§1 动量 冲量 动量定理
- 格式:doc
- 大小:611.50 KB
- 文档页数:13
动量和冲量 动量定理一本章知识可分两个单元组织复习:(Ⅰ)动量和冲量,动量定理.(Ⅱ)动量守恒定律.第Ⅰ单元 动量和冲量·动量定理●知识梳理一、动量、冲量1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p =mv ,动量的单位:kg ·m/s.(2)物体的动量表征物体的运动状态,其中的速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v 的方向相同.两个物体的动量相同必须是大小相等,方向相同.(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p 2=2mE k .2.动量的变化量(1)Δp =p t -p 0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同,跟动量的方向无关.(3)求动量变化量的方法:①Δp =p t -p 0=mv 2-mv 1;②Δp =Ft .3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I =Ft ,冲量的单位:N ·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.如果在作用时间内力的方向不变,冲量的方向就与力的方向相同.(4)求冲量的方法:①I =Ft (适用于求恒力的冲量);②I =Δp .二、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ft =p p -'或Ft =mv v m -'(2)动量定理的研究对象是单个物体或可视为单个物体的系统.当研究对象为物体系时,物体系总动量的增量等于相应时间内物体系所受的合外力的冲量.所谓物体系总动量的增量是指系统内各物体的动量变化量的矢量和.所谓物体系所受的合外力的冲量是指系统内各物体所受的一切外力的冲量的矢量和,而不包括系统内部物体之间的相互作用力(内力)的冲量;这是因为内力总是成对出现的,而且它们的大小相等、方向相反,其矢量和总等于零.(3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力对作用时间的平均值.说明:①在打击和碰撞问题中,物体之间的相互作用力的量值很大,变化很快,作用时间短,这种作用力通常叫冲力,冲力的本质是弹力.②当冲力比其他力大得多时,可以忽略其他力,把冲力作为公式中的F ,但是我们必须清楚这只是一种近似的处理方法.③从物理意义上讲,公式中的F 应该是合力,而不是冲力.(4)动量定理公式中的F Δt 是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中,如果作用在研究对象上的各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.(5)动量定理中mv 2-mv 1是研究对象的动量增量,是过程终态动量与初态动量的差值(矢量减法).式中“-”号是运算符号,与正方向的选取无关.(6)动量定理中的等号(=),表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同,但绝不能认为合外力的冲量就是动量的增量.合外力的冲量是引起研究对象的运动状态改变的外来因素,而动量的增量则是研究对象受外力冲量后所导致的必然结果.(7)F Δt =Δmv 是矢量式,在应用动量定理时,应该遵循矢量运算的平行四边形法则.也可以采用正交分解法,把矢量运算转化为标量运算.假设用F x (或F y )表示合外力在x (或y )轴上的分量,v x 0(或v y 0)和v x (或v y )表示物体的初速度和末速度在x (或y )轴上的分量,则F x Δt =mv x -mv x 0 F y Δt =mv y -m v y 0上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对未知量,一般先假设为正方向,若计算结果为正,说明实际方向与坐标轴正方向一致,若计算结果为负,说明实际方向与坐标轴正方向相反.(8)根据F =ma 得F =ma =m t v v ∆-'=tp p ∆-'即F =t p ∆∆. 这是牛顿第二定律的另一种表达形式:合外力F 等于物体动量的变化率t p ∆∆. 三、用动量定理解释现象用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小;另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.分析问题时,要把哪个量变化搞清楚.●疑难突破1.Δp =p ′-p 指的是动量的变化量,不要理解为是动量,它的方向可以跟初动量的方向相同(同一直线,动量增大);可以跟初动量的方向相反(同一直线,动量减小);也可以跟初动量的方向成某一角度,但动量变化量(p ′-p )的方向一定跟合外力的冲量的方向相同.2.(1)应用动量定理I =Δp 求变力的冲量:如果物体受到大小或方向改变的力的作用,则不能直接用Ft 求变力的冲量,而应求出该力作用下物体动量的变化Δp ,等效代换变力的冲量I .例如质量为m 的小球用长为r 的细绳的一端系住,在水平光滑的平面内绕细绳的另一端做匀速圆周运动,速率为v ,周期为T ,向心力F =m R v 2.在半个周期的冲量不等于m R v 2·2T ,因为向心力是个变力(方向时刻在变).因为半个周期的始、末线速度方向相反,动量的变化量是2mv ,根据动量定理可知,向心力在半个周期的冲量大小也是2mv ,方向与半个周期的开始时刻线速度的方向相反.(2)应用Δp =F ·Δt 求恒力作用下的曲线运动中物体动量的变化:在曲线运动中,速度方向时刻在变化,求动量的变化(Δp =p 2-p 1)需要应用矢量运算方法,比较麻烦,如果作用力是恒力,可以求出恒力的冲量等效代换动量的变化.如平抛运动中动量的变化问题.思考讨论以初速度v 0平抛出一个质量为m 的物体,求抛出后t 秒内物体的动量变化.答案:Δp =Ft =mgt ,方向竖直向下3.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象可以是一个物体,也可以是几个物体组成的系统.系统内各物体可以是保持相对静止的,也可以是相对运动的.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施给研究对象的力.所有外力之和为合外力.研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力.如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(3)规定正方向.由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和).(5)根据动量定理列式求解.●典例剖析【例1】 “蹦极”是一项勇敢者的运动,如图5-1-1所示,某人用弹性橡皮绳拴住身体自高空P 处自由下落,在空中感受失重的滋味.若此人质量为60 kg ,橡皮绳长20 m ,人可看成质点,g 取10 m/s 2,求:P图5-1-1(1)此人从点P 处由静止下落至橡皮绳刚伸直(无伸长)时,人的动量为_______;(2)若橡皮绳可相当于一根劲度系数为100 N/m 的轻质弹簧,则此人从P 处下落到_______m 时具有最大速度;(3)若弹性橡皮绳的缓冲时间为3 s ,求橡皮绳受到的平均冲力的大小. 剖析:(1)人从高空落下,先在重力作用下做自由落体运动,弹性橡皮绳拉直后除受到重力外还受到橡皮绳的弹力F 作用.他做自由落体运动的时间为t 1=g h 2=10202⨯ s=2 s 他做自由落体运动的末速度为v =gt 1=20 m/s此时他的动量为p =mv =1 200 kg ·m/s.(2)当他到达平衡位置时,速度最大,则kx =mg解得平衡位置时橡皮绳伸长量为x =6 m ,他从P 处下落了26 m.(3)对人从开始下落到速度减为零的全过程,又由动量定理得mg (t 1+t 2)-Ft 2=0解得F =1 000 N根据牛顿第三定律得,橡皮绳受到的平均冲力大小为1 000 N.深化拓展参照本例试分析: (1)在“跳高”和“跳远”的比赛中,运动员为什么要落在沙坑中?(2)“跳伞”运动员着地时,为什么要有“团身”动作?(3)在球类项目的体育课上,传球和接球时为什么要有缓冲动作?答案:(1)(2)(3)中所列现象均是通过延长作用时间来减小相互作用力. 说明:上面问题中通过延长动量变化时间减小作用力,通过计算可以看出这种缓冲作用的效果很明显.这也就是杂技演员、高空作业的工人、高速行驶的驾驶员和前排乘客要扣安全带的道理.【例2】 两物体质量之比为m 1∶m 2=4∶1,它们以一定的初速度沿水平面在摩擦力作用下做减速滑行到停下来的过程中(1)若两物体的初动量相同,所受的摩擦力相同,则它们的滑行时间之比为_______;(2)若两物体的初动量相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______;(3)若两物体的初速度相同,所受的摩擦力相同,则它们的滑行时间之比为_______;(4)若两物体的初速度相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______.剖析:(1)由动量定理得-F f t =0-p t =fF p 由于F f 和p 均相同,所以t 1∶t 2=1∶1.(2)由动量定理得-μmg ·t =0-p t =mg p μ 由于p 、μ均相同,所以t 与m 成反比,故t 1∶t 2=m 2∶m 1=1∶4.(3)由动量定理得-F f t =0-mv t =fF mv由于F f 、v 均相同,所以t 与m 成正比,故t 1∶t 2=m 1∶m 2=4∶1.(4)由动量定理得-μmgt =0-mv t =gv 由于μ、v 均相同,所以t 1∶t 2=1∶1.说明:(1)对于这种涉及时间的动力学问题,利用动量定理分析往往比较方便,请同学们注意体会.(2)求解比例问题时,一般是推导出所求物理量与其他物理量的关系式,再求比例.求比例时,要特别注意表达式中哪些物理量是不变的,哪些物理量是变化的.【例3】 高压采煤水枪出水口的截面积为S ,水的射速为v ,射到煤层上后,水速度为零.若水的密度为ρ,求水对煤层的冲力.剖析:从水枪中射出的水是连续的,这样对解题极为不便,为使连续的水像物体一样,我们可以取一小段时间的水进行研究.射到煤层上的水,在较短时间速度变为零,煤一定对水(水为研究对象)产生了力的作用,此力为变力,因此可以由动量定理来求出煤对水的平均作用力,即冲力,由牛顿第三定律就知道水对煤的作用力.由水流算出Δt 内水的质量,以Δt 时间内的水为研究对象,由动量定理列方程,求煤对水的力,再由牛顿第三定律求水对煤的力.设在Δt 时间内,从水枪射出的水的质量为Δm ,则Δm =ρSv Δt .以Δm 为研究对象,它在Δt 时间内动量变化为:Δp =Δm (0-v )=-ρSv 2Δt设F N 为水对煤层的冲力,F N ′为煤层对水的反冲力,以F N ′的方向为正方向,根据动量定理(忽略水的重力)有:F N ′Δt =Δp =-ρv 2S Δt解得:F N ′=-ρSv 2根据牛顿第三定律知F N =-F N ′,所以F N =ρSv 2.说明:这是一类变质量(或连续流体)问题,对这类问题的处理,一般要选取一段时间的流体为研究对象,然后表示出所选研究对象的质量,分析它的受力及动量的变化,根据动量定理列方程求解.深化拓展国产水刀——超高压数控万能水切割机以其神奇的切割性能在北京国际展览中心举行的第五届国际机床展览会上引起轰动,它能切割40 mm 厚的钢板、50 mm 厚的大理石等材料.水刀就是将普通的水加压,使其从口径为0.2 mm 的喷嘴中以800 m/s ~1 000 m/s 的速度射出的水射流.我们知道,任何材料承受的压强都有一定限度,下表列出了一些材料所能承受的压强限度.设想有一水刀的水射流横截面积为S ,垂直入射的速度v =800 m/s ,水射流与材料接触后,速度为零,且不附着在材料上,水的密度ρ=1×103 kg/m 3,则此水刀不能切割上述哪些材料?答案:以射到材料上的水量Δm 为研究对象,以其运动方向为正方向,由动量定理得:pS Δt =-ρSv Δt ·vp =-ρv 2=-6.4×108 Pa由表中数据可知:不能切割C 、D.【例4】 如图5-1-2所示,P 为位于某一高度处的质量为m 的物块,B 为位于水平地面上的质量为M 的特殊长平板,m /M =1/10,平板与地面间的动摩擦因数为μ=2.00×10-2.在板的上表面上方,存在一定厚度的“相互作用区域”,如图中画虚线的部分.当物块P 进入相互作用区时,B 便有竖直向上的恒力f 作用于P ,f =amg ,a =51,f 对P 的作用使P 刚好不与B 的上表面接触;在水平方向P 、B 之间没有相互作用力.已知物块P 开始自由落下的时刻,板B 向右的速度为v 0=10.0 m/s.P 从开始下落到刚到达相互作用区所经历的时间为T 0=2.00 s.设B板足够长,保证物块P 总能落入B 板上方的相互作用区,取重力加速度g =9.80 m/s 2.问:当B 开始停止运动那一时刻,P 已经回到过初始位置几次?P相互作图5-1-2剖析:由于P 刚好不与B 的上表面接触,P 下落时先做自由落体运动,它进入相互作用区后做匀减速运动,速度减小到零再返回,返回时与下落时受力情况完全相同,所以,P 刚好能回到初始位置.P 从开始下落到返回原处的时间内,设恒力f 作用的时间为Δt ,则重力作用时间为:2T 0+Δt ,P 在该过程所受合外力总冲量为零,即f Δt -mg (2T 0+Δt )=0由f =amg 得:Δt =0.08 s恒力f 作用的时间木板受摩擦力的大小为f '=μ(Mg +amg )P 不在相互作用区的时间内木板受摩擦力的大小为f 0=μMg对木板应用动量定理f 0·2T 0+f '·Δt =M ·Δv即μMg ·2T 0+μ(Mg +amg )·Δt =M ·Δv得:Δv =0.88 m/sn =vv ∆0=11.38,取整数为:N =11次. 说明:(1)分析该问题时要抓住过程周期性的特点.(2)注意物块P 从开始下落到返回原高度一周期内,物块P 在相互作用区的时间和不在相互作用区的时间内,B 板的受力情况不同,决定了它的运动的情况不同.●教师下载中心教学点睛1.由于《高考大纲》中对动量定理的要求不同,故在复习中应把握好要求的尺度,从近两年高考看,对动量定理的要求有所提高,在复习中要给予必要的重视.2.对动量和冲量,复习中要引导学生对其矢量性给予足够的重视,因为学生往往在这方面出错.3.应强调动量定理解题的关键是受力分析,应通过复习使学生明确什么类型的题目应用动量定理求解更方便.在[典例剖析]中,通过例1说明应用动量定理解释实际现象的方法.通过例2说明利用动量定理分析解答动力学问题的方法.通过例3说明用动量定理求变力的冲量的方法.通过例4说明应用动量定理求解综合问题的方法.拓展题例【例1】 从高为H 的平台上,同时水平抛出两个物体A 和B ,已知它们的质量m B =2m A ,抛出时的速度v A =2v B ,不计空气阻力,它们下落过程中动量变化量的大小分别为Δp A 和Δp B ,则A.Δp A =Δp BB.Δp A =2Δp BC.Δp B =4Δp AD.Δp B =2Δp A解析:由t =gH 2知t A =t B ,由动量定理知Δp =mgt ,故Δp B =2Δp A . 答案:D【例2】 如下图所示,光子具有动量,每个光子的动量mv =h /λ(式中h 为普朗克常量,λ为光子的波长).当光照射到物体表面上时,不论光被物体吸收还是被物体表面反射,光子的动量都会发生改变,因而对物体表面产生一种压力,称为光压.上图是列别捷夫设计的用来测量光压的仪器.图中两个圆片中,a 是涂黑的,而b 是光亮的.当光线照射到a 上时,可以认为光子全部被吸收,而当光线照射到b 上时,可以认为光子全部被反射.分别用光线照射在a 或b 上,由于光压的作用,都可以引起悬丝的旋转,旋转的角度可以借助于和悬丝一起旋转的小平面镜M 进行观察.(1)如果用一束强光同时照射a 、b 两个圆片,光线的入射方向跟圆片表面垂直,悬丝将向哪个方向偏转?为什么?(2)已知a 、b 两个圆片的半径都为r ,两圆心间的距离是d .现用频率为ν的激光束同时照射a 、b 两个圆片,设入射光与圆面垂直,单位时间内垂直于光传播方向的单位面积上通过的光子个数为n ,光速为c ,求由于光压而产生的作用力分别为多大.解析:(1)a 向外b 向里转动(从上向下看逆时针转动).对时间t 内照到圆片上的光子用动量定理:Ft =ntS Δmv ,照到a 上的每个光子的动量变化是mv ,而照到b 上的每个光子的动量变化是2mv ;因此光子对b 的光压大.(2)分别对单位时间内照射到a 、b 上的光子用动量定理,有:F a =n πr 2h ν/c ,F b =n πr 22h ν/c答案:(1)a 向外b 向里转动(从上向下看逆时针转动)(2) F a =n πr 2h ν/c F b =n πr 22h ν/c第Ⅱ单元 动量守恒定律●知识梳理一、动量守恒定律1.定律内容:相互作用的物体,如果不受外力作用或者它们所受的外力之和为零,它们的总动量保持不变.这个结论叫做动量守恒定律.数学表达式为p 1+p 2=p 1′+p 2′或m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.2.动量守恒定律的成立条件(1)系统不受外力或系统所受外力之和为零.(2)系统所受的外力之和虽不为零,但比系统内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.(3)系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.3.动量守恒定律的表达形式除了m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,即p 1+p 2=p 1′+p 2′外,还有:Δp 1+Δp 2=0,Δp 1=-Δp 221m m =12v v ∆∆ 4.应用动量守恒定律时应注意(1)动量守恒定律的矢量性:动量守恒定律是矢量式,在满足动量守恒条件的情况下,系统的总动量的大小和方向都不变.应用动量守恒定律解决同一直线上的动量守恒问题时一般可以规定正方向,引入正负号,把矢量运算转化为代数运算,要特别注意表示动量方向的正负号.(2)动量守恒定律中速度的相对性:动量的大小和方向与参考系的选择有关.应用动量守恒定律列方程时,应该注意各物体的速度必须是相对同一惯性参考系的速度,通常以地面为参考系.(3)动量守恒定律中速度的同时性:物体系在相互作用的过程中,任一瞬间的动量和都保持不变,相互作用前的动量和(m 1v 1+m 2v 2+……)中的v 1、v 2……都应该是作用前同一时刻的瞬时速度;相互作用后的动量和(m 1v 1′+m 2v 2′+……)中的v 1′、v 2′……都应该是作用后同一时刻的瞬时速度.5.应用动量守恒定律解题的基本步骤(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.要明确所研究的系统是由哪几个物体组成的.(2)要对系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的力,即内力;哪些是系统外的物体对系统内物体的作用力,即外力.在受力分析的基础上,根据动量守恒的条件,判断能否应用动量守恒定律.(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式.对于物体在相互作用前后运动方向都在一条直线上的情形,动量守恒方程中各个动量(或速度)的方向可以用代数符号正、负表示.选取某个已知量的方向为正方向以后,凡是和选定的正方向同向的已知量取正值,反向的取负值.(4)建立动量守恒方程,代入已知量,解出待求量.计算结果如果是正的,说明该量的方向和正方向相同;如果是负的,则和选定的正方向相反.二、碰撞1.碰撞指的是物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.2.一般的碰撞过程中,系统的总动能要有所减少.若总动能的损失很小,可以略去不计,这种碰撞叫做弹性碰撞.若两物体碰后黏合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.一般情况下系统动能都不会增加(由其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.三、反冲现象指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.●疑难突破1.动量为状态量,对应的速度应为瞬时速度.所以动量守恒定律中的“总动量保持不变”,指的应是系统的初、末两个时刻的总动量相等,或系统在整个过程中任意两个时刻的总动量相等.若相互作用的两个物体作用前均静止,则相互作用的过程中系统任一时刻的动量都是零,即m 1v 1+m 2v 2=0,则有m 11v +m 22v =0,其中1v 、2v 为该过程中的平均速度.由于两物体运动时间相同,则有m 11v t +m 22v t =0,所以可推出m 1s 1+m 2s 2=0,使用此式解题时应注意:式中的s 1、s 2应相对同一参考系.如图5-2-1所示,在光滑水平面上,质量为M 和m 的两物体开始速度均为零,在m 下滑的过程中,M 将后退.由于水平方向系统不受外力,所以水平方向上动量守恒.m 滑到底端时,若M 后退距离为s ,则m 水平方向移动的距离为(b -a -s ),代入m 1s 1+m 2s 2=0,可解得M 后退的距离为:s =m M a b m +-)(.图5-2-12.动量守恒的公式中各速度都要相对同一个惯性参考系.地球及相对地球静止或相对地球匀速直线运动的物体即为惯性系.所以在应用动量守恒定律研究地面上物体的运动时,一般以地球为参考系.如果题目中告诉的速度是物体间的相对速度,则要把它变换成对地的速度.例如质量为M 的小船尾部站有一质量为m 的人,人和船共同以速度v 向前行驶.当人以相对于船的水平速度u 向后跳出后,船的速度为多大?设人跳出船后船的速度大小变为v ',则人跳出时的对地速度大小为u -v '.取船运动的方向为正方向,则根据动量守恒定律可列出:(m+M)v=M v'-m(u-v')①在分析该题时,不少同学列的方程式还有以下三种形式:(M+m)v=M v'-mu②(M+m)v=M v'-m(v-u)③(M+m)v=M v'+m(v'-u)④其中②式的错误是参考系不同,③式的错误是最右边一项m(v-u)中的v 和u不是同一时刻的值.人相对于船跳出时,船的速度已变为v',只要题目中没特别指出来,用动量守恒定律列方程时,初状态或末状态的速度,不管是合速度还是分速度都应是同一时刻的值.不难比较④式和①式是相同的,如果认为u>v',则人相对于地的速度向后,列出的是①式;如果认为u<v',则人相对于地的速度是向前的,那么列出的就是④式.3.动量守恒定律是从实验中得来的,也可以利用牛顿定律和运动学公式推导出来,但它的适用范围却比牛顿定律广得多.牛顿定律的适用范围是:低速、宏观,动量守恒定律却不受此种限制.动量守恒定律是自然界中最重要、最普遍的规律之一.●典例剖析【例1】在平直的公路上,质量为M的汽车牵引着质量为m的拖车匀速行驶,速度为v.在某一时刻拖车脱钩了.若汽车的牵引力保持不变,在拖车刚刚停止运动的瞬间,汽车的速度多大?剖析:在拖车和汽车脱钩前,两者共同向前做匀速直线运动,汽车和拖车构成的系统所受合外力为零.脱钩后,拖车做匀减速运动,汽车做匀加速运动,它们各自所受的合外力都不为零,但是由于汽车的牵引力不变,汽车和拖车各自受到的摩擦阻力不变.如果仍然以两者构成的系统为研究对象,系统所受外力之和仍然为零,整个过程动量守恒,所以有:(M+m)v=M v'拖车刚停止时汽车的速度v'=(M+m)v/M.说明:通过对本题的分析说明,只有真正理解了动量守恒定律的使用条件,才能善于利用该定律分析解决实际问题.本题通过选取拖车和汽车作为一个系统,该系统在拖车停止前所受外力之和为零,符合动量守恒的条件,从而可以用动量守恒定律求解,大大简化了解题过程.对于解这类问题,有些同学首先想到的可能是牛顿定律.请你也用牛顿定律求解一下该题.【例2】平静的湖面上浮着一只长L=6 m、质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远?剖析:以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零;当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变.取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向。
[高考导航]新高考课程标准学科素养1.通过实验和理论推导,理解动量定理和动量守恒定律,能用其解释生产生活中的有关现象。
知道动量守恒定律的普适性。
2.探究并了解物体弹性碰撞和非弹性碰撞的特点。
定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
3.体会用动量守恒定律分析物理问题的方法,体会自然界的和谐与统一。
物理观念冲量、动量、动量定理、动量守恒定律科学思维科学推理:用动量守恒定律分析物理问题模型建构:碰撞模型、人船模型和反冲模型科学探究通过验证动量守恒定律的实验,培养学生的实验设计能力科学态度与责任利用物理知识解释生活中的现象,体会自然界的和谐与统一考情研判:动量定理、动量守恒定律是本部分的重点知识,也是考查的热点。
命题方式呈现多样化,动量既可以和能量结合,还可以和运动学联系,经常用于解决生活中的常见问题,如碰撞问题、爆炸问题、反冲问题等;另外还可以和电磁感应中导体棒的运动相联系。
备考题型有:(1)动量定理与动量守恒定律的应用;(2)动量守恒定律与能量守恒的综合应用;(3)动量守恒定律与磁场、电磁感应、原子物理等知识的综合应用。
第一节动量冲量动量定理一、动量和冲量答案:速度m v相同作用时间Ft相同【基础练1】物理学科核心素养第一要素是“物理观念”,下列“物理观念”中正确的是()A.做曲线运动的物体,动量的变化率一定改变B.合外力对物体做功为零,则合外力的冲量也一定为零C.做匀变速运动的物体,任意时间内的动量变化量的方向是相同的D.做圆周运动的物体,经过一个周期,合外力的冲量一定为零解析:选C。
匀变速曲线运动中,物体动量的变化率恒定,A错误;合外力做功为零说明力可能与位移相互垂直,或初、末速度大小相等方向不同,但只要有力有时间则一定有冲量,故冲量不一定为零,B错误;匀变速运动,合外力恒定,动量变化量的方向与合外力同向保持不变,C正确;变速圆周运动,经过一个周期,动量的变化量不一定为零,由动量定理知合外力的冲量不一定为零,D错误。
[学生用书P230])一、动量冲量1.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=m v.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.2.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.1.判断正误(1)动量越大的物体,其运动速度越大.()(2)物体的动量越大,则物体的惯性就越大.()(3)一个物体的运动状态变化,它的动量一定改变.()(4)动量是过程量,冲量是状态量.()(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.()答案:(1)×(2)×(3)√(4)×(5)×二、动量定理1.动量定理(1)内容:物体所受合力的冲量等于物体的动量变化量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量的方向与合力的方向相同,可以在某一方向上应用动量定理.2.动量、动能、动量的变化量的比较2.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,这样做可以()A.减小球对手的冲量B.减小球对手的冲击力C.减小球的动量变化量D.减小球的动能变化量答案:B对动量和冲量的理解[学生用书P231]【知识提炼】1.对动量的理解运动物体的质量和速度的乘积叫动量.公式:p=m v.(1)动量是矢量,方向与速度方向相同.动量的合成与分解遵循平行四边形定则、三角形法则.(2)动量是状态量.通常说物体的动量是指运动物体某一时刻的动量(状态量),计算物体此时的动量应取这一时刻的瞬时速度.(3)动量是相对量.物体的动量与参照物的选取有关,通常情况下,指相对地面的动量.单位是kg·m/s.2.对冲量的理解(1)冲量的时间性:冲量不仅由力决定,还由力的作用时间决定.恒力的冲量等于力与作用时间的乘积.(2)冲量的矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致;对于作用时间内方向变化的力来说,冲量的方向与相应时间内物体动量改变量的方向一致.冲量的运算遵循平行四边形定则.【典题例析】(2015·高考北京卷)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是() A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力[解析] 从绳恰好伸直到人第一次下降至最低点的过程中,人先做加速度减小的加速运动,后做加速度增大的减速运动,加速度等于零时,速度最大,故人的动量和动能都是先增大后减小,加速度等于零时(即绳对人的拉力等于人所受的重力时)速度最大,动量和动能最大,在最低点时人具有向上的加速度,绳对人的拉力大于人所受的重力.绳的拉力方向始终向上与运动方向相反,故绳对人的冲量方向始终向上,绳对人的拉力始终做负功.故选项A 正确,选项B、C、D错误.[答案] A(2017·江苏六校联考)如图所示,在倾角为θ的斜面上,有一个质量为m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为____________,方向是____________;合力对滑块的总冲量大小为____________,方向是____________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1)沿斜面向上mg(t1+t2)sin θ+F f(t1-t2)沿斜面向下对动量定理的理解和应用[学生用书P231]【知识提炼】1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt 越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt 越短,动量变化量Δp越小.4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程:研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析:只分析研究对象的受力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.【典题例析】如图所示,一高空作业的工人重为600 N,系一条长为L=5 m的安全带,若工人不慎跌落时安全带的缓冲时间t=1 s,则安全带受的冲力是多少?(g取10 m/s2) [审题指导]转换研究对象,先以人为研究对象,利用动量定理求出人受安全带的冲力,再利用牛顿第三定律求安全带受的冲力.[解析] 法一:程序法设工人刚要拉紧安全带时的速度为v,v 2=2gL ,得v =2gL经缓冲时间t =1 s 后速度变为0,取向下为正方向,工人受两个力作用,即拉力F 和重力mg ,对工人由动量定理知,(mg -F )t =0-m v ,F =mgt +m v t将数值代入得F =1 200 N.由牛顿第三定律,工人给安全带的冲力F ′为1 200 N ,方向竖直向下.法二:全过程整体法在整个下落过程中对工人应用动量定理,重力的冲量大小为mg ⎝⎛⎭⎫2L g +t ,拉力F 的冲量大小为Ft .初、末动量都是零,取向下为正方向,由动量定理得mg ⎝⎛⎭⎫2L g +t -Ft =0 解得F =mg ⎝⎛⎭⎫ 2L g +t t=1 200 N. 由牛顿第三定律知工人给安全带的冲力大小为F ′=F =1 200 N ,方向竖直向下.[答案] 1 200 N ,方向竖直向下【跟进题组】考向1对动量定理的理解1.(2016·高考北京卷)(1)动量定理可以表示为Δp=FΔt,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v,如图1所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化Δp x、Δp y;b.分析说明小球对木板的作用力的方向.(2)激光束可以看做是粒子流,其中的粒子以相同的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图2所示.图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度相同;b.光束①比②强度大.解析:(1)a.x方向:动量变化为Δp x=m v sin θ-m v sin θ=0y方向:动量变化为Δp y=m v cos θ-(-m v cos θ)=2m v cos θ方向沿y轴正方向.b.根据动量定理可知,木板对小球作用力的方向沿y轴正方向;根据牛顿第三定律可知,小球对木板作用力的方向沿y轴负方向.(2)a.仅考虑光的折射,设Δt时间内每束光穿过小球的粒子数为n,每个粒子动量的大小为p.这些粒子进入小球前的总动量为p1=2np cos θ从小球出射时的总动量为p2=2npp1、p2的方向均沿SO向右根据动量定理得FΔt=p2-p1=2np(1-cos θ)>0可知,小球对这些粒子的作用力F的方向沿SO向右;根据牛顿第三定律,两光束对小球的合力的方向沿SO向左.b.建立如图所示的Oxy直角坐标系.x方向:根据(2)a同理可知,两光束对小球的作用力沿x轴负方向.y方向:设Δt时间内,光束①穿过小球的粒子数为n1,光束②穿过小球的粒子数为n2,n1>n2.这些粒子进入小球前的总动量为p1y=(n1-n2)p sin θ从小球出射时的总动量为p2y=0根据动量定理得F yΔt=p2y-p1y=-(n1-n2)p sin θ可知,小球对这些粒子的作用力F y的方向沿y轴负方向,根据牛顿第三定律,两光束对小球的作用力沿y轴正方向.所以两光束对小球的合力的方向指向左上方.答案:见解析考向2动量定理的应用2.(2016·高考全国卷乙)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析:(1)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV ①ΔV=v0SΔt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm=ρv0S. ③Δt(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得12+(Δm)gh=12(Δm)v20④2(Δm)v在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v ⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp ⑥由于玩具在空中悬停,由力的平衡条件得F=Mg ⑦联立③④⑤⑥⑦式得h=v202g -M2g2ρ2v20S2. ⑧答案:(1)ρv0S(2)v202g-M2g2ρ2v20S2动量定理的应用技巧(1)应用I=Δp求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft求冲量,可以求出该力作用下物体动量的变化量Δp,等效代换得出变力的冲量I.(2)应用Δp=FΔt求动量的变化例如,在曲线运动中,速度方向时刻在变化,求动量变化(Δp=p2-p1)需要应用矢量运算方法,计算比较复杂.如果作用力是恒力,可以求恒力的冲量,等效代换得出动量的变化.[学生用书P232])1.一个质量为0.18 kg 的垒球,以25 m/s 的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s ,则这一过程中动量的变化量为( )A .大小为3.6 kg·m/s ,方向向左B .大小为3.6 kg·m/s ,方向向右C .大小为12.6 kg·m/s ,方向向左D .大小为12.6 kg·m/s ,方向向右解析:选D.选向左为正方向,则动量的变化量Δp =m v 1-m v 0=-12.6 kg ·m/s ,大小为12.6 kg ·m/s ,负号表示其方向向右,D 正确.2.(2015·高考重庆卷)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t-mg C.m gh t +mg D.m gh t-mg 解析:选A.设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由动量定理得(mg -F )·t =0-m v ,解得F =m 2gh t+mg . 3.把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,这个现象的原因是( )A.在缓缓拉动纸带时,纸带给重物的摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力小C.在缓缓拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量大答案:C4.在水平力F=30 N的作用下,质量m=5 kg的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数μ=0.2,若F作用6 s后撤去,撤去F后物体还能向前运动多长时间才停止?(g取10 m/s2)解析:法一:用动量定理解,分段处理选物体为研究对象,对于撤去F前物体做匀加速运动的过程,受力情况如图甲所示,始态速度为零,终态速度为v,取水平力F的方向为正方向,根据动量定理有(F-μmg)t1=m v-0.对于撤去F后,物体做匀减速运动的过程,受力情况如图乙所示,始态速度为v,终态速度为零.根据动量定理有-μmgt2=0-m v.以上两式联立解得t2=F-μmgμmg t1=30-0.2×5×100.2×5×10×6 s=12 s.法二:用动量定理解,研究全过程选物体作为研究对象,研究整个运动过程,这个过程的始、终状态的物体速度都等于零.取水平力F的方向为正方向,根据动量定理得(F -μmg )t 1+(-μmg )t 2=0解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s =12 s. 答案:12 s[学生用书P361(独立成册)])一、选择题1.关于冲量,以下说法正确的是( )A .只要物体受到了力的作用,一段时间内物体受到的总冲量就一定不为零B .物体所受合外力的冲量小于物体动量的变化C .冲量越大的物体受到的动量越大D .如果力是恒力,则其冲量的方向与该力的方向相同解析:选D.合外力的冲量等于动量的变化,如果动量的变化为零,则合外力的冲量为零,所以物体所受外力的合冲量可能为零,故A 错误;由动量定理可知物体所受合外力的冲量等于物体动量的变化,故B 错误;冲量越大,动量的变化量越大,动量不一定大,故C 错误;如果力是恒力,则冲量的方向就是该力的方向,故D 正确.2.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,下列说法正确的是( )A .掉在水泥地上的玻璃杯动量小,而掉在草地上的玻璃杯动量大B .掉在水泥地上的玻璃杯动量改变小,掉在草地上的玻璃杯动量改变大C .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小D .掉在水泥地上的玻璃杯动量改变量与掉在草地上的玻璃杯动量改变量相等解析:选D.玻璃杯从同样高度落下,到达地面时具有相同的速度,即具有相同的动量,与地面相互作用后都静止.所以两种地面的情况中玻璃杯动量的改变量相同,故A、B、C 错误,D正确.3.(2017·北京西城区模拟)1966年,在地球的上空完成了用动力学方法测质量的实验.实验时,用“双子星号”宇宙飞船去接触正在轨道上运行的火箭组(后者的发动机已熄火),接触以后,开动“双子星号”飞船的推进器,使飞船和火箭组共同加速.推进器的平均推力F =895 N,推进器开动时间Δt=7 s.测出飞船和火箭组的速度变化Δv=0.91 m/s.已知“双子星号”飞船的质量m1=3 400 kg.由以上实验数据可测出火箭组的质量m2为() A.3 400 kg B.3 485 kgC.6 265 kg D.6 885 kg解析:选B.根据动量定理得FΔt=(m1+m2)Δv,代入数据解得m2≈3 485 kg,B选项正确.4.如图所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉在地上的P点.若以2v速度抽出纸条,则铁块落地点为()A.仍在P点B.在P点左边C.在P点右边不远处D.在P点右边原水平位移的两倍处解析:选B.纸条抽出的过程,铁块所受的滑动摩擦力一定,以v的速度抽出纸条,铁块所受滑动摩擦力的作用时间较长,由I=F f t=m v0得铁块获得速度较大,平抛运动的水平位移较大,以2v的速度抽出纸条的过程,铁块所受滑动摩擦力作用时间较短,铁块获得速度较小,平抛运动的位移较小,故B选项正确.5.如图所示,足够长的固定光滑斜面倾角为θ,质量为m的物体以速度v从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t.对于这一过程,下列判断正确的是() A.斜面对物体的弹力的冲量为零B.物体受到的重力的冲量大小为mgtC.物体受到的合力的冲量大小为零D.物体动量的变化量大小为mg sin θ·t解析:选BD.由冲量的求解公式可知,斜面对物体的弹力的冲量为mg cos θ·t,选项A 错误;物体受到的重力的冲量大小为mgt,选项B正确;物体回到斜面底端的速度仍为v,方向与初速度方向相反,故根据动量定理可知,物体受到的合力的冲量大小为2m v,选项C 错误;因整个过程中物体所受的合力为mg sin θ,则根据动量定理可知,物体动量的变化量大小为mg sin θ·t,选项D正确.6.我国女子短道速滑队在世锦赛上实现了女子3 000 m接力三连冠.如图所示,观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量大小一定等于乙对甲的冲量大小B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功解析:选AB.乙推甲的过程中,他们之间的作用力大小相等,方向相反,作用时间相等,根据冲量的定义,甲对乙的冲量与乙对甲的冲量大小相等,但方向相反,选项A正确;乙推甲的过程中,遵守动量守恒定律,即Δp甲=-Δp乙,他们的动量变化大小相等,方向相反,选项B正确;在乙推甲的过程中,甲、乙的位移不一定相等,所以甲对乙做的负功与乙对甲做的正功不一定相等,结合动能定理知,选项C、D错误.7.如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C 、D 、E 处,三个过程中重力的冲量依次为I 1、I 2、I 3,动量变化量的大小依次为Δp 1、Δp 2、Δp 3,则有( )A .三个过程中,合力的冲量相等,动量的变化量相等B .三个过程中,合力做的功相等,动能的变化量相等C .I 1<I 2<I 3,Δp 1=Δp 2=Δp 3D .I 1<I 2<I 3,Δp 1<Δp 2<Δp 3解析:选ABC.由机械能守恒定律可知物体下滑到底端C 、D 、E 的速度大小v 相等,动量变化量Δp =m v 相等,即Δp 1=Δp 2=Δp 3;根据动量定理,合力的冲量等于动量的变化量,故合力的冲量也相等,注意不是相同(方向不同);设斜面的高度为h ,从顶端A 下滑到底端C ,由h sin θ=12g sin θ·t 2得物体下滑的时间t =2h g sin 2 θ,所以θ越小,sin 2θ越小,t 越大,重力的冲量I =mgt 就越大,故I 1<I 2<I 3;故A 、C 正确,D 错误;物体下滑过程中只有重力做功,故合力做的功相等,根据动能定理,动能的变化量相等,故B 正确.8.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比()A.木块在滑到底端的过程中,摩擦力的冲量变大B.木块在滑到底端的过程中,摩擦力的冲量不变C.木块在滑到底端的过程中,木块克服摩擦力所做功变大D.木块在滑到底端的过程中,系统产生的内能数值将变大解析:选BD.滑动摩擦力的大小为f=μN,与相对速度的大小无关,所以,当皮带运动时,木块所受的摩擦力未变,空间位移未变,则滑到底端的时间、速度以及摩擦力所做的功均不变,所以摩擦力的冲量I=ft不变,故A、C错误,B正确;但由于相对滑动的距离变长,所以木块和皮带由于摩擦产生的内能变大,故D正确.二、非选择题9.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(M v0-m v0)=2m v0,则水平力的冲量I=Ft=2m v0.答案:2m v010.(2015·高考安徽卷)一质量为0.5 kg的小物块放在水平地面上的A点,距离A点5 m的位置B处是一面墙,如图所示.一物块以v0=9 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7 m/s,碰后以6 m/s的速度反向运动直至静止,g取10 m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .解析:(1)由动能定理有-μmgx =12m v 2-12m v 20可得μ=0.32.(2)由动量定理有F Δt =m v ′-m v可得F =130 N.(3)由能量守恒定律有W =12m v ′2=9 J. 答案:(1)0.32 (2)130 N (3)9 J11.(2017·北京中央民族大学附中月考)如图所示,一物体从固定斜面顶端由静止开始经过1 s 下滑到底端,已知斜面的倾角θ=37°,斜面长度L =2.5 m ,sin 37°=0.6,cos 37°=0.8,取重力加速度g =10 m/s 2,求:(1)物体与斜面间的动摩擦因数μ;(2)下滑过程中损失的机械能与减少的重力势能的比值;(3)下滑过程中合外力冲量的大小与重力冲量大小的比值.解析:(1)根据L =12at 2,解得:a =5 m/s 2,根据牛顿第二定律得: mg sin θ-μmg cos θ=ma解得:μ=0.125.(2)损失的机械能等于克服摩擦力做的功,为:ΔE=μmg cos θ·L减小的重力势能为:ΔE p=mg sin θ·L故损失的机械能与减小的重力势能的比值为:ΔE∶ΔE p=μ∶tan θ=1∶6.(3)设物体下滑到斜面底端时速度大小为v,则有:v=at=5 m/s根据动量定理得:合外力冲量的大小为:I合=m v-0=5m (N·s)在下滑过程中重力的冲量为:I G=mgt=10m (N·s)所以下滑的过程中合外力冲量的大小与重力冲量大小的比值为:I合∶I G=1∶2.答案:(1)0.125(2)1∶6(3)1∶2。
动量 冲量 动量定理考点一 动量 冲量考点二 动量定理的理解 用动量定理解释生活中的现象 考点三 用动量定理求解平均冲击力考点四 应用动量定理处理多物体、多过程问题 考点五 应用动量定理处理“流体问题”“粒子流问题”考点一 动量 冲量1.动量(矢量):①p =mv .②单位:kg ·m/s.③动量方向与速度的方向相同.2.动量的变化(矢量):①Δp =p ′-p .②单位:kg ·m/s.③动量变化量的方向与速度的改变量Δv 的方向相同.3.冲量(矢量):①I =F Δt .②单位:N ·s.③冲量方向与力的方向相同. 4.动能(标量)与动量的大小关系:E k =p 22m , E k =12pv .5.冲量的计算方法(1)利用定义式I=Ft 计算冲量,此方法仅适用于恒力的冲量,无需考虑物体的运动状态.(2)利用F-t 图像计算,F-t 图线与时间轴围成的面积表示冲量,此方法既可以计算恒力的冲量,也可以计算变力的冲量.(3)利用动量定理计算.1.关于动量和动能,以下说法中正确的是( ) A .速度大的物体动量一定大B .质量大的物体动量一定大C .两个物体的质量相等,动量大的其动能也一定大D .同一个物体动量变化时动能一定发生变化 2.(多选)一个质量为0.18kg 的垒球水平飞向球棒,被球棒打击后,以大小为20m/s 的速度反向水平飞回,关于垒球被击打前后瞬间。
下列说法正确的是( )A .垒球的动能可能不变B.垒球的动量大小一定变化了3.6kg·m/sC.球对棒的作用力与棒对球的作用力大小一定相等D.垒球受到棒的冲量方向可能与球被击打前的速度方向相同3.恒力F作用在质量为m的物体上,如图所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是()A.重力对物体的冲量大小为零B.摩擦力对物体的冲量大小为零C.拉力F对物体的冲量大小是Ftc osθD.合力对物体的冲量大小为零4.竖直上抛一小球,后又落回原地。
第五章动量考纲要求1、动量、冲量、动量定理Ⅱ2、动量守恒定律Ⅱ说明:动量定理和动量守恒定律的应用只限于一维的情况知识网络:单元切块:按照考纲的要求,本章内容可以分成两部分,即:动量、冲量、动量定理;动量守恒定律。
其中重点是动量定理和动量守恒定律的应用。
难点是对基本概念的理解和对动量守恒定律的应用。
§1 动量冲量动量定理教学目标:1.理解和掌握动量及冲量概念;2.理解和掌握动量定理的内容以及动量定理的实际应用;3.掌握矢量方向的表示方法,会用代数方法研究一维的矢量问题。
教学重点:动量、冲量的概念,动量定理的应用教学难点:动量、冲量的矢量性教学方法:讲练结合,计算机辅助教学教学过程:一、动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:p=mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
⑶动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
2.动量的变化:ppp-'=∆由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B、若初末动量不在同一直线上,则运算遵循平行四边形定则。
【例1】一个质量为m=40g的乒乓球自高处落下,以速度v=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为v'=0.5m/s。
求在碰撞过程中,乒乓球动量变化为多少?取竖直向下为正方向,乒乓球的初动量为:smkgsmkgmvp/04.0/104.0∙=∙⨯==乒乓球的末动量为:smkgsmkgvmp/02.0/)5.0(04.0∙-=∙-⨯='='p∆p'p正方向乒乓球动量的变化为:p p p -'=∆=s m kg s m kg /06.0/04.002.0∙-=∙--负号表示p ∆的方向与所取的正方向相反,即竖直向上。
2.冲量按定义,力和力的作用时间的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
⑶高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
⑷要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
【例2】 质量为m 的小球由高为H 的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解析:力的作用时间都是g H g H t 2sin 1sin 22αα==,力的大小依次是mg 、mg cos α和mg sin α,所以它们的冲量依次是:gH m I gH m I gH m I N G 2,tan 2,sin 2===合αα 点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。
二、动量定理1.动量定理物体所受合外力的冲量等于物体的动量变化。
既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
⑷动量定理的表达式是矢量式。
在一维的情况下,各个矢量必须以同一个规定的方向为正。
点评:要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量” 等于动量的变化量。
这是在应用动量定理解题时经常出错的地方,要引起注意。
【例3】以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少? 解析:因为合外力就是重力,所以Δp =F t =m g t点评:有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。
本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。
当合外力为恒力时往往用Ft 来求较为简单;当合外力为变力时,在高中阶段只能用Δp 来求。
2.动量定理的定性应用【例4】 鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。
这是为什么?解析:两次碰地(或碰塑料垫)瞬间鸡蛋的初速度相同,而末速度都是零也相同,所以两次碰撞过程鸡蛋的动量变化相同。
根据Ft =Δp ,第一次与地板作用时的接触时间短,作用力大,所以鸡蛋被打破;第二次与泡沫塑料垫作用的接触时间长,作用力小,所以鸡蛋没有被打破。
(再说得准确一点应该指出:鸡蛋被打破是因为受到的压强大。
鸡蛋和地板相互作用时的接触面积小而作用力大,所以压强大,鸡蛋被打破;鸡蛋和泡沫塑料垫相互作用时的接触面积大而作用力小,所以压强小,鸡蛋未被打破。
)【例5】某同学要把压在木块下的纸抽出来。
第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。
这是为什么?解析:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。
在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。
第二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。
【例6】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。
若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则( )A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零解析:根据动量定理可知,在过程I中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的冲量,选项A正确;过程I中阻力的冲量的大小等于过程I中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然B 选项不对;在I、Ⅱ两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故C选项正确,D选项错误。
因此,本题的正确选项为A、C。
3.动量定理的定量计算利用动量定理解题,必须按照以下几个步骤进行:⑴明确研究对象和研究过程。
研究对象可以是一个物体,也可以是几个物体组成的质点组。
质点组内各物体可以是保持相对静止的,也可以是相对运动的。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
⑵进行受力分析。
只分析研究对象以外的物体施给研究对象的力。
所有外力之和为合外力。
研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。
如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。
⑶规定正方向。
由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。
⑷写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。
⑸根据动量定理列式求解。
【例7】质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t 2停在沙坑里。
求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I 。
解析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C 。
⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:m g (t 1+t 2)-F t 2=0, 解得:()221t t t mg F += ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:m g t 1-I =0,∴I =m g t 1点评:这种题本身并不难,也不复杂,但一定要认真审题。
要根据题意所要求的冲量将各个外力灵活组合。
若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。
当t 1>> t 2时,F >>mg 。
【例8】 质量为M 的汽车带着质量为m 的拖车在平直公路上以加速度a 匀加速前进,当速度为v 0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。
若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?解析:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为()a m M +,该过程经历时间为v 0/μg ,末状态拖车的动量为零。
全过程对系统用动量定理可得: ()()()()000,v Mgg a m M v v m M v M g v a m M μμμ++='∴+-'=⋅+ 点评:这种方法只能用在拖车停下之前。
因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是()a m M +。
【例9】 质量为m =1kg 的小球由高h 1=0.45m 处自由下落,落到水平地面后,反跳的最大高度为h 2=0.2m ,从小球下落到反跳到最高点经历的时间为Δt =0.6s ,取g =10m/s 2。
求:小球撞击地面过程中,球对地面的平均压力的大小F 。
C/解析:以小球为研究对象,从开始下落到反跳到最高点的全过程动量变化为零,根据下降、上升高度可知其中下落、上升分别用时t 1=0.3s 和t 2=0.2s ,因此与地面作用的时间必为t 3=0.1s 。
由动量定理得:mg Δt-Ft 3=0 ,F =60N【例10】 一个质量为m =2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。
试求物体在水平面上所受的摩擦力。
解法l 取物体为研究对象,它的运动可明显分为三个过程。
设第一、二两过程末的速度分别为v 1和v 2。
,物体所受摩擦力为f ,规定推力的方向为正方向。
根据动量定理对三个过程分别有:111)(mv t f F =-1222)(mv mv t f F -=-230mv ft -=-联立上述三式得 N N t t t t F t F f 464545583212211=++⨯+⨯=+++=解法2 规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量p 1=0,末动量p 2=0。