人教版八年级数学下册第二单元勾股定理考试试题
- 格式:doc
- 大小:102.00 KB
- 文档页数:4
一、选择题1.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC === 2.下列条件不能判定一个三角形为直角三角形的是( ) A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、3.如图1,分别以直角三角形三边为边向外作正方形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S .其中11S =,23S =,52S =,64S =,则34S S +=( )A .10B .9C .8D .74.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352 B .512 C 5 1 D .5125.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺6.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .77.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 8.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B .7C .5或7D .以上都不对 9.已知ABC ∆的三边a ,b ,c 满足:23|4|10250a b c c -+-+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.810.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .511.如图,在Rt △ABC 中,∠C =90°,DE 是斜边AB 的垂直平分线,与BC 相交于点D 连接AD ,若AC =5,△ACD 的周长为17,则斜边AB 的长为( )A .11B .12C .13D .1412.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2二、填空题13.在直角坐标系中,点A (2,-2)与点B (-2,1)之间的距离AB =__________. 14.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.15.平面直角坐标系中,点()()4,2,2,4A B -,点(),0Px 在x 轴上运动,则AP BP +的最小值是_________.16.如图,在直角ABC 中,90B ∠=︒,AE 平分BAC ∠,交BC 边于点E ,若5BC =,13AC =,则AEC 的面积是________.17.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.18.如图,点G 为△ABC 的重心.如果AG =CG ,BG =2,AC =4,那么AB 的长等于_________.19.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.20.直角三角形两边长分别为3和4,则它的周长为__________.三、解答题21.在ABC 中,AB c =,BC a =,AC b =.如图1,若90C ∠=︒时,根据勾股定理有222+=a b c .(1)如图2,当ABC 为锐角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(2)如图3,当ABC 为钝角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD ,已知90B ∠=︒,80AB =米,60BC =米,90CD =米,110AD =米,求这块试验田的面积.22.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,3,5,22;(2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形使这个三角形的面积为6(要求至少画出3个);(3)在图3中,MNP △的顶点M ,N 在格点上,P 在小正方形的边上,问这个三角形的面积相当于多少个小方格的面积?23.如图,已知AB=CD ,∠B=∠C ,AC 和BD 交于点O ,OE ⊥AD 于点E .(1)△AOB 与△DOC 全等吗?请说明理由;(2)若OA=3,AD=4,求△AOD 的面积.24.如图,已知长方形ABCD 中,AB =8cm ,BC =10cm ,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求EF 的长.25.如图,已知ABC 中,90ACB ︒∠=,过点B 作//BD AC ,交ACB ∠的平分线CD 于点D CD ,交BC 于点E .(1)求证:BC BD =;(2)若36AC AB ==,,求CD 的长.26.如图,△ABC 中,AB =42,∠ABC =45°,D 是BC 边上一点,且AD =AC ,若BD ﹣DC =1.求DC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.2.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意; 三边长的关系为()()()()222222220mn m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键. 3.A解析:A【分析】由题意可得S 1+S 2=S 3, S 5+S 6=S 4,然后根据S 1=1,S 2=3,S 5=2,S 6=4,然后求出S 3+S 4的值即可.【详解】解:如图:∵S 1=a 2,S 2=b 2,S 3=c 2,∴a 2+b 2=c 2,即S 1+S 2=S 3,同理可得:S 5+S 6=S 4,∵S 1=1,S 2=3,S 5=2,S 6=4∴S 3+S 4=(1+3)+(2+4)=4+6=10.故答案为A .【点睛】本题主要考查勾股定理的应用以及正方形的面积、圆的面积的解法,审清题意、灵活运用数形结合的思想成为解答本题的关键.4.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴12AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 5.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.6.B解析:B【分析】由勾股定理求出AC =10,求出BE =4,设DE =x ,则BD =8−x ,得出(8−x )2+42=x 2,解方程求出x 即可得解.【详解】∵AB =6,BC =8,∠ABC =90°,∴AC=22226810AB BC =+=+,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.7.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°,∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°,∴223,BC BE CE a =-在Rt △ABC 中,,AB ===∴AC :BC :AB=22a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.8.C解析:C 【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.9.C解析:C【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可.【详解】2|4|10250b c c -+-+=()2|4|50b c -+-=,()2|4|50b c -+-=,30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =,22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形,设C 边上的高为h ,由直角三角形ABC的面积为:1122c h a b=,整理得3412===2.455a bhc⨯=,c∴边上的高为:2.4,故选择:C.【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a、b、c的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.10.C解析:C【分析】设点P(x,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P(x,0),根据题意得,x2+22=(5﹣x)2+52,解得:x=4.6,∴OP=4.6,故选:C.【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键.11.C解析:C【分析】根据线段的垂直平分线的性质得到DA DB=,根据三角形的周长公式计算,得到答案.【详解】解:DE是AB的垂直平分线,DA DB∴=,ACD∆的周长为17,17AC CD AD∴++=,17AC CD DB AC BC∴++=+=,5AC=,17512BC∴=-=,由勾股定理得,13AB==,故选:C.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 二、填空题13.【分析】直接运用两点间的距离公式求解即可【详解】解:∵(2-2)(-21)∴AB=故答案为5【点睛】本题主要考查了两点间的距离公式牢记两点间的距离公式是解答本题的关键解析:【分析】直接运用两点间的距离公式求解即可.【详解】解:∵A (2,-2)、B (-2,1)∴()()()22222221435--+--=+-=⎡⎤⎣⎦. 故答案为5.【点睛】本题主要考查了两点间的距离公式,牢记两点间的距离公式是解答本题的关键. 14.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.15.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4解析:【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.16.【分析】如图(见解析)先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设在中利用勾股定理可求出x 的值最后利用三角形的面积公式即可得【详解】如图过点E 作于点 解析:785【分析】如图(见解析),先利用勾股定理可得12AB =,再根据角平分线的性质可得BE DE =,然后根据直角三角形全等的判定定理与性质可得12AD AB ==,从而可得1CD =,设DE BE x ==,在Rt CDE △中,利用勾股定理可求出x 的值,最后利用三角形的面积公式即可得.【详解】如图,过点E 作ED AC ⊥于点D ,在Rt ABC 中,90,5,13B BC AC ∠=︒==,2212AB AC BC ∴=-=,AE ∵平分BAC ∠,且,90ED AC B ⊥∠=︒,BE DE ∴=,在Rt ABE △和Rt ADE △中,BE DE AE AE =⎧⎨=⎩, ()Rt ABE Rt ADE HL ∴≅,12AD AB ∴==,1CD AC AD ∴=-=,设DE BE x ==,则5CE BC BE x =-=-,在Rt CDE △中,222CD DE CE +=,即2221(5)x x +=-, 解得125x =, 即125DE =, 则AEC 的面积是111278132255AC DE ⋅=⨯⨯=, 故答案为:785. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.17.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA =P′A=6,∠P′AB =∠PAC ,BP′=CP=10,∴∠P′AP =∠BAC =60°,∴△APP′为等边三角形,∴PP′=AP =AP′=6,又∵8PB =,∴PP′2+BP 2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB =90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.18.【分析】先延长BG 交AC 与点D 再根据重心的性质得出BD=3;证∆ADG∆CDG 得出BD ⊥AC 再利用勾股定理求出AB 的长【详解】解:(如图)延长BG 交AC 与点D ∵点G 为△ABC 的重心BG=2∴AD=C 解析:13【分析】先延长BG 交AC 与点D ,再根据重心的性质得出BD =3;证∆ADG ≅∆CDG ,得出BD ⊥AC ,再利用勾股定理求出AB 的长.【详解】解:(如图)延长BG 交AC 与点D ,∵点G 为△ABC 的重心,BG =2,∴AD =CD ,BD =3,又∵AG =CG ,GD =GD ,∴∆ADG ≅∆CDG ,∴∠ADG =∠CDG ,∴BD ⊥AC ,∵AC =4,∴AD =2,∴AB【点睛】本题主要考查了三角形重心的性质,三角形全等和勾股定理,正确做出辅助线,求出BD 、AD 的长以及证明∆ADG ≅∆CDG 是解决本题的关键.19.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC ②,联立①②组成方程组得:()222615615BC AD AD BC⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.20.12或7+【分析】分两种情况求出第三边即可求出周长【详解】分两种情况:①当3和4都是直角边时第三边长==5故三角形的周长=3+4+5=12;②当3是直角边4是斜边时第三边长故三角形的周长=3+4+=解析:12或【分析】分两种情况求出第三边,即可求出周长.【详解】分两种情况:①当3和4都是直角边时,第三边长=2234+=5,故三角形的周长=3+4+5=12; ②当3是直角边,4是斜边时,第三边长22437=-=,故三角形的周长=3+4+7=7+7,故答案为:12或7+7.【点睛】此题考查勾股定理的应用,题中不明确所给边长为直角三角形的直角边或是斜边时,应分情况讨论求解.三、解答题21.(1)猜想:222a b c +> ,证明见解析;(2)猜想:222+b a c <,证明见解析;(3)四边形ABCD 的面积是()240030002+米2.【分析】(1)先作高线如图2,过点A 作AD BC ⊥于点D ,构造两个直角三角形,设CD x =,则BD a x =-,由勾股定理和AD 构造等式2222()b x c a x -=-- ,利用放缩法可得 222b a c +>(2)先作高线如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,构造两个直角三角形设CD y =,则BD a y =+,利用勾股定得2222()b y c a y -=-+,整理得,2222b a c ay +=-利用放缩法222b a c +<(3)如图4,连接AC .过点D 作DE AC ⊥于点E ,由勾股定理求出100AC = 设AE x =,则EC=100-x ,由勾股定理构造方程222211090(100)x x -=--,解方程的70x =,再求出DE ,利用分割法求面即可【详解】解:(1)猜想:222a b c +> ,证明:如图2,过点A 作AD BC ⊥于点D ,设CD x =,则BD a x =-,在Rt ACD △中,有222b x AD -=,在Rt ABD △中,有222()c a x AD --= ,∴2222()b x c a x -=-- ,解之:2222b a c ax +=+,∵a b c x ,,,均为正数,∴222b a c +> ;(2)猜想:222b a c +<证明:如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,设CD y =,则BD a y =+,在Rt ACD △中,有222b y AD -=,在Rt ABD △中,有222()c a y AD -+= , ∴2222()b y c a y -=-+,解之:2222b a c ay +=-,∵a b c y ,,,均为正数,∴222b a c +< ;(3)如图4,连接AC .在Rt ABC 中,有222AC AB BC =+,∴222806010000AC =+=,∵0AC >,∴100AC = ,过点D 作DE AC ⊥于点E ,设AE x =,则EC=100-x ,在Rt ADE 中,有222AD AE DE -=,即222110x DE -=,在Rt CDE △中,有222CD CE DE -=,即22290(100)x DE --= ,∴222211090(100)x x -=--,解之:70x =,在Rt ADE 中,有2222211070DE AD AE =-=-,∴DE=602±∴DE=602, ∴1122ABC ADC ABCD S S S AB BC AC DE =+=⨯⨯+⨯⨯四边形,=116080100602 22=⨯⨯+⨯⨯,=240030002+(米2),∴四边形ABCD的面积是()240030002+米2.【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.22.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为3的线段,根据勾股定理可得5为长为2,宽为1的矩形的对角线,22是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.23.(1)△AOB ≌△DOC ,理由见解析;(2)△AOD 的面积为【分析】(1)根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AO=DO ,根据等腰三角形的性质得到AE=12AD=2,由勾股定理得到OE ==【详解】(1)证明:在△AOB 和△DOC 中, AOB COD B CAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以△AOB ≌△DOC (AAS );(2)因为△AOB ≌△DOC ,所以AO =DO ,因为OE ⊥AD 于点E .所以AE 12=AD =2, 所以OE ==所以S △AOD 142=⨯=【点睛】本题考查了全等三角形的判定和性质,勾股定理,三角形的面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.24.5cm【分析】先根据折叠求出AF =10,进而用勾股定理求出BF ,即可求出CF ,最后用勾股定理即可得出结论.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =10cm ,CD =AB =8cm ,由折叠可知:Rt △ADE ≌Rt △AFE ,∴∠AFE =90°,AF =10cm ,EF =DE ,设EF =xcm ,则DE =EF =xcm ,CE =CD ﹣CE =(8﹣x )cm ,在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即82+BF 2=102,∴BF =6cm ,∴CF =BC ﹣BF =10﹣6=4(cm ),在Rt △ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即x 2=(8﹣x )2+42,∴x =5即:EF 的长为5cm .【点睛】 本题考查勾股定理、图形的翻折变换、全等三角形,方程思想等知识点,关键是熟练掌握勾股定理,运用方程求解.25.(1)见详解;(2)36【分析】(1)由平行线的性质得∠ACD=∠BDC ,根据平分线的性质得∠ACD=∠BCD ,进而即可得到结论;(2)先证明∠CBD=90°,结合勾股定理,即可求解.【详解】(1)∵// BD AC ,∴∠ACD=∠BDC ,∵CD 平分∠ACB ,∴∠ACD=∠BCD ,∴∠BDC=∠BCD ,∴BC BD =;(2)∵∠ACB=∠ACD+∠BCD=∠BDC+∠BCD=90°,∴∠CBD=180°-90°=90°,∵在Rt ABC 中,22226333BC AB AC =-=-=, ∴BC BD ==33∴在Rt BCD △中,2236CD BC BD =+=. 【点睛】本题主要考查等腰三角形的判定和性质以及勾股定理,熟练掌握勾股定理是解题的关键. 26.DC =2.【分析】过点A 作AE ⊥BC 于点E ,则∠AEB=90°,DE=CE ,结合∠ABC=45°可得出∠BAE=45°,进而可得出AE=BE ,在Rt △ABE 中,利用勾股定理可求出BE 的长,即BD+12DC=4,结合BD-DC=1可求出DC 的长.【详解】解:过点A 作AE ⊥BC 于点E ,如图所示.∵AD=AC,AE⊥BC,∴∠AEB=90°,DE=CE.∵∠ABC=45°,∴∠BAE=45°,∴AE=BE.在Rt△ABE中,AB=2∴AE2+BE2=AB2,即BE2+BE2=(2)2,∴BE=4,∴BD+1DC=4.2又∵BD﹣DC=1,∴DC+1+1DC=4,2∴DC=2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在Rt△ABE中,利用勾股定理求出BE的长是解题的关键.。
一、选择题1.下列各组线段能构成直角三角形的一组是( ) A .30,40,50B .8,12,13C .5,9,13D .3,4,62.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .5 D .23.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .2454.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .75.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm6.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ). A .5B .7C .5或7D .以上都不对7.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm8.如图,在等腰Rt △ABC ,90ABC ∠=︒,O 是ABC 内一点,10OA =,42OB =,6OC =,O '为ABC 外一点,且CBO ABO '≅△△,则四边形AO BO '的面积为( )A .10B .16C .40D .809.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( ) A .3B .6C .12D .1010.如图,四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,8AB =,13BD =,12BC =,则四边形ABCD 的面积为( )A .50B .56C .60D .7211.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .312.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .125二、填空题13.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.14.如图,在ABC 中,90A ∠=,AB AC =,点E ,点F 为BC 边上的三等分点,且12BC =,点P 在AB 边上运动(包括A 、B 两点),连结PE 、 PF ,若设PE PF a +=,则a 的取值范围为______.15.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.16.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.17.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.18.如图,在ABC 中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交AB ,BC 于D ,E ,3BE =,则EC 的长为_____.19.如图所示的网格是正方形网格,则CBD ABC ∠+∠=______°(点A ,B ,C ,D 是网格线交点)20.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影的部分是一个小正方形EFGH ,这样就组成了一个“赵爽弦图”.若AB =13,AE =12,则正方形EFGH 的面积为___________.三、解答题21.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB 由点A 向点B 行驶,已知点C 为一所学校,且点C 与直线AB 上两点A ,B 的距离分别为150m 和200m ,又AB =250m ,拖拉机周围130m 以内为受噪声影响区域. (1)学校C 会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?22.已知,等腰,,在直角边的左侧直线,点关于直线的对称点为,连接,,其中交直线于点.(1)依题意,在图1中补全示意图:当时,求的度数;(2)当且时,求的度数;(3)如图2,若,用等式表示线段,,之间的数量关系,并证明.23.如图,地面上放着一个小凳子,点A距离墙面40cm,在图①中,一根细长的木杆一OA=.在图②中,木杆的一端与点B重合,另端与墙角重合,木杆靠在点A处,50cm一端靠在墙上点C处.(1)求小凳子的高度;OC=,木杆的长度比AB长60cm,求木杆的长度和小凳子坐板的宽(2)若90cmAB.24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.学校操场边上一块空地(阴影部分)需要绿化,测出3m CD =,4m AD =,12m BC =,13m AB =,AD CD ⊥.(1)求证:90ACB ∠=︒. (2)求需要绿化部分的面积.26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形. 【详解】解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确; B 、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选:A . 【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.B解析:B 【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离. 【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF = ∴2ADF S ∆= ∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥ ∴2BD GB =由2BD CD =得,2GD CD == ∴224GC GD DC =+=+= 在Rt AGC ∆中,225AC AG GC =+=∴5AE AC ==∴236255ADE S h AE ∆⨯=⋅== 故选:B . 【点睛】本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.3.A解析:A 【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题. 【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-, 在Rt ACD △中,90C ∠=︒ , ∴222AD AC CD =+, ∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.B解析:B【分析】由勾股定理求出AC =10,求出BE =4,设DE =x ,则BD =8−x ,得出(8−x )2+42=x 2,解方程求出x 即可得解. 【详解】∵AB =6,BC =8,∠ABC =90°, ∴10=,∵将△ADC 沿直线AD 翻折得△ADE , ∴AC =AE =10,DC =DE , ∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x , ∵BD 2+BE 2=DE 2, ∴(8−x )2+42=x 2, 解得:x =5, ∴DE =5. 故选B . 【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.5.C解析:C 【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案. 【详解】 解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ). 故选:C . 【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.6.C解析:C 【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边. 【详解】∵30m -=,30m -≥≥, ∴m-3=0,n-4=0, 解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长=22+=5;34当3是直角边长,4是斜边长时,第三边长=22-=,437故选:C.【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.7.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm和5cm,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=2⨯22=4cm故选:C.【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.8.C解析:C【分析】连结OO′.先由△CBO≌△ABO′,得出OB=O′B=42,OC=O′A=10,∠OBC=∠O′BA,根据等式的性质得出∠O′BO=90°,由勾股定理得到O′O2=OB2+O′B2=32+32=64,则O′O=8.再利用勾股定理的逆定理证明OA2+O′O2=O′A2,得到∠AOO′=90°,那么根据S四边形AO′BO=S△AOO′+S△OBO′,即可求解.【详解】解:如图,连结OO′.∵△CBO≌△ABO′,∴2OC=O′A=10,∠OBC=∠O′BA,∴∠OBC+∠OBA=∠O′BA+∠OBA ,∴∠O′BO=90°,∴O′O 2=OB 2+O′B 2=32+32=64,∴O′O=8.在△AOO′中,∵OA=6,O′O=8,O′A=10,∴OA 2+O′O 2=O′A 2,∴∠AOO′=90°,∴S四边形AO′BO =S △AOO′+S △OBO′=12×6×8+12=24+16=40. 故选:C .【点睛】本题考查了等腰直角三角形、全等三角形的性质,勾股定理及其逆定理,四边形的面积,难度适中,正确作出辅助线是解题的关键. 9.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)50a c --=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形, ∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 10.A解析:A【分析】据勾股定理求出DC ,根据角平分线的性质得出DE=DC=5,根据勾股定理求出BE ,求出AE ,再根据三角形的面积公式求出即可.【详解】过D 作DE AB ⊥,交BA 的延长线于E ,则90∠=∠=︒E C ,90BCD ∠=︒,BD 平分ABC ∠,DE DC ∴=,在Rt BCD ∆中,由勾股定理得:222213125CD BD BC --=,5DE ∴=,在Rt BED ∆中,由勾股定理得:222213512BE BD DE =--,8AB =,1284AE BE AB ∴=-=-=,∴四边形ABCD 的面积BCD BED AED S S S S ∆∆∆=+-111222BC CD BE DE AE DE =⨯⨯+⨯⨯-⨯⨯ 11112512545222=⨯⨯+⨯⨯-⨯⨯ 50=,故选:A .【点睛】本题考查了勾股定理,三角形面积,角平分线的性质等知识点,能求出DE=DC 是解题的关键.11.C解析:C【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4, ∴22224223ACAD CD ; 故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键. 12.D解析:D利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.二、填空题13.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:3【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.14.≤a≤【分析】根据已知条件首先求出BEEFCF 的值再分别求出点P 与点A 重合时点P 与点B 重合时PE+PF 的值再根据对称性求出PE+PF 的最小值综合比较即可【详解】解:∵∠A=90°AB=ACBC=12解析:【分析】根据已知条件首先求出BE 、EF 、CF 的值,再分别求出点P 与点A 重合时,点P 与点B 重合时PE+PF 的值,再根据对称性求出PE+PF 的最小值,综合比较即可.【详解】解:∵∠A=90°,AB=AC ,BC=12,E 、F 是BC 的三等分点,∴BE=EF=CF=4,当点P 与点A 重合时,如图,过点A 作BC 的垂线,垂足为Q ,∴BQ=CQ=AQ=6,∴EQ=FQ=2,∴=,∴PE+PF=当点P与点B重合时,PE+PF=4+8=12;作点E关于AB的对称点E′,连接E′F,与AB交于点P,此时PE+PF最短,即为E′F的长,∵△ABC是等腰直角三角形,∴∠ABC=45°,∵E和E′关于AB对称,∴∠ABC=∠ABE′=45°,∴∠E′BE=90°,BE′=BE=4,∴E′F=22'+=45,E B BF∵10160144,∴PE+PF的最大值为1045∴a的取值范围是510,故答案为:510.【点睛】本题考查了等腰直角三角形的判定和性质,无理数的估算,最短路径问题,勾股定理,知识点较多,解题的关键是求出a的最小值和特殊值.15.8【分析】过B点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B点作于点与交于点作点E关于AM的对称点G连结GD则ED=GD当点BDG三点在解析:8【分析】⊥于点F,BF与AM交于D点,根据三角形两边之和小于第三边,过B 点作BF AC+的最小值是线段BF的长,根据勾股定理列出方程组即可求解.可知BD DE【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.16.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.17.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内的长度=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12cm .故答案为:11cm ;12cm .【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键. 18.6【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE ∠EAD=推出∠EAC=利用勾股定理解直角三角形即可得出答案【详解】解:连接AE ∵AB=AC ∠A=∴∠B=∠C=∵ED 垂直平分解析:6【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE , ∠EAD=30︒,推出 ∠EAC=90︒,利用勾股定理解直角三角形即可得出答案.【详解】解:连接AE ,∵ AB=AC ,∠A=120︒ ,∴ ∠B=∠C=()1180120302︒-︒=︒, ∵ED 垂直平分AB , ∴AE=BE ,∠EAD=30︒ ,∵BE=3,∴DE=1322BE = ∴2233BD BE DE =-= ∴AB=AC=2BD=33,∵ ∠A=120︒ ,∴ ∠EAC=90︒ , ∴22366CE AC AE =+==, 故答案为:6.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质、勾股定理、直角三角形30︒角所对的直角边等于斜边的一半的性质,熟记性质并作辅助线构造出直角三角形是解题的关键. 19.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠, 根据勾股定理得221526BD =+=222313BE =+=,222313DE +,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.20.49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积【详解】直角三角形直角边的较短边为=5正方形EFGH 的面积=13×13﹣4×=169﹣120=49故解析:49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积.【详解】 221312-,正方形EFGH 的面积=13×13﹣4×5122⨯=169﹣120=49. 故答案为:49.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键. 三、解答题21.(1)会受噪声影响,理由见解析;(2)有2分钟;【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出学校C 是否会受噪声影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出拖拉机噪声影响该学校持续的时间.【详解】解:(1)学校C 会受噪声影响.理由:如图,过点C 作CD ⊥AB 于D ,∵AC =150m ,BC =200m ,AB =250m ,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.∴AC ×BC =CD ×AB ,∴150×200=250×CD ,∴CD =150200250⨯=120(m ), ∵拖拉机周围130m 以内为受噪声影响区域,∴学校C 会受噪声影响.(2)当EC =130m ,FC =130m 时,正好影响C 学校,∵ED =2222130120EC CD -=-=50(m ),∴EF =50×2=100(m ),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.(1);(2)或;(3),证明见解析 【分析】(1)由轴对称的性质和等腰三角形的性质得出,得出,证出AE=AC ,由等腰三角形的性质和三角形内角和定理即可得出结果 (2)分两种情况:当时,当时分别求解即可 (3)作CG ⊥AP 于G ,由AAS 证明,得出CG=AM ,证出点A 是的外接圆的圆心,,得出和是等腰直角三角形,由勾股定理即可得出结论【详解】解:(1)补全示意图如图所示连接AE,设AP与BE交于点M,如图:由轴对称的性质得AE=AB,BM=EM,AM⊥BE,∵是等腰直角三角形∴AB=AC∴AE=AC∴(2)当时,如图:由(1)得,,在中∴∴∴∵AE=AB,AF=AF,FE=FB∴∴当时,如图:∵AE=AB ,AF=AF ,FE=FB ∴∴∵AE=AB=AC ∴∴即 在与中 , ∴∴由上可知,的度数为或 (3),理由如下: 由(2)得:FE=FB ,∴∴∵在中 ∴【点睛】本题考查了轴对称的性质,三角形全等的判定及性质,等腰直角三角形的性质,勾股定理等内容,熟练运用这些性质进行推理是解本题的关键23.(1)30cm ;(2)木杆长100cm ,AB =40 cm .【分析】(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,由40cm AM =,利用勾股定理 在Rt AOM 中,2230(cm)OM AO AM =-=即可;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,利用勾股定理在Rt BCN △中,222BN CN BC +=构造方程222(40)60(60)x x ++=+求解即可.【详解】解:(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,根据题意可得:40cm AM =,在Rt AOM 中, 2222504030(cm)OM AO AM =-=-=,即凳子的高度为30cm ;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,设AB xcm =,则60CB x =+,40BN x =+,903060CN =-=,在Rt BCN △中,222BN CN BC +=,222(40)60(60)x x ++=+,40x =,6040100(cm)BC =+=.【点睛】本题考查勾股定理的应用,掌握勾股定理应用的条件与结论,关键是构造出符合条件的图形是解题关键.24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴7b ==(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米,由勾股定理,15b ==(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)证明见解析;(2)224m【分析】(1)由AD ⊥CD ,可得△ACD 是直角三角形,根据勾股定理可求出AC=5,在△ABC 中,AB=13,BC=12,AC=5,可知222AB BC AC =+ ,继而证得∠ACB= 90︒;(2)根据S 阴影=ABC ACD SS -计算即可. 【详解】(1)证明:∵AD CD ⊥,∴ACD 为直角三角形,由勾股定理得:222AC CD AD =+,∵3m CD =,4m AD =,∴5m AC =,在ABC 中,2213169AB ==,2212144BC ==,22525AC ==,∴222AB BC AC =+,∴ACB △为直角三角形,∴90ACB ∠=︒.(2)ABC ACD S S S =-阴1122AC BC CD AD =⋅-⋅ 111253422=⨯⨯-⨯⨯ 306=-()224m =答:需要绿化的面积为224m .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.26.5【分析】过点C作CE⊥AB于点E,连接AC,根据题意直接得出AE,EC的长,再利用勾股定理得出AC的长,进而求出答案.【详解】如图所示:过点C作CE⊥AB于点E,连接AC,由题意可得:EC=BD=1.2m,AE=AB−BE=AB−DC=1.3−0.8=0.5m,∴AC=2222+=+=m,CE AE1.20.5 1.3∴1.3÷0.2=6.5s,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。
人教版八年级初二数学第二学期勾股定理单元综合模拟测评检测试题一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AFA .①②③B .①②③④C .②③④D .①③④2.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1053.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米4.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .235.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3656.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cm +B .513cmC .277cmD .(2583)cm +7.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .7C .5D .258.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2) 9.已知,等边三角形ΔABC 中,边长为2,则面积为( ) A .1B .2C .2D .310.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .169二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.15.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 16.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.19.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.20.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________三、解答题21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .26.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长.27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .28.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.29.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手 许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是( )A .一定是锐角三角形B .可能是锐角三角形或直角三角形,但不可能是钝角三角形C .可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的. 【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠, ∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,AG ==,∴12ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴4GF AF AG =-=-在Rt CGF 中,2CF ===,故③正确.故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 2.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==925725625>>∴53752925>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.3.D解析:D先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD221832+==a d故选:B.【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.5.C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8,∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.解析:C【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm , 由勾股定理得2222149277AP AE PE cm =+=+=② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm , 由勾股定理得222211176325AP AP PP cm =+=+= ∵277<325∴蚂蚁爬行的最短距离是277cm,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的7.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得 CD′=22DC DD +'=()22422+=6,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.8.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.9.D解析:D【解析】根据题意可画图为:过点A 作AD ⊥BC ,垂足为D ,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴3,∴S △ABC = 12BC·AD=12×2×3=3. 故选D. 10.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.二、填空题11.5【解析】试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,12.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得CD′=22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.13.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010. 【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.14.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴-=. 在Rt DEC ∆中,30E ∠=︒,43CD =283CE CD ∴==2212DE CE CD ∴=-, ∴1443832ABE S ∆=⨯⨯=143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.15.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC为一边的等腰三角形”没有明确AC是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.16.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.17.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴AE=3(负值舍去) 即CE=3,同理在Rt △CEF 中,∠C=30°,CF=2EF ,(2EF )2=EF 2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E为AD延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o ∴∠A"BC=∠DCE,在△A"BC与△DCE中,"={""A CDE CD A BA BC DCE ∠∠=∠=∠∴△A"BC≌△DCE,DE= A"C,在RT△ A"BC中,A"C=22"BC BA-=22106-=8,∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.19.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..20.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.(1)132)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B点作BE AC⊥于点E,则684.8()10AB BCBE cmAC⨯===3.6CE cm∴==,27.2CQ CE cm∴==,13.2BC CQ cm∴+=,13.22 6.6t∴=÷=秒.由上可知,当t为5.5秒或6秒或6.6秒时,BCQ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:22,则AF =22x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF =22AF AE +=22(22)x x +=3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8 所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.26.(1)2,2)证明见解析(3)7(4【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,DE =∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4, ∴22=27CD AC AD =+, ∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=333PQ CQ CP =-=, ∴2223PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则253333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.27.(1)13,17,10,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 故答案为13,17,10,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF 73【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --。
(第6题)AB D C(第12题)307米5米八年级下勾股定理测试题一、耐心填一填每小题3分,共36分1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________;7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm, 则它的周长为________.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ;10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是________. 12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米保留到0.1米; 二、精心选一选每小题4分,共24分13、下列各组数据为边的三角形中,是直角三角形的是A 、 错误!、错误!、7B 、5、4、8C 、错误!、2、1D 、错误!、3、错误! 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为A 、 4B 、8C 、 16D 、32 15、已知Rt △ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若∠B=90○,则 A 、b2= a2+ c2;B 、c2= a2+ b2;C 、a2+b2=c2;D 、a +b =c16、三角形的三边长a,b,c满足2ab=a+b2-c2,则此三角形是 . A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形 17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为 A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定AB D CdabD CB A N O MAM O N B 图图图18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是 A 、 12米 B 、 13米 C 、 14米 D 、15米 三、决心试一试19、12分如右图,等边△ABC 的边长6cm; ①求高AD ②求△ABC 的面积 20、12分如图,ABC ∆中,3590,12,,22CCD BD ∠=︒∠=∠==,求AC 的长;21、12分某菜农要修建一个塑料大棚,如图所示,若棚宽a=4m,高b=3m,长d=40m;求覆盖在顶上如右图阴影部分的逆料薄膜的面积;22、12分如图3-2,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积. 23、12分如图,一架长为5米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子底端距离墙ON 有3米;①求梯子顶端与地面的距离OA 的长; ②若梯子顶点A 下滑1米到C 点, 求梯子的底端向右滑到D 的距离;24、15分如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少25、15分如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形涂上阴影.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.两个三角形不全等答案一、1. 5 2. 三角形的稳定性意思对就可以了 3. 6cm 、8cm 、10cm 4. 90 5. 48 6. 87. 18 8.8 cm9. 34111. 120 cm 212. 13.6 二、13-18 CBACAA三、19`. ①3错误!或 ②9错误!或15.59cm220. AC=3ABCDL21. 200m222. 3623. ①AO=错误! =4②OD=错误! =4 BD=OD-OB=4-3=1米24. 作A关于CD的对称点A’,连接A’B与CD的交点为M点为所求点可求得AM+BM=A’B=50千米,总费用为50×3=150万元25. 仅供参考每个5分。
2021年人教版数学八年级下册《勾股定理》单元测试一.选择题1.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,132.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.913.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是()A.15尺B.16尺C.17尺D.18尺4.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C.D.5.一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10 B.13,10,12 C.13,12,12 D.13,10,116.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5 B13C.4 D.37.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m8.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为()A.30m B.40m C.50m D.70m9.如图,△ABC中,∠BAC=90°,AD⊥BC于点D,若AD=455,BC=25,△ABC的周长为()A.6+25B.10 C.8+25 D.1210.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个二.填空题11.在4×4的方格中,△ABC的三个顶点均在格点上,其中AB=5,BC=22,AC=17.则△ABC中AC边上的高的长为.(保留根号)12.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路53千米的地方有一居民点B,A、B的直线距离是103千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)13.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3= .14.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是.15.已知一个三角形的三边长分别为2,6,2,则这个三角形的面积为.16.请你任意写出二组勾股数.17.已知:如图,四边形ABCD,AB=1,BC=34,CD=134,AD=3,且AB⊥BC.则四边形ABCD的面积为.18.观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= .(提示:5=,13=,…)三.解答题19.如图,在4×4的方格纸中,每个小正方形的边长都为1,△ABC的三个顶点都在格点上,已知AC=25,BC=5,画出△ABC,并判断△ABC是不是直角三角形.20.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.22.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c223.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)24.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?参考答案一.选择题(共10小题)1. C. 2. C. 3. C. 4. C. 5. B. 6. B. 7. A. 8. C 9. A. 10. D.二.填空题(共8小题)11..(保留根号) 12.3813.18 .14. 4,3,5(答案不唯一). 15.2.16.3、4、5,5、12、13 . 17.94. 18. 17 .三.解答题(共6小题)19.如图,在4×4的方格纸中,每个小正方形的边长都为1,△ABC的三个顶点都在格点上,已知AC=25,BC=5,画出△ABC,并判断△ABC是不是直角三角形.【分析】根据勾股定理结合网格结构,求出AB2=42+32=25,画出AC=25,BC=5,再利用勾股定理的逆定理判断△ABC是直角三角形.【解答】解:如图,△ABC即为所求.∵55∴AC2+BC2=20+5=25,∵AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了勾股定理.20.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.【分析】(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b,c的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b、c的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是.【解答】解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.【点评】此题主要考查学生对勾股数及规律题的综合运用能力.21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.【分析】(1)根据角平分线的性质可知CD=DE=4cm,由于∠C=90°,故∠B=∠BDE=45°,△BDE是等腰直角三角形,由勾股定理得可得BD,AC的值.(2)由(1)可知:△ACD≌△AED,AC=AE,BE=DE=CD,故AB=AE+BE=AC+CD.【解答】解:(1)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD=4cm,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=∠BDE=45°,∴BE=DE=4cm.在等腰直角三角形BDE中,由勾股定理得,BD=42,∴AC=BC=CD+BD=4+42cm).(2)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴∠ADE=∠ADC,∴AC=AE,又∵BE=DE=CD,∴AB=AE+BE=AC+CD.【点评】本题考查的是角平分线的性质,等腰直角三角形的性质,比较简单.22.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c2【分析】(1)根据表格找出规律再证明其成立;(2)把已知数据代入经过证明成立的规律即可.【解答】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.【点评】本题考查了勾股数、勾股定理的逆定理;解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.23.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴(m),∴)(m).答:船向岸边移动了)m.【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.24.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?【分析】(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.【解答】解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则3x,BC=2x在Rt△ABD中,∠BAD=45°则3x,26x由AC+CD=AD得3x解得:3故26答:港口A到海岛B的距离为302106(2)甲船看见灯塔所用时间:302+106-54.115≈小时乙船看见灯塔所用时间:1203+20-51++ 4.0220≈小时所以乙船先看见灯塔.【点评】此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.。
勾股定理单元测试题1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).A .16πB .12πC .10πD .8π2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对 3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m , 梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′, 使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降 至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m 4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元. 9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去. (1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;(2)根据以上规律写出a n 的表达式.150o20米30米10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?12、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)参考答案与提示1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ).5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有(3k )2+(2k )2=(213)2,解得a =b ,b =4.); 6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43); 7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8); 8、150a .9、解析:利用勾股定理求斜边长.(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.(2)a n =12-n (n 为正整数).10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米). 答:树高AB 约为18.7米.11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时). 答:乙船每小时航行12海里.12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理 得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7, ∴计划修筑的这条公路不会穿过公园.。
八年级数学下册《勾股定理》练习题与答案(人教版)一、选择题1.由线段a 、b 、c 组成的三角形不是直角三角形的是( )A.=7,b =24,c =25;B.a =13,b =14,c =15;C.a =54,b =1,c =34; D.a =41,b =4,c =5;2.根据图形(图1,图2)的面积关系,下列说法正确的是( )A.图1能说明勾股定理,图2能说明完全平方公式B.图1能说明平方差公式,图2能说明勾股定理C.图1能说明完全平方公式,图2能说明平方差公式D.图1能说明完全平方公式,图2能说明勾股定理3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A.34B.4C.4或34D.以上都不对5.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣16.如图,在4×4的方格中,△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2, 3C.三边长为a,b,c的值为11,2,4D.a2=(c+b)(c﹣b)8.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺9.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米10.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cmB.10cmC.14cmD.无法确定11.如图,已知∠AOB=60°,点P是∠AOB的角平分线上的一个定点,点M、N分别在射线OA、OB上,且∠MPN与∠AOB互补.设OP=a,则四边形PMON的面积为( )A.34a2 B.14a2 C.38a2 D.18a212.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题13.若三角形三边之比为3:4:5,周长为24,则三角形面积.14.如图,等边△OAB的边长为2,则点B的坐标为.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD =4,则AE的长是_____.16.如图,运载火箭从地面L处垂直向上发射,当火箭到达点A处时,从位于地面R处的雷达测得AR的距离是40 km,此时测得∠ARL=30°,n(s)后,火箭到达点B处,此时测得∠BRL=45°,则火箭在这n(s)中上升的高度是 km.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则S n= .三、解答题19.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.20.如图,已知四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.24.已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:△AOM和△BON全等:(2)如图2,将△MON绕点O顺时针旋转,当点N恰好在AB边上时,求证:BN2+AN2=2ON2.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.B.2.B3.B.4.A.5.B6.B.7.C.8.C9.B.10.B.11.A.12.A13.答案为:24.14.答案为:(1,3).15.答案为:2 3.16.答案为:(203﹣20).17.答案为:61.18.答案为:38(34)n-1.19.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;20.解:连接AC.∵∠ABC =90°,AB =1,BC =2∴AC = 5在△ACD 中,AC 2+CD 2=5+4=9=AD2∴△ACD 是直角三角形∴S 四边形ABCD =12AB •BC +12AC •CD =12×1×2+12×5×2=1+ 5.故四边形ABCD 的面积为1+ 5.21.解:∵∠BDC =45°,∠ABC =90°∴△BDC 为等腰直角三角形∴BD =BC∵∠A =30°∴BC =12AC 在Rt △ABC 中,根据勾股定理得AC 2=AB 2+BC2 即(2BC)2=(4+BD)2+BC 2 解得BC =BD =2+23.22.解:(1)∵AB =13,BD =8∴AD =AB ﹣BD =5∴AC =13,CD =12∴AD 2+CD 2=AC 2∴∠ADC =90°,即△ADC 是直角三角形∴△ADC 的面积=12×AD ×CD =12×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°由勾股定理得:BC =413,即BC 的长是413.23.解:操作一:(1)14 (2)35º操作二:∵AC =9cm ,BC =12cm∴AB =15(cm)根据折叠性质可得AC =AE =9cm∴BE =AB ﹣AE =6cm设CD=x,则BD=12﹣x,DE=x在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2解得x=4.5∴CD=4.5cm.24. (1)证明:∵∠AOB=∠MON=90°∴∠AOB+∠AON=∠MON+∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴AM=BN;(2)证明:连接AM∵∠AOB=∠MON=90°∴∠AOB-∠AON=∠MON-∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴∠MAO=∠NBO=45°,AM=BN∴∠MAN=90°∴AM2+AN2=MN2∵△MON是等腰直角三角形∴MN2=2ON2∴BN2+AN2=2ON2.25.解:(1)AC+CE=(8-x)2+25+x2+81.(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD(点A与点E在BD的异侧),使AB=2,ED=3,连结AE交BD于点C设BC=x,则AE的长即为x2+4+(12-x)2+9的最小值.过点E作EF⊥AB,交AB的延长线于点F.在Rt△AEF中,易得AF=2+3=5,EF=12∴AE=13即x2+4+(12-x)2+9的最小值为13.。
一、选择题1.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 2.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22B 2C 21D .1 3.已知锐角△ABC 的三边长恰为三个连续整数,AB >BC >CA ,若边BC 上的高为AD ,则BD ﹣DC =( )A .3B .4C .5D .64.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、255.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A 32 B .237C .25 D .无法确定 6.如图,在等腰Rt △ABC ,90ABC ∠=︒,O 是ABC 内一点,10OA =,42OB =6OC =,O '为ABC 外一点,且CBO ABO '≅△△,则四边形AO BO '的面积为( )A .10B .16C .40D .80 7.以下列各数作为长度的线段,能构成直角三角形的是( ) A .1,2,3 B .3,4,6 C .1,2,3 D .7,15,17 8.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .13 9.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( ) A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=10.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12511.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .212.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.14.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,2BD =,114AC =,则边BC 的长为_______.15.在ABC 中,=3AB ,=4AC ,=5BC ,AD 平分BAC ∠交BC 于点D ,//DE AB ,且DE 交AC 于点E ,则DE 的长为_____________.16.已知O 为平面直角坐标系的坐标原点,等腰三角形AOB 中,A(2,4),点B 是x 轴上的点,则AOB 的面积为_____.17.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 18.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.19.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.20.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)三、解答题21.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.22.已知:如图,ABC 中,90C ∠=︒,BC AC >,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ DP ⊥交直线AC 于点Q .(1)如图,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .①求证:PG PQ =;②若12BC =,9AC =,设BP x =,CQ y =,求y 关于x 的函数表达式. (2)当点P 在线段CB 的延长线上时,依据题意补全下图,用等式表示线段BP 、PQ 、AQ 之间的数量关系,并说明理由.23.如图1,在ABC 中,17AB =25AC =AD 是ABC 的高,且1BD =.(1)求BC的长;⊥于点F,(2)E是边AC上的一点,作射线BE,分别过点A,C作AF BE⊥于点G,如图2,若22CG BEBE=,求AF与CG的和.24.如图,ABC中,AC=2AB=6,BC=33.AC的垂直平分线分别交AC,BC于点D,E.(1)求BE的长;(2)延长DE交AB的延长线于点F,连接CF.若M是DF上一动点,N是CF上一动点,请直接写出CM+MN的最小值为.25.在△ABC中,AB=AC,D,E分别是边BC上的两点,AD=AE,点E关于直线AC的对称点是点M,连接AM,DM;(1)如图1,当∠BAC=60°时;①依题意补全图形;②若∠BAD=α,则∠AEB=;(用含α的式子表示);③求证:DA=DM;(2)如图2,当∠BAC=90°时,依题意补全图形,用等式表示线段DC,EC,AM之间的数量关系,并证明.26.如图,已知等腰△ABC的腰AB=13cm,D是腰AB上一点,且CD=12cm,AD=5cm.(1)求证:△BDC是直角三角形;(2)求△BDC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB=5cm,BC=1×10=5cm,2∴装饰带的长度=2AC=22222255102+=+=cm,AB BC故选:C.【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.2.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,CE=21-,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴2222(2)2AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴CE=21-,在△BDP 和△EDP 中, BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.3.B【分析】根据勾股定理,因AD为公共边可以得到AB2﹣BD2=AC2﹣CD2再把三边关系代入解答即可.【详解】解:设BC=n,则有AB=n+1,AC=n﹣1,AB2﹣BD2=AC2﹣CD2,∴ AB2﹣AC2=BD2﹣CD2∴(n+1)2﹣(n﹣1)2=(BD﹣CD)n,∴BD﹣CD=4,故选:B.【点睛】此题主要考查了勾股定理,根据题意得出 BD﹣CD的长是解题关键.4.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A、设一个内角为x,则另外两个内角之和为x,则x+x=180°,解得x=90°,故是直角三角形;B、设较小的角为3x,则其于两角为4x,5x,则3x+4x+5x=180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B.【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.B解析:B作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.6.C解析:C【分析】连结OO′.先由△CBO ≌△ABO′,得出2,OC=O′A=10,∠OBC=∠O′BA ,根据等式的性质得出∠O′BO=90°,由勾股定理得到O′O 2=OB 2+O′B 2=32+32=64,则O′O=8.再利用勾股定理的逆定理证明OA 2+O′O 2=O′A 2,得到∠AOO′=90°,那么根据S 四边形AO′BO =S △AOO′+S △OBO′,即可求解.【详解】解:如图,连结OO′.∵△CBO ≌△ABO′,∴2OC=O′A=10,∠OBC=∠O′BA ,∴∠OBC+∠OBA=∠O′BA+∠OBA ,∴∠O′BO=90°,∴O′O 2=OB 2+O′B 2=32+32=64,∴O ′O=8.在△AOO′中,∵OA=6,O′O=8,O′A=10,∴OA 2+O′O 2=O′A 2,∴∠AOO′=90°,∴S 四边形AO′BO =S △AOO′+S △OBO′=12×6×8+1222=24+16=40. 故选:C .【点睛】本题考查了等腰直角三角形、全等三角形的性质,勾股定理及其逆定理,四边形的面积,难度适中,正确作出辅助线是解题的关键. 7.C解析:C【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】解:A 、222123+≠,∴不能构成直角三角形,故A 错误;B 、222346+≠,∴不能构成直角三角形,故B 错误;C 、(222123+=,∴能构成直角三角形,故C 正确;D 、22271517+≠,∴不能构成直角三角形,故D 错误.故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×12ab=10∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.9.B解析:B【分析】根据三角形三边关系可分析出A的正误;根据勾股定理逆定理可分析出B的正误;根据三角形内角和定理可分析出C、D的正误;【详解】解:A、a b c+=,不能组成三角形,不是直角三角形;B、222a c b+=,符合勾股定理的逆定理,是直角三角形;C、由∠A+∠B=2∠C,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D、由∠A:∠B:∠C=5:12:13,可得最大角131807830C∠=︒⨯=︒,不是直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理.10.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB上取一点G,使AG=AF∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即为求CE+EG的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 11.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD∴=-=,则正方形丁的面积为229AD=,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.14.【分析】延长BD到F使得DF=BD根据等腰三角形的性质与判定勾股定理即可求出答案【详解】解:延长BD到F使得DF=BD∵CD⊥BF∴△BCF是等腰三角形∴BC=CF过点C作CH∥AB交BF于点H∴∠【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【详解】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=DF=2,AC=114,∴DH=BH-BD=AC-BD=34,∴HF=HC=DF-DH=2-34=54,在Rt△CDH中,∴由勾股定理可知:=1,在Rt△BCD中,∴【点睛】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.15.【分析】首先利用勾股定理逆定理证明为直角三角形然后利用角平分线性质和平行线性质求得根据角平分线定理可知再根据求得的长【详解】∵∴∴为直角三角形∵平分∴∵∴∴∴为等腰直角三角形∴如图作⊥于点∵平分∴在 解析:127【分析】首先利用勾股定理逆定理证明ABC 为直角三角形,然后利用角平分线性质和平行线性质求得45BAD CAD ∠=∠=︒,45BAD ADE ∠=∠=︒,45ADE CAD ∠=∠=︒,根据角平分线定理可知DO DE =,再根据ABC ABD ADC SS S =+求得DE 的长.【详解】∵=3AB ,=4AC ,=5BC ,∴222AB AC BC +=,∴90BAC ∠=︒,ABC 为直角三角形,∵AD 平分90BAC ∠=︒,∴45BAD CAD ∠=∠=︒,∵//DE AB ,∴45BAD ADE ∠=∠=︒,∴45ADE CAD ∠=∠=︒, ∴ADE 为等腰直角三角形,∴90AED DEC ∠=∠=︒, 如图作DO ⊥AB 于点O ,∵AD 平分BAC ∠,=3AB ,=4AC ,=5BC ,∴DO DE =,在Rt ABC 中,12ABC ABD ADC S AB AC S S =⨯⨯=+,即111222ABC SAB AC AB DO AC DE =⨯⨯=⨯⨯+⨯⨯, 可得762DE =, 127DE =, 故答案为:127.【点睛】本题考查了勾股定理逆定理、角平分线、平行线、三角形面积,解答本题的关键是熟练运用角平分线定理和三角形面积相等求解.16.8或4或10【分析】根据已知画出坐标系进而得出AE 的长以及BO 的长即可得出△AOB 的面积【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ∵点O (00)A (24)∴AE =4OE =2OA =当OA =AB 时∴解析:8或45或10【分析】根据已知画出坐标系,进而得出AE 的长以及BO 的长,即可得出△AOB 的面积.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,∵点O (0,0),A (2,4),∴AE =4,OE =2,OA 222425+=当OA =AB 时,∴AE 是△AOB 边OB 的垂直平分线,∴BE=OE=2,∴OB=4,∴B 的坐标为(4,0),此时S △AOB =12OB AE •=1442⨯⨯=8; 当OA =OB 时, ∴OB OA ==,∴B的坐标为(±0),此时S △AOB =12OB AE •=142⨯= 当OB =AB 时, 设AB OB x ==,则2BE x =-,∴2224(2)x x =+-,解得:5x =,∴5OB =,∴B 的坐标为(5,0),此时S △AOB =12OB AE •=1542⨯⨯=10; ∴△AOB 的面积为:8或10.故答案为:8或10.【点睛】此题主要考查了三角形面积以及坐标与图形的性质,利用等腰三角形的性质求得OB 的长是解题关键.17.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 18.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.19.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x 当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x ,当第三边是斜边时,则x 2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x 2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.20.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.三、解答题21.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.22.(1)①见解析;②4732y x =-;(2)图见解析,222BP AQ PQ +=,理由见解析【分析】 (1)①先通过证ADQ BDG △≌△得到GD=DQ ,又因为PD ⊥DQ 便可证得PG=PQ ; ②由ADQ BDG △≌△证得AQ=BG ,因为CQ=y ,则AQ=BG=9-y ,BP=x ,则PC=12-x ,由PG=PQ ,根据勾股定理可列方程:()()2222912y x x y -+=-+,化简后不能得出y 与x 的函数关系;(2)依据题意画出图形,过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,先证ADQ BDE △≌△,得出EB=AQ ,ED=DQ ,因为PD DQ ⊥,所以EP PQ =,再根据勾股定理得出222EB PB EP +=,不难推出线段BP 、PQ 、AQ 之间的数量关系【详解】解:(1)①//BG AC ,A GBA ∴∠=∠, AD=DB GDB=ADQ ∠∠,,()ASA ADQ BDG ∴△≌△,GD=QD ∴,又PD GQ ⊥,PG=PQ ∴; ②ADQ BDG △≌△∴AQ=BG ,12BC =,9AC =, BP x =,CQ y =,∴ AQ=BG=9-y ,PC=12-x ,在Rt GBP △中,222B PB =GP G + ,在PCQ Rt △中, 222P QC =PQ C + GP PQ =,∴ 2222B PB =P QC G C ++,∴ ()()22229x =12y y x -+-+, 整理,得4732y x =-; (2)依据题意画出图形,当点P 在线段CB 的延长线上时,222AQ PB PQ += ,理由如下:过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,//EB AC ,EBD A ∴∠=∠ ,又EDB ADQ AD DB ∠=∠=, ,∴ ()ASA ADQ BDE △≌△,∴ EB=AQ ,ED=DQ ,PD DQ ⊥,∴ EP PQ =,在EBP Rt △中,222EB PB EP +=,222A Q PB PQ ∴+=.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,线段垂直平分线的性质及勾股定理,构造全等三角形是解决本题的关键.23.(1)3;(2)32【分析】(1)根据勾股定理可求AD ,再根据勾股定理可求CD ,根据BC=BD+CD 即可求解; (2)根据三角形面积公式可求AF 与CG 的和.【详解】(1)在Rt △ABD 中,∠ADB=90︒,由勾股定理得: ()22221174AB BD --,在Rt △ACD 中,∠ADC=90︒,由勾股定理得:()22222542AC AD -=-=,∴BC=BD+CD=1+2=3,∴BC 的长为3;(2)∵AF ⊥BE ,CG ⊥BE ,BE=22, ∴1122∆∆∆=+=⋅+⋅ABC ABE BCE S S S BE AF BE CG , =1()2⋅+BE AF CG , =2()AF CG +, 而12∆=⋅ABC S BC AD =134=62⨯⨯, ∴AF CG +==322, 即AF 与 CG 的和为32.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键. 24.(1)3BE =2)33【分析】(1)利用勾股定理逆定理可得ABC 是直角三角形,90B ∠=︒,连接AE ,根据线段垂直平分线的性质可得AE CE =,在Rt ABE △中利用勾股定理列出方程即可求解;(2)根据题意画出图形,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,利用全等三角形的判定与性质即可求解.【详解】解:(1)连接AE ,,∵26AC AB ==,33BC =,∴222AC AB BC =+,∴ABC 是直角三角形,90B ∠=︒,∵DE 垂直平分AC ,∴AE CE =,在Rt ABE △中,222AE AB BE =+,即222CE AB BE =+,∴()222333BE BE -=+,解得3BE =;(2)∵DE 垂直平分AC ,M 是DF 上一动点,∴AM CM =,∴CM MN AM MN +=+,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,如图,,在ABC 和CNA 中,B ANC ACB CAN AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ≌CNA ,∴33AN BC ==【点睛】本题考查勾股定理逆定理、全等三角形的判定与性质、线段垂直平分线的性质,灵活运用以上基本性质定理是解题的关键.25.(1)①见解析;② 60°+α;③见解析;(2)2222DC EC AM +=;见解析【分析】(1)①根据题意可直接进行作图;②由题意易得△ABC 是等边三角形,则有∠B=∠C=60°,由AD=AE ,则有∠ADE=∠AED ,然后问题可求解;③由②易得∠DAM=60°,由轴对称的性质可得AD=AE=AM ,进而可得△ADM 是等边三角形,然后问题可求证;(2)由题意易证△DMC 是直角三角形,则有222DC CM DM +=,进而可证△ADM 是等腰直角三角形,则有2DM AM =,从而等量代换即可求解.【详解】(1)解:①由题意可得如图所示:②解:∵∠BAC=60°,AB=AC ,∴△ABC 是等边三角形,∴∠B=∠C=60°,∵AD=AE ,∠BAD =α,∴∠ADE=∠AEB=60°+α故答案为60°+α;③证明:由②可得∠BAD=∠EAC ,∵∠BAC=60°,∴∠BAD+∠DAC=60°,∵点E 关于直线AC 的对称点是点M ,∴AC 垂直平分EM ,∴AE=AM ,∠EAC=∠MAC ,∴∠MAC=∠BAD ,DA =MA ,∴∠MAC+∠DAC=60°,∠DAM =60°,∴△ADM 是等边三角形,∴DA =DM ;(2)由题意可得如图所示:线段DC,EC,AM之间的数量关系:222DC EC AM+=2证明:∵点E关于直线AC的对称点是点M,∴AC垂直平分EM,∴AE=AM,∠EAC=∠MAC,∴∠MAC=∠BAD,DA=MA,∵∠BAC=90°,∴∠DAM=90°,∴△DAM是等腰直角三角形,∴2DM=,∵AC垂直平分EM,∴EC=CM,∵∠ACB=45°,∴∠ACB=∠ACM=45°,∴∠MCD=90°,∴在Rt△DMC中,222+=,DC CM DM∴222+=.2DC EC AM【点睛】本题主要考查勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质,熟练掌握勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质是解题的关键.26.(1)证明见解析;(2)48cm2.【分析】(1)由AB=AC=13cm,CD=12cm,AD=5cm,知道AC2=AD2+CD2,所以△BDC为直角三角形,(2)根据三角形面积公式解答.【详解】证明:(1)∵AB=AC=13cm,CD=12cm,AD=5cm,∴AC2=AD2+CD2,∴∠ADC=90°,∴∠BDC=90°,∴△BDC为直角三角形;(2)∵AB =13cm ,AD =5cm ,∴BD =13﹣5=8cm .∵CD =12cm , ∴281248()2BDC S cm ∆⨯==. 【点睛】本题考查勾股定理逆定理的应用.理解如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形是解题关键.。
数学试卷(二次根式、勾股定理)、单 选题(共10题;共20分)1 .在下列各式中,一定是二次根式的是( )A. 3 2B. ..Ho c. ,.a 21 D. a a3 .下列变形中,正确的是( A. (26)2=2 X 3=6 C.匕-♦ 6; - -5 -小 64 .下列组合哪个不是勾股数(A.30,40,50B. 7,24,25BT -D . '",)「;-4)7二5 .下列二次根式中,与 内是同类二次根式的是( )A.B.c.D.6 .一棵大树在一次强台风中于离地面 5 m 处折断倒下,倒下后树顶落在树根部大约12 m 处.这棵大树折断前离度估计为()7 .如图,a 、b 、c 分别表示直角三角形的三边向外作的正方形的面积,2.若式子运 在实数范围内有意义,则 A. x>1B.女1x 的取值范围是()(X>1D.<1A. 25m B. 18 m C. 17 m D. 13mA. a+b=cB.2+b 2=c 2C.ab=cD.a+b=cC. 5,12,13D. 1,2,3卜列关系正确的是8 .如果最简根式,以二8与是同类二次根式,那么使有意义的x 的取值范围是()A. x< 10 iB. x> 10C. xv 10 uD. x> 109 .等式,营=不与成立的条件是( )10 .下列根式中,最简二次根式是 ( )A.差吧.C.、填空题(共6题;共18分)11 .当a= -2时,二次根式 \f2-a 的值是12 .如图,将一根长为 20cm 的筷子置于底面直径为 5cm,高为12cm 的圆柱形水杯中,筷子 露在杯子外面的长度为 cm.13 .已知三角形的三边长分别为 ^45 cm, 厢cm, y125 cm ,则这个三角形的周长为 _______ cm.14 .如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形 A 、B 、C 、D 的边长分别是3、4、2、3,则最大正方形 E 的面积是15 .若直角三角形的两直角边长为 a 、b,且满足 标二五*9-|b —4 = 0则该直角三角形的斜边长为A. xW3'B. x>0 C. x>0且 xw3 D. x>3D.16 .中国数学史上最先完成勾股定理证明的数学家是公元 3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副 "弦图:后人称其为 赵爽弦图”(如图1) .图2由弦图变化得到, 它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH 正方形ABCD的面积分别记为 S , S 2 , S 3 , 若S i +&+Q=18,则正方形EFGH 的面积为三、计算题(共2题;共15分)17 .计算: 标i-而-1/+ 12x3—1 — 1- I18.计算:⑴廊+杀-屈-旧(2)JI (后行)-中-旧2嘎青六黄41四、解答题(共5题;共47分,19,20,22每题10分,21题5分,23题12分)19.如图,在4ABC 中,AB=13, BC=10, BC边上的中线AD=12.(1)求证:AD^BC;(2)求AC的长.20. (1)已知y/—1 - J-x,求的平方根.(2)当-4<x< 1时,化简,举+&V+16 - 2,d・占+].21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?22.综合题⑴试比较而与后调的大小;(2)你能比较谒二访与向距的大小吗?其中k为正整数.23.如图,B地在A地的正东方向,两地相距28。
《勾股定理》练习题一、选择。
1.在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为( )A B .13 C .18D .1692.如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( ) A .2k B .k +1 C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高( )A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( ) A .22B .32C .62D .827.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A爬到上底B 处,则小虫所爬的最短路径长是( )(π取3)A .50 cmB .40 cmC .30 cmD .20 cm8.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( ) A .22B .32C .62D .829.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为( )A .12米B .C .6米D .10.在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .8二、填空。
11.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.12.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.13.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________. 14.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.15.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m ,木板顶端向下滑动了0.9 m ,则小猫在木板上爬动了__________m .17.(2018·湖北襄阳)已知CD 是△ABC 的边AB 上的高,若CD =,AD =1,AB =2AC ,则BC 的长为__________. 三、解决问题。
1 / 4
八年级数学下册第二单元考试
《勾股定理》
班级: 姓名: 学号: 成绩: 一、相信你一定能选对!(每小题3分,共30分) 1.下列各组线段中,能构成直角三角形的是( )
A .2,3,4
B .3,4,6
C .5,12,13
D .4,6,7 2.在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). (A )3cm 2
(B )32cm 2
(C )33cm 2
(D )4cm 2
4. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )
A .a :b :c=8∶16∶17
B . a 2-b 2=c 2
C .a 2=(b+c)(b-c)
D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是( )
A . 等边三角形
B . 钝角三角形
C . 直角三角形
D . 锐角三角形.
6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A .121
B .120
C .90
D .不能确定
7. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定 8、如图,ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( ) A.1 B.3 C.6 D.非以上答案
9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )
(A )96cm 2 (B) 120cm 2 (C) 160cm 2 (D) 200cm 2
10、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )
二、你能填得又快又对吗?(每小题3分,共30分)
11. 在△ABC 中,∠C=90°, AB =5,AC=4,则2
AB +2
AC +2
BC =_______.
12. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米.
2 / 4
13.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )
计算两圆孔中心A 和B 的距离为 .
14、命题“全等三角形的面积相等”的逆命题是: , 它是 (填入“真”或“假”)命题。
15.已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_ _
16.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的
距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .
17、若直角三角形的两边长分别为3㎝,4㎝,则第三边长为 .
18、如果△ABC 的三边长c b a 、、满足关系式03018)602(2=-+-+-+c b b a ,
则a= ,b= ,c= ,△ABC 是 三角形.
19、如图3,将一根长24cm 的筷子,置于底面直径为5cm ,高 为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为hcm , 则h 的取值范围是 。
20、如图4,要将楼梯铺上地毯,则需要 米的地毯。
三、认真解答,一定要细心哟!(共
40分)
21
.如图,在四边形四边形ABCD 中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD
的面积。
22.
印度数学家什迦逻曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.
第10题图 第12题图 第13题图 第16题图
3 / 4
23.如图,在RT △ABC 中,∠C=90°D 是AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF ,
求证:EF 2=AE 2+BF 2
24.如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,
他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
25.如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等. (1)求E 应建在距A 多远处?(2)DE 和EC 垂直吗?试说明理由
小河
4 / 4
26、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心.其中心最大风力为12级,每远离台风中心20km ,风力就会减弱一级,该台风中心现在正以15km/h 的速度沿北偏东30°方向往C 移动,且台风中心风力不变,•若城市所受风力达到或超过4级,则称为受台风影响.
(1)该城市是否会受到这次台风的影响?请说明理由;
(2)若会受台风影响,那么台风影响该城市的持续时间有多长?• (3)该城市受到台风影响的最大风力为几级?
27、如图,ABC ∆中,CD 是AB 边上的高,且BD AD CD ⋅=2
,求证:ABC ∆是直角三角形。
(提示:AB 2=(AD+BD )2=AD 2+2AD ·BD+BD 2)。