七年级下册数学复习资料
- 格式:doc
- 大小:60.50 KB
- 文档页数:7
一、代数式初步知识1.代数式用运算符号“+—×÷... "连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2.列代数式的几个注意事项(1 )数与字母相乘,或字母与字母相乘通常使用“ •” 乘,或省略不写。
(2)数与数相乘,仍应使用“X”乘,不用“ •”乘,也不能省略乘号。
(3 )数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a(4 )在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3 ÷a写成的形式;(5 ) a与b的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3.几个重要的代数式(1 ) a与b的平方差是:a2-b 2; a与b差的平方是:(a-b ) 2(2 )若a、b、C是正整数,则两位整数是:10a+b ;则三位整数是:1OOa+1Ob+c(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。
(4 )若b > 0 ,则正数是:a2+b ,负数是:-a2-b ,非负数是:b2, 非正数是:七2O二、有理数1.有理数b_(1)凡能写成丿(a、b都是整数且a ≠0 )形式的数,都是有理数。
正整数、O、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
(注意:O即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;P不是有理数)⑵有理数中,1、O、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
⑶自然数是指O和正整数;a > O,贝U a是正数;a V O,贝U a是负数;a ≥O ,则a是正数或O (即a是非负数);a≤O,则a是负数或O(即a是非正数)。
初一数学第二学期重点知识第二部分: 整式的乘除法7、单项式与单项式相乘, 把它们的系数、相同字母的幂分别相乘, 其余字母连同它的指数不变, 作为积的因式。
8、单项式与多项式相乘, 就是根据分配律用单项式去乘多项式的每一项, 再把所得的积相加。
9、多项式与多项式相乘, 先用一个多项式的每一项乘另一个多项式的每一项, 再把所得的积相加。
10、平方差公式:11.完全平方公式: ,12、单项式相除, 把系数、同底数幂分别相除后, 作为商的因式;对于只在被除式里含有的字母, 则连同它的指数一起作为商的一个因式。
13、多项式相除, 先把这个多项式的每一项分别除以单项式, 再把所得的商相加13.多项式相除,先把这个多项式的每一项分别除以单项式,再把所得的商相加 第一部分: 幂的运算1、同底数幂相乘, 底数不变, 指数相加n m n m a a a +=•(n m ,都是正整数)2.幂的乘方, 底数不变, 指数相乘mn n m a a =)((n m ,都是正整数)3.积的乘方等于每一个因数乘方的积n n n b a ab =)((n 都是正整数)4.同底数幂相除, 底数不变, 指数相减( 都是正整数, 且 )5、我们规定: ( 都是正整数)6、科学记数法;一般地, 一个小于1的正数可以表示为 , 其中 , n 是负整数。
6.科学记数法;一般地,一个小于1的正数可以表示为 ,其中 ,n 是负整数。
6、科学记数法;一般地,一个小于1的正数可以表示为n a 10⨯,其中101<≤a ,n 是负整数。
13、多项式相除,先把这个多项式的每一项分别除以单项式,再把所得的商相加第三部分: 相交线与平行线14.若两条直线只有一个公共点, 我们称这两条直线为相交线。
在同一平面内, 不相交的两条直线叫做平行线。
15.对顶角的性质: 对顶角相等16.如果两个角的和是, 那么称这两个角互为补角。
如果这两个角的和是, 那么称这两个角互为余角。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
初一下册数学知识点归纳大全初一下册数学知识点主要包括以下几部分:
一、几何基础
1. 直线、射线、线段:定义、表示方法、性质与作图。
2. 角:定义、表示方法、度量。
3. 相交线:对顶角、邻补角、垂线及其性质。
4. 平行线:平行公理、平行线的性质及判定。
5. 垂直平分线:定义、性质及判定。
6. 三角形:三角形的边、角、周长与面积。
7. 全等三角形:全等三角形的性质与判定。
8. 轴对称与中心对称:定义、性质及判定。
9. 四边形:四边形的性质与判定。
10. 尺规作图:定义、基本作图及综合作图。
二、代数基础
1. 代数式:定义、性质及分类。
2. 整式:单项式、多项式、整式的加减法。
3. 因式分解:定义、方法与技巧。
4. 分式:定义、性质及运算。
5. 二次根式:定义、性质及运算。
6. 一元一次方程:解法及应用。
7. 二元一次方程组:解法及应用。
8. 一元一次不等式(组):解法及应用。
9. 方程的根与系数的关系。
10. 函数:定义、性质及图像。
11. 一次函数:定义、性质及图像。
12. 反比例函数:定义、性质及图像。
13. 二次函数:定义、性质及图像。
14. 三角函数:定义、性质及图像。
15. 概率初步知识:概率的定义与计算。
16. 数据收集与整理:方法与技巧。
17. 综合题解题思路与方法。
这些知识点涵盖了初一下册数学的主要内容,建议在学习时结合教材和练习题,掌握每个知识点的细节,提高自己的数学水平。
七年级下册数学知识点归纳
1. 有理数的运算
- 有理数的加法、减法、乘法和除法
- 有理数的乘方和开方
- 有理数的混合运算法则
2. 整式的加减
- 单项式和多项式的概念
- 同类项的定义及合并同类项法则
- 整式的加减运算
3. 一元一次方程
- 一元一次方程的概念和解法
- 等式的性质
- 应用题的列方程解法
4. 几何图形初步
- 点、线、面、体的概念
- 直线、射线、线段的性质
- 角的概念和分类
5. 平行线与相交线
- 平行线的定义和性质
- 相交线的定义和性质
- 平行线和相交线的判定方法
6. 平面直角坐标系
- 坐标系的建立和坐标表示
- 点的坐标和图形的坐标
- 坐标系中点的平移变换
7. 三角形
- 三角形的分类和性质
- 三角形的内角和定理
- 三角形的外角和定理
8. 数轴与绝对值
- 数轴的概念和性质
- 绝对值的定义和性质
- 绝对值的运算法则
9. 代数式
- 代数式的定义和分类
- 代数式的化简
- 代数式的求值
10. 概率初步
- 概率的定义和计算方法 - 简单事件的概率
- 概率在实际问题中的应用
11. 数据的收集与处理
- 数据的收集方法
- 数据的整理和表示
- 统计图表的绘制和解读
12. 几何图形的初步认识
- 几何图形的基本概念
- 几何图形的性质和定理
- 几何图形的构造和证明
以上是七年级下册数学的主要知识点归纳,涵盖了数与代数、几何与图形、统计与概率等数学基础知识。
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
初一数学下册知识点归纳大全一、相交线与平行线。
1. 相交线。
- 邻补角:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
邻补角的和为180°。
- 对顶角:一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角互为对顶角。
对顶角相等。
- 垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
2. 平行线。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
- 平行线的判定:- 同位角相等,两直线平行。
- 内错角相等,两直线平行。
- 同旁内角互补,两直线平行。
- 平行线的性质:- 两直线平行,同位角相等。
- 两直线平行,内错角相等。
- 两直线平行,同旁内角互补。
二、实数。
1. 平方根。
- 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
即如果x^2=a,那么x = ±√(a)(a≥slant0)。
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 正数a的正的平方根√(a)叫做a的算术平方根,0的算术平方根是0。
3. 立方根。
- 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
即如果x^3=a,那么x=sqrt[3]{a}。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
4. 实数的分类。
- 实数有理数整数正整数 0 负整数分数正分数负分数无理数(无限不循环小数)三、平面直角坐标系。
1. 有序数对。
- 有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
2. 平面直角坐标系。
- 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
七年级下册数学复习资料虽然在学习的过程中会遇到许多不顺心的事,但古人说得好--吃一堑,长一智。
多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。
没有失败和挫折的人,是永远不会成功的。
下面是本文库带来的七年级下册数学复习资料。
【资料一:相似变换】※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;【资料二:平移变换】(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移【资料三:相似三角形】※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于 1.注意:证两个相似1三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.【资料四:统计】科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。
人教版七年级下册数学复习提纲〔精选7篇〕篇1:人教版七年级下册数学复习提纲人教版七年级下册数学复习提纲1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、篇2:人教版七年级下册数学复习提纲第五章相交线与平行线5.1 相交线对顶角(vertical angles)相等。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
假如两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,假如同位角相等,那么两直线平行。
两条直线被第三条直线所截,假如内错角相等,那么两直线平行。
两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行。
5.3 平行线的性质两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系6.1 平面直角坐标系含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章三角形7.1 与三角形有关的线段三角形(triangle)具有稳定性。
7.2 与三角形有关的角三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角7.3 多边形及其内角和n边形内角和等于:(n-2)•180度多边形(polygon)的外角和等于360度。
篇3:人教版七年级下册数学复习提纲第八章二元一次方程组8.1 二元一次方程组方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
数学:知识梳理:⑴正数与负数:负数产生的必要性;具有相反意义的量。
⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
⑶相反数、倒数、绝对值:只有符号不同的两个数是互为相反数,a的相反数为-a;一个数除以1所得的商是这个数的倒数,零没有倒数;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
⑷数轴:原点、正方向、单位长度是数轴的三要素。
⑸有理数的大小比较:方法一:零大于一切正数,而小于一切负数;两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
实数一、知识梳理:1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)2、实数的有关概念:(1)平方根:一般地,如果一个数的平方等于,那么这个数叫做的平方根.正数有两个平方根,负数没有平方根,0的平方根是0(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.(3)立方根:一个数的立方等于a,这个数叫做a的立方根。
3、实数与数轴上的点一一对应。
会在数轴上表示有些无理数知识要点】1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程2.解一元一次方程的一般步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”3.一元一次方程ax=b的解的情况:(1)当a≠0时,ax=b有唯一的解(2)当a=0,b≠0时,ax=b无解(3)当a=0,b=0时,ax=b有无穷多个解【知识要点:1.因式分解定义:把一个多项式化成几个_______式乘积的形式.•因式分解与整式的乘法是互为________.2.因式分解的基本方法:(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.(2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____,a3+b3=____ ____,a3-b3=___ ____.3.因式分解的一般步骤先看有没有公因式,若有立即提出;然后看看是几项式,•若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止. 一,知识梳理:1、有理数的加法、减法、乘法、除法、乘方运算法则、混合运算2、运算律:交换律、结合律、分配律,去括号法则(1)有理数的加法法则:1. 同号两数相加,和取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 一个数与零相加仍得这个数;4. 两个互为相反数相加和为零。
⑵有理数的减法法则:减去一个数等于加上这个数的相反数。
补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:①加法的交换律;②加法的结合律;③乘法的交换律;④乘法的结合律;⑤乘法对加法的分配律;注:除法没有分配律。
3、科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。
如:304000=34、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。
取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。
如:把84960保留两个有效数字得:5、计算器的使用1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点③连接各组对应点的线段平行且相等2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
知识点整理:1、相交线两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2 有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4 有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。
∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆。
如图,PO⊥AB,同P到直线AB的距离是PO的长。
PO是垂线段。
PO是点P到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。
联系:具有垂直于已知直线的共同特征。
(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。
联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作‖。
2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1.数的分类及概念数系表:实数无理数(无限不循环小数)有理数正分数负分数正整数负整数(有限或无限循环性数)整数分数正无理数负无理数说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)│a│(a≥0)(a为一切实数)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)a(a≥0)-a(a<0)│a│=7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1.axb已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。