勺面积=矩形ADLM 勺面积+矩形MLEB 勺面积 • c 2=a 2+b 2,即 a 2+b 2=c 2. 【证法8】(利用相似三角形性质证明) 如图,在Rt △ABC 中,设直角边 点C 作CDL AB 垂足是D 在△ ADC 和△ ACB 中, v / ADC = / ACB = 90o , / CAD = / BAC •△ ADC s A ACBAD : AC = AC : AB,即 AC 2 = AD • AB .同理可证,△ CDB s △ ACBAC BC 的长度分别为 a 、b ,斜边AB 的长为c ,过 从而有 BC — BD *AB2 = c 2• AC 2 BC 2 二 AD DB ・ AB 二 AB 2 ,即 a 2 b 【证法9](杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为 再做一个边长为c 的正方形.把它们拼成如图所示的多边形 于F , AF 交DT 于R.过B 作BP! AF, E , DE 交 AF 于 H v / BAD = 90o ,Z PAC = 90o ,• / DAH = / BAC又 v / DHA = 90o ,Z BCA =AD = AB = c ,a 、b (b>a ),斜边长为c. .过A 作AF 丄AC AF 交GT 垂足为P.过D 作DE 与CB 的延长线垂直,垂足为 的正方形,把它们拼成如图所示形状,使 H C B 三点 c••• Rt △ DHA 坐 Rt △ BCA ••• DH = BC = a , AH = AC = b. 由作法可知,PBCA 是一个矩形,所以 Rt △ APB 坐 Rt △ BCA 即 PB = CA = b , AP= a ,从而 PH = b — a.v Rt △ DGT 坐 Rt △ BCA ,Rt △ DHA 坐 Rt △ BCA• Rt △ DGT 坐 Rt △ DHA.• DH = DG = a ,/ GDT = / HDA. 又 v / DGT = 90o ,Z DHF = 90o ,/ GDH = / GDT + / TDH = / HDA+ / TDH = 90o , • DGFH 是一个边长为a 的正方形.• GF = FH = a . TF 丄AF, TF = GT — GF = b — a .• T FPB 是一个直角梯形,上底 TF=b-a ,下底BP= b ,高FP=a + (b — a ) 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为2CS 1S 2S 3S 4S5①把②代入①,得c 2 二 S S 2 b 2 - 3 - S8 & S 9 =b 2 +S 2 0 = b 2 +a 2【证法10】(李锐证明)设直角三角形两直角边的长分别为 a 、b (b>a ),斜边的长为c.做三个边长分别为a 、 b 、c 的正方形,把它们拼成如图所示形状,使 A 、E 、G 三点在一条直线上.用数字表示 • HT = AE = a . • GH = GT — HT = b — a. 又v / GHF + / BHT = 90o ,/ DBC + / BHT = / TBH + S 8 S 3 S 4A2 b 亠[b - aa 亠[b -a 1b 2 - 1 ab2,S 3 S 4 =b 2 —fab —S 8b 2 - S i - S ga 2b 2二 c 2面积的编号(如图).v / TBE = / ABH = =90o , • / TBH = / ABE 又v / BTH = / BEA = =90o , BT = BE =b ,• Rt △ HBT 坐 Rt △ ABE B b28 D61 3M F E45 c/ BHT = 90O ,QS 7 =S S 2 S 3 S 4 S 5 =S 2= S5S4a 2 = S 1 S 6b 2 = S 3 S 7 S 82 2a b ^S 1 S 6 S 3 S 7 S 8=S i S 4 S 3 S 2 S 52=c即 a 2 +b 2 =c 2.【证法11】(利用切割线定理证明)在Rt △ ABC 中,设直角边 BC = a ,AC = b ,斜边AB = c.如图,以B 为圆心a 为半 径作圆,交AB 及AB 的延长线分别于 D E ,贝S BD = BE = BC = a .因为/ BCA = 90o , 点C 在。
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,∴ ∠MPC = 90º,∵ BM ⊥PQ , ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD , ∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE. ∴ HT = AE = a. ∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC. 即 27S S =.过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB. 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.。