层状边水油藏水平井开发后期剩余油分布规律研究
- 格式:pdf
- 大小:1.58 MB
- 文档页数:4
剩余油分布规律的分析多采用多种方法相结合进行综合研究,常常运用综合地质分析和油藏工程分析两种方法对区域剩余油进行研究。
其中综合地质法主要从地质方面入手,分析研究油气聚集的储层特征及其主控因素、沉积环境、构造演化等基础地质概况,从多个方面对油藏展开精细研究。
油藏工程分析法则注重后期的勘探开发,充分利用动态资料、数值模拟等多个方面进行综合研究,进而定量的研究剩余油的分布范围及特征,弄清其分布规律[2]。
1 剩余油分析方法1.1 吸水剖面测井方法同位素吸水剖面是指在正常注入状态下测定注入井的吸水能力,以确定其吸水量,检查配注影响,评价注水调剖成效,依据水驱效果,定性分析剩余油的分布规律。
1.2 构造分析方法已有研究成果表明,构造高部位往往是剩余油分布的有利区,且高部位的油气富集程度较高,由于构造位置的不同,可能相同油藏的产能会有一定的差别,常常构造低的部位油藏产能相对较低一点,即使在投入注水开发后,油水状态再次重新分布,剩余油仍然会朝着构造相对高的地方运移富集,主要是构造压差和油水密度的不同,导致大部分水都会流向构造低的部位。
但随着高构造部位的油气开采,低部位的油气开始逐渐向高部位补给,最终呈现出构造高部位产量相对较高的特征。
1.3 沉积微相分析方法沉积相控制着储层油气的好坏,其沉积相展布控制着砂体的分布,进而影响着油气的分布。
沉积作用不仅决定着储层储集能力的大小,也控制着储层的内部结构特征,不同沉积相控制的储集能力差别较大。
故可以运用沉积微相的展布特征来综合分析区域的剩余油展布规律。
2 剩余油分布控制的因素控制剩余油分布变化的主要因素应包括如下几个方面:2.1 井网未控制型剩余油因河流性储层具有微砂体相对发育的特征,常常会有因河道的改迁、废弃河道的形成以及决口扇等的形成使得区域存在具有一定储集能力的微砂体。
该类砂体的厚度不大,宽度较窄,但却具有相当好的含油性,油气显示较好,丰度较高,但由于井网布置范围的有限使得这类含油砂体未能被井网控制,进而无法进行驱替,这使得该区域储层中存在大量的剩余油,其勘探开发潜力巨大[3]。
研究区块经过多年开发,地层亏空大,受边底水侵入和高轮次吞吐等因素影响,开发效果变差。
复杂河流相稠油油田局部隔夹层较发育, 为高渗稠油油藏。
优化水平井参数, 为辅助蒸汽吞吐, 采用高效油溶性复合降黏剂, 充分利用其协同降黏作用、混合传质及增能助排性能, 大幅度降低注汽压力、扩大吞吐波及范围。
一、不同区域剩余油分布规律分析1.典型井组选取根据研究单元不同区域的储层厚度、原油物性、构造位置、周期生产效果、水淹类型等的差异,平面上划分了4个区域:(1)受边底水影响西北部受到馆陶弱边水影响,部分井高含水;平均单井日液33.5t,单井日油1.9t,综合含水94.3%,平均动液面209m。
(2)受潜水底水和南部区域注入水影响的中部井区受到南部区域边水、潜山底水侵入,高含水问题突出;该井区井况问题突出,储量失控严重。
管外窜问题严重,制约老井利用(3)高泥质较高东部井区层薄物性差,产能低;油井主要表现为注汽压力高的特征,一般注汽压力达18.0MPa~19.5MPa。
单井平均周期生产效益较差。
(4)水平井区一是井筒附近采出程度高,周期递减大,二是非均质性强,井间热连通,汽窜严重。
综上,从4个典型区域选取了5个开发井组,共涉及井数62口,面积4.2km2,在历史拟合基础上,分析剩余油分布规律及影响因素。
2.地质模型建立三维地质模型采用Petrel软件,模拟层位为研究区块馆陶组3个砂组、5个小层。
3.数值模型建立利用CMG数值模拟软件,分别建立四个区域数值模型,并进行了历史拟合。
拟合过程中,依据岩心分析资料,首先对孔隙度、空气渗透率、含油饱和度进行了校正,并对相对渗透率在合理范围内进行了修正,对模型区含水进行了精细拟合使拟合含水上升趋势与实际一致,并对重点井进行了精细拟合,单井拟合符合程度达到85%。
4.地下三场规律分析(1)压力场分析研究区块原始地层压力9.5MPa,目前地层平均压力7.0MPa;其中A区块及东部区域整体地层压力偏低,西北及中部区域受边底水影响压力相对较高。
探讨开发后期剩余油分布规律与挖潜措施[摘要]经过长期注水开采,油田进入高含水期,油层内油、气、水交错渗流,剩余油的挖潜难度加大。
高含水剩余油分布研究主要从剩余油分布研究方法、剩余油分布特征、剩余油分布控制因素三方面进行。
总结目前剩余油分布及挖潜技术状况和最新进展,提出周期注水、降压开采等剩余油挖潜措施。
[关键词]油田开发后期剩余油控制因素挖潜措施中图分类号:p618.13 文献标识码:a 文章编号:1009-914x (2013)08-257-01前言陆相沉积油田近90%采用注水开采方式,其基本规律是注水开发早、中期含水上升快,采出程度高。
油田进入高含水后期开发后,剩余油分布越来越复杂,给油田稳产和调整挖潜带来的难度越来越大。
剩余油的分布与沉积微相、储层非均质、流体非均质、断层、开发因素(注采关系、井网部署)等诸多因素有关,高含水期的剩余油研究内容不仅要搞清楚剩余油分布的准确位置及数量,还要搞清楚其成因以及分布的特点,并根据剩余油分布规律,采用相应的挖掘技术,提升油田的开发潜力。
1 剩余油分布规律1.1剩余油分布控制因素高含水期剩余油的形成与分布主要受地质和开发两大因素的控制。
地质因素主要指沉积微相,储层微观特征、宏观非均质性,油层微型构造,油藏构造,流体性质等。
开发因素主要指注采系统。
各种因素互相联系,互相制约,共同控制着剩余油的分布。
1.1.1地质因素。
(1)沉积微相控制剩余油的分布。
沉积微相决定储集砂体的外部形态及内部构造,因此也决定着储层平面和垂向非均质性,控制着油气水的运动方向,从而导致剩余油沿一定的相带分布。
沉积微相对剩余油分布的控制作用主要表现为4个方面:砂体的外部几何形态;砂体的延伸方向和展布规律;砂体内部构造;不同微相带影响井的生产情况。
(2)油层微构造和断层构造对剩余油分布的控制作用。
不同的微型构造模式其剩余油富集程度和油井生产情况不同。
油层微型构造对剩余油的分布和油井生产有明显的控制作用。
探讨开发后期剩余油分布规律与挖潜措施作者:赵利萍来源:《中国科技博览》2013年第08期[摘要]经过长期注水开采,油田进入高含水期,油层内油、气、水交错渗流,剩余油的挖潜难度加大。
高含水剩余油分布研究主要从剩余油分布研究方法、剩余油分布特征、剩余油分布控制因素三方面进行。
总结目前剩余油分布及挖潜技术状况和最新进展,提出周期注水、降压开采等剩余油挖潜措施。
[关键词]油田开发后期剩余油控制因素挖潜措施中图分类号:P618.13 文献标识码:A 文章编号:1009-914X(2013)08-257-01前言陆相沉积油田近90%采用注水开采方式,其基本规律是注水开发早、中期含水上升快,采出程度高。
油田进入高含水后期开发后,剩余油分布越来越复杂,给油田稳产和调整挖潜带来的难度越来越大。
剩余油的分布与沉积微相、储层非均质、流体非均质、断层、开发因素(注采关系、井网部署)等诸多因素有关,高含水期的剩余油研究内容不仅要搞清楚剩余油分布的准确位置及数量,还要搞清楚其成因以及分布的特点,并根据剩余油分布规律,采用相应的挖掘技术,提升油田的开发潜力。
1 剩余油分布规律1.1剩余油分布控制因素高含水期剩余油的形成与分布主要受地质和开发两大因素的控制。
地质因素主要指沉积微相,储层微观特征、宏观非均质性,油层微型构造,油藏构造,流体性质等。
开发因素主要指注采系统。
各种因素互相联系,互相制约,共同控制着剩余油的分布。
1.1.1地质因素。
(1)沉积微相控制剩余油的分布。
沉积微相决定储集砂体的外部形态及内部构造,因此也决定着储层平面和垂向非均质性,控制着油气水的运动方向,从而导致剩余油沿一定的相带分布。
沉积微相对剩余油分布的控制作用主要表现为4个方面:砂体的外部几何形态;砂体的延伸方向和展布规律;砂体内部构造;不同微相带影响井的生产情况。
(2)油层微构造和断层构造对剩余油分布的控制作用。
不同的微型构造模式其剩余油富集程度和油井生产情况不同。
280油藏开发后期,油田通常处于高含水阶段,此时剩余油分布比较分散,常常认为剩余油分布规律性不强,而实际上是存在一定规律的。
A油田已处于高含水阶段,剩余油表现出总体分散,局部集中的特征,开展剩余油研究,对油田下步挖潜有重要作用。
1 A油田地质特征A油田主要为滨浅湖滩坝和三角洲前缘沉积。
总体表现为下部沉积时水体较深,物源充沛,呈现“砂包泥”的特征,为三角洲前缘沉积。
主要微相类型为水下分流河道、河口坝、远砂坝、前缘席状砂和水下分流间湾,其中水下分流河道砂和河口坝砂构成了最主要的储集体,砂层厚,储层物性好,砂体呈NW-SE向展布。
油层呈“油帽子”发育在顶部,油藏模式表现为块状底水油藏。
油藏储层物性主要受沉积微相控制,物性的空间展布规律与沉积相带的分布具有较好的相关性。
2 剩余油分布模式2.1 平面剩余油由于平面剩余油的分布主要受微构造、储层隔夹层、沉积相带以及开发方式、特征等影响,导致平面上呈现分布较分散、局部较集中的特征,一般在平面上主要分布在沉积相边缘相带区域、构造的上倾方向、砂体的尖灭线周围、井网较稀、控制较弱等区域。
2.1.1 边缘相带储层物性差砂体的展布规律对水侵方向有决定作用,储层物性对注水水线推进速度有重大影响。
一般情况下,水驱油时水线往物性好的区域优先推进(沿坝砂、水下分流河道砂等),而后往物性相对较差的其他部位扩展(滩砂、坝砂侧缘、水下分流河道砂边部等),因此,容易产生在低渗带边缘水驱程度偏低,剩余油集中分布。
2.1.2 平面相变导致死油区构造-岩性油藏在相变区容易形成剩余油富集。
但受渗流屏障和渗流差异的影响,该区域水线波及不到,为死油区,同时储层零散,物性较差,该区域的剩余油为“滞留型”剩余油,无法被动用。
2.1.3 构造上倾方向水淹程度低构造特征对油藏的控制作用明显,除控制油气生、运、聚、保等,也会对剩余油的分布、油藏水淹等产生影响。
剩余油主要分布在构造较高部位,特别是在水淹初期和中期更是如此。
多层状边、底水复杂小断块油藏高效开发组合对策研究摘要本文从多层状边、底水复杂小断块油藏开发中存在的主要矛盾着手,以典型区块S-3断块为例,以数值模拟的手段分别对不同开发方式、不同开发层系划分和不同井型的选择等方面进行单因素的开发模拟,在最后对三大主要影响因素进行组合对策模拟分析,预测各种组合开发效果并进行对比分析。
找出各种主要开发对策组合的优缺点,从而研究该类型油藏的高效开发的组合对策,对该类型油藏开发提供参考。
关键词:多层状边、底水小断块油藏;组合对策前言苏北盆地主体产油层位为三垛组、戴南组复杂小断块油藏。
油藏一般具有边、底水,但断层发育,断块面积一般在1km2以内。
开发中主要矛盾有三点,一是油藏边界较近,水体能量有限;二是层间干扰;三是直井生产后期易产生底水锥进和边水突进。
本文实例W油田S-3断块相当于理想模型,探讨的结论对该类型油藏具有一定的参考价值。
1 S-3断块油藏地质特点1、断层发育,为复杂小断块S-3断块由南、东、西三个方向F1、F2和F3三个正断层切割形成的一个小型断背斜构造,断层断距20-50m,封堵性好,落实程度高。
S-3构造圈闭小,面积约1km2。
图1 S-3断块III-5小层顶面构造图2、含油层系多,厚度不均,储量分布零散S-3断块U 段划分为四个油组,含油油组为II 、III 、IV 油组。
含油小层为II-4、III-3、III-5、IV-1、IV-2、IV-3和IV-4层共7个小层。
纵向上储量主要分布在III-5和IV-2小层,占总储量的57.9%。
3、中高孔、中高渗储层U 段储层为三角洲前缘的水下分流河道沉积。
储层岩心分析平均孔隙度28%,渗透率13.2-1000mD ,平均609mD 。
4、构造控制的边、底水油藏,具多套油水系统从S-3断块油藏总体特征来看,油藏主要受构造影响。
主要为边水油藏,个别层位为底水油藏。
2开发对策研究针对油藏特征,主要从开发方式、开发层系划分、开发井型的选择及其组合对策方面进行探讨。
Z油田精细地质研究及剩余油分布规律研究油田进入高含水开采阶段,关键是寻找由于储层非均质性造成的高剩余油分布区,通过开发层系的调整和部署高效井进一步挖潜,提高油田采收率。
本文针对目前Z油田存在的诸多开发问题,主要是从地质基础方面进行系统的全面的分析,结合油藏开发动态,从地质上重新认识油藏开发过程中的油水运动规律,以期解决开发过程中存在的问题。
标签:高含水;地质研究;剩余油分布本研究从油田的储层地质基础问题出发,应用储层建筑结构的方法原理、高分辨率层序地层原理和储层随机建模方法,深入开展储层沉积微相、储层非均质性研究,建立储层精细构造模型、砂体骨架模型、物性参数模型。
结合油藏开发动态,从地质上重新认识油藏开发过程中的油水运动规律,以期解决开发过程中存在的问题,为单元的进一部开发调整提供服务。
1 油田地质研究构造上的研究认为整个凹陷经历三个发育阶段:①同生断陷发育时期(K2t -E1f);②后生断陷发育时期(E2d-E2s);③坳陷阶段(E3-Q)。
储层的研究认为:①含油层系:是一个“同期不同相”的沉积复合体,相当于二级旋回。
其顶、底界面与层序界面一致。
②油层组:为岩性、电性特征相同或相似的砂层组的组合,是在二级旋回背景上形成的次一级旋回,相当于三级旋回,代表湖盆水域更次一级扩张与收缩。
沉积相模式研究:从上述沉积相展布和演化特征可知,E2d25与E2d24发育的是一套较深湖的湖底扇沉积,随后湖盆逐渐抬升,水体变浅,E2d23、E2d22和E2d21发育扇三角洲沉积,是陆上冲积扇在湖盆内的延伸和发展。
物源来自于凹陷东侧和南侧,均属于南部物源沉积体系。
E2s17沉积时期,湖盆向南收缩,水体进一步变浅,形成北高南低的地势,北部的碎屑物质成为供应本区的主要物源,发育一套正常三角洲沉积。
至E2s14沉积时期,本区已演变为冲积平原,发育曲流河沉积。
所以,戴二段时期,本区属南部物源沉积体系模式,垛一段时期,本区属于北部物源沉积体系模式。