二面角专题习题
- 格式:doc
- 大小:612.50 KB
- 文档页数:9
一、选择题1. 下列关于二面角的叙述中,正确的是()A. 二面角是由两个平面相交形成的角B. 二面角是由两个平面相交形成的两条线段所夹的角C. 二面角是由两个平面相交形成的两条射线所夹的角D. 二面角是由两个平面相交形成的两条直线所夹的角答案:C2. 在二面角中,一个平面内两条相交直线与另一个平面所成的角分别为α和β,则二面角的度数是()A. α + βB. α - βC. |α - β|D. 90°答案:C3. 若二面角的平面角为θ,那么这个二面角的度数范围是()A. 0° < θ < 90°B. 0° ≤ θ ≤ 180°C. 0° < θ ≤ 180°D. 90° < θ ≤ 180°答案:C4. 下列图形中,能表示二面角的是()A. 一个等腰三角形B. 一个等边三角形C. 一个矩形D. 一个正方形答案:C5. 若二面角的平面角为60°,则其补角的度数是()A. 60°B. 120°C. 180°D. 240°答案:B二、填空题6. 在二面角中,若一个平面内两条相交直线与另一个平面所成的角分别为α和β,则二面角的平面角为______。
答案:|α - β|7. 若二面角的平面角为θ,那么这个二面角的度数范围是______。
答案:0° < θ ≤ 180°8. 若一个二面角的平面角为45°,则其补角的度数是______。
答案:135°三、解答题9. 已知二面角的平面角为60°,求这个二面角的补角的度数。
解答过程:根据题意,设二面角的平面角为θ,则有:θ = 60°由补角的定义可知,二面角的补角为180° - θ,因此:补角= 180° - 60° = 120°所以,这个二面角的补角的度数是120°。
周练六1.如图,已知在三棱柱ABC A1B1C1中,三个Bl 侧棱都是矩形,点D为AB的中点*AC 3, BC 4, AB 5, AAi 4 ,(I)求证AC BCi ;(II)求证ACi P 平面CDBi ;(III)求异面直线ACi与BiC所成角的余弦值・2.如图,已知正方形ABCD和正方形ABEF所在平面成60。
的二面角, 成角的正弦值。
A F3.如图,在棱长为a的正方体ABCD—A I B I C I D I中,求:(1)面AiABBi与面ABCD所成角的大小;(2)二面角Ci—BD—C的正切值(3)二面角Bi BCi DP4.过正方形ABCD的顶点A作PA A平面ABCD , 设PA=AB=a ,(1)求二面角B - PC・D的大小;(2)求二面角C-PD-AC5.如图所示,四棱锥P-ABCD 的底面ABCD 是边长为1的菱形,Z BCD =60° ,E 是CD的中点, .(1)证明:BE 丄平面PAB ;(2) 求二面角 A- BE- P 的大小(3) PB 与面PAC 的角(3)求二面角B-PC-A 的大小如图,在底而为直角P ABCD 中,AD//BC, ABC90, PA 平面 ABCD PA 3, AD(1)求证:BD 平面PAC;⑵求二面角P BD A 的大小.梯形的四棱锥 2, AB 心c=6 丄底面PA ABCDC7.如图,直二面角D —AB —E中,四边形ABCD是边长为2的正方形,AE=EB , F为CE 上的点,且BF丄平面ACE.(I )求证AE丄平面BCE;(II)求二面角B— AC — E的大小;(III)求点D到平面ACE的距离.8.如图,在四棱锥P ABCD屮,底面ABCD是矩形.已知AB 3 , AD 2 ,PA 2 ,卩。
J 2 , Z PAB 60°(I )证明AD 平面PAB :(II)求异面直线PC与AD所成的角的大小; (III)求二面角P BD A的正切值. p匕。
二面角专题训练一.解答题(共110小题)1.如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.中点作GH⊥CD,交AB于H,,故中,,可得1111(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的余弦值.=ADB=,ADB=的余弦值为3.如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.BC得同理可得的平面角.的大小4.如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC为等腰三角形,求二面角A﹣BD﹣C的大小.与二面角有关的立体几何综合题;平面与平面垂直的判定。
所以与的大小.由夹角公式求与,所以∠AE,CE.,所以AEBD为正方形,AE=1.AC>1.因此只有中,,的坐标为,所以与夹角的大小等于二面角,.即二面角5.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,求证:θ+φ=.,即可得到结论.所成的角,ABA1=β.=D=,D.=.6.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(I)证明:CD⊥AE;(II)证明:PD⊥平面ABE;(III)求二面角A﹣PD﹣C的大小.PAC,∴AE⊥PC.是PC的中点,∴AE⊥PC..而PD⊂平面PCD,∴AE⊥PD.,∴AB⊥PD.)知,AE⊥平面PCD,AM在平面C的平面角.,可得..中,.所以二面角的大小是7.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.=的坐标,同时易得,>,进而由同角三角函,=AC CD=;AB==AB BC=V=×=,从而EF=;DEF=的平面角的正切值为,由⊥||=1或(舍),||=1|或(舍),)||=,||=1V=××|||;(Ⅱ)由(Ⅰ)知(,,)设非零向量=的法向量,则由⊥可得,l+m=0⊥可得,m+,n==,﹣=<>=,>的平面角的正切值为8.如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.,PG=BG=,因此二面角的余弦值为9.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.OB=MO=,则,,所以所以,所求二面角的正弦值是10.如图,在五面体ABCDEF中,AB∥DC,,CD=AD=2,四边形ABFE为平行四边形,FA⊥平面ABCD,,求:(Ⅰ)直线AB到平面EFCD的距离;(Ⅱ)二面角F﹣AD﹣E的平面角的正切值.与二面角有关的立体几何综合题;点、线、面间的距离计算。
二面角专项训练(人教A版)一、单选题(共7道,每道10分)1.等于90°的二面角内有一点P,过P有PA⊥α于点A,PB⊥β于点B,如果PA=PB=a,则P 到交线的距离为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:与二面角有关的点、线、面间的距离计算2.如图,在三棱锥F-ABC中,FC⊥底面ABC,CA=CB=CF,∠ACB=120°,则二面角F-AB-C的正切值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二面角的平面角及求法3.如图,在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是腰长为的等腰三角形,则二面角V-AB-C的平面角为( )A.30°B.45°C.60°D.90°答案:C解题思路:试题难度:三颗星知识点:二面角的平面角及求法4.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥AB,PA=AB=2,AC=1,则二面角A-PC-B的正弦值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二面角的平面角及求法5.如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1,∠ACB=90°,D是棱AA1的中点,则二面角B-DC1-C的余弦值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二面角的平面角及求法6.如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD,则二面角A1-BD-C1的大小为( )A.30°B.45°C.60°D.90°答案:A解题思路:试题难度:三颗星知识点:二面角的平面角及求法7.如图,在直三棱柱ABC-A1B1C1中,AB1⊥A1C,AB=4,AC=BC=3,D为AB的中点,则二面角A1-CD-C1的平面角的余弦值为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:二面角的平面角及求法。
二面角1.二面角的计算:1)定义法;2)三垂线定理法;3)垂面法;4)面积射影法;例1、已知P 是二面角棱上一点,过P 分别在内引射线PM ,PN ,且AB αβ--αβ、,求此二面角的度数。
45,60BPM BPN MPN ∠=∠=︒∠=︒例2、已知P 为锐二面角棱上的点,,则二l αβ--,4530PQ PQ l αβ⊂︒︒与成,与成面角的度数是多少。
l αβ--例3、已知二面角的度数为,在面内有一条射线AB 与棱l 成锐角,与面l αβ--θαδ,则必有( )βγ成角(A ) (B )sin sin sin θδγ=sin sin cos θδγ=(C ) (D )cos cos sin θδγ=cos cos cos θδγ=例4、在的二面角的面、内分别有A 、B 两点,且A 、B 到棱l 的距离120︒l αβ--αβAC 、BD 分别长2、4,AB=10,求:(1)直线AB 与棱l 所成角的正弦值。
(2)直线AB 与平面所成角的正弦值。
β例5、已知二面角为,上的射影,且C 在棱MN αβ--60︒,,A B BC AB αββ∈∈为在MN 上,AB 与所成角为,且,求线段AB 的长。
β60︒45AC MCB =∠=︒例6、已知二面角的度数为,的面积为S ,且DC=m ,DC αβ--θ,,A B ADC αβ∈∈∆,AB 与平面成角,当变化时,求面积最大值。
AB DC ⊥β30︒θDBC ∆in例7、已知C是以AB为直径的圆周上的一点,,30ABC∠=︒,求二面角A-45PA ABC PBA⊥∠=︒面,PB-C的正弦值。
例8、在正方体中,利用解下列各题1111ABCD A B C D-cosSSθ=射影1)P、Q分别为的中点,求平面与底面ABCD所成角的余弦值1,A A AB1C PQ2)求二面角的大小;11C BD C--3)M是棱BC的中点,求二面角的余弦值。
111D B M C--例9、已知D 、E 分别是边长为a 的等边三角形ABC 的边AB 、AC 上的点,DE//BC ,现沿DE 将三角形ADE 折起,是二面角A-DE-B 成60度角,当DE 在什么位置时,使折起后的顶点A 到BC 边距离最短?最短是多少?例10、等腰Rt 和Rt 有公共边AC ,,ADC ∆BCA ∆90,60ADC BCA ABC ∠=∠=︒∠=︒以AC 为棱折起多少度的二面角时,有BD=BC ?两个平面垂直1、两个平面垂直的证明1)定义2)判定定理2、两个平面垂直的性质例1、已知ABCD 为矩形,E 为半圆CED 上一点,且平面ABCD 平面CDE ⊥1)求证DE 是AD 与BE 的公垂线2)若AD=DE=AB ,求AD 与BE 所成角的大小。
二面角1.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC 是边长为 2的正三角形,求二面角 P-AB -C 的大小。
解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°2.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。
解:∵ BS =BC ,又DE 垂直平分SC∴ BE ⊥SC ,SC ⊥面BDE ∴ BD ⊥SC ,又SA ⊥面ABC ∴ SA ⊥BD ,BD ⊥面SAC ∴ BD ⊥DE ,且BD ⊥DC 则 ∠EDC 就是所要求的平面角 设 SA =AB =a ,则 BC =SB =2a 且 AC = 3易证 △SAC ∽△DEC ∴ ∠CDE =∠SAC =60°3. 如图:ABCD 是矩形,AB =8,BC =4,AC 与 BD 相交于O 点,P 是平面 ABCD 外一点,PO ⊥面ABCD ,PO =4,M 是 PC 的中点,求二面角 M-BD-C 大小。
AB解:取OC 之中点N ,则 MN ∥PO ∵ PO ⊥面ABCD∴ MN ⊥面ABCD 且 MN =PO/2 =2 过 N 作 NR ⊥BD于 R ,连MR ,则 ∠MRN 即为二面角 M-BD-C 过 C 作 CE ⊥BD 于S 则 RN =21CE 在 Rt △BCD 中, ∴ 58BD BC CD CE =⋅=∴ 54RN =25RN MN MRN tan ==∠ ∴ 25arctanMRN =∠ 4.如图△ABC 与△BCD 所在平面垂直,且AB =BC =BD ,∠ABC =∠DBC =0120,求二面角 A-BD-C 的余弦值。
二面角习题及答案————————————————————————————————作者:————————————————————————————————日期:二面角1.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC是边长为 2的正三角形,求二面角 P-AB -C 的大小。
解2.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。
解:3. 如图:ABCD 是矩形,AB =8,BC =4,AC 与 BD 相交于O 点,P 是平面 ABCD 外一点,PO ⊥面ABCD ,PO =4,M 是 PC 的中点,求二面角 M-BD-C 大小。
解:4.如图△ABC 与△BCD 所在平面垂直,且AB =BC =BD ,∠ABC =∠DBC =0120,求二面角 A-BD-C 的余弦值。
解:DPC A BE DB ASCS R NMO B DPA CB A EC5.已知正方体 AC',M 、N 分别是BB',DD'的中点,求截面 AMC'N 与面ABCD ,CC'D'D 所成的角。
解:6.如图 AC ⊥面BCD ,BD ⊥面ACD ,若AC =CD =1,∠ABC =30°,求二面角D AB C --的大小。
解:7. 三棱锥 A-BCD 中,∠BAC =∠BCD =90°,∠DBC =30°,AB =AC =6,AD =4,求二面角 A-BC-D 的度数。
解:9. 如图所示,四棱锥P —ABCD 的底面是边长为a 的菱形,∠A =60°,PC ⊥平面ABCD ,PC =a,E 是PA 的中点.(1)求证平面BDE ⊥平面ABCD.(2)求点E 到平面PBC 的距离.(3)求二面角A —EB —D 的平面角大小. 解析:D BD ACBAC M N B F E ACDDOA BC10. 如图,已知正方体ABCD —A1B1C1D1的棱长为1,E 、F 分别在棱AB 、BC 上,G 在对角线BD1上,且AE =41,BF =21,D1G ∶GB =1∶2,求平面EFG 与底面ABCD 所成的二面角的大小.11. 如图,设ABC —A1B1C1是直三棱柱,E 、F 分别为AB 、A1B1的中点,且AB =2AA1=2a,AC =BC =3a. (1)求证:AF ⊥A1C(2)求二面角C —AF —B 的大小12.如图1111D C B A ABCD -是长方体,AB=2,11==AD AA ,求二平面C AB 1与1111D C B A 所成二面角的大小.13. 在正方体1111D C B A ABCD -中,1BB K ∈,1CC M ∈,且141BB BK =,143CC CM =..求:平面AKM 与ABCD 所成角的大小.14. 如图,将边长为a 的正三角形ABC 按它的高AD 为折痕折成一个二面角C AD C --'. (1)若二面角C AD C --'是直二面角,求C C '的长; (2)求C A '与平面CD C '所成的角;(3)若二面角C AD C --'的平面角为120°,求二面角D C C A -'-的平面角的正切值.参考答案解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC ∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°2、解:∵ BS =BC ,又DE 垂直平分SC ∴ BE ⊥SC ,SC ⊥面BDE ∴ BD ⊥SC ,又SA ⊥面ABC ∴ SA ⊥BD ,BD ⊥面SAC ∴ BD ⊥DE ,且BD ⊥DC 则 ∠EDC 就是所要求的平面角 设 SA =AB =a ,则 BC =SB =2a 且 AC = 3易证 △SAC ∽△DEC ∴ ∠CDE =∠SAC =60° 3、解:取OC 之中点N ,则 MN ∥PO ∵ PO ⊥面ABCD∴ MN ⊥面ABCD 且 MN =PO/2 =2, 过 N 作 NR ⊥BD 于 R ,连MR , 则 ∠MRN 即为二面角 M-BD-C 的平面角 过 C 作 CE ⊥BD 于S则 RN =21CE 在 Rt △BCD 中,CD ·BC =BD ·CE ∴ 58BD BC CD CE =⋅=DPCA BE DBASCS R N MO B DPA C∴ 54RN =25RN MN MRN tan ==∠ ∴ 25arctanMRN =∠ 4. 解:过 A 作 AE ⊥CB 的延长线于E , 连结 DE , ∵ 面ABC ⊥面BCD ∴ AE ⊥面BCD∴ E 点即为点A 在面BCD 内的射影∴ △EBD 为△ABD 在面BCD 内的射影设 AB =a 则AE =DE =ABsin60°=a 23 ∴ AD =41ABD cos 26=∠, ∴ sin ∠ABD =415∴ 22ABD a 815415a 21S =⨯=∆ 又 a 21BE = ∴ 2BDE a 83a 21a 2321S =⋅⋅=∆ ∴ 55S S cos ABD BDE ==θ∆∆ 5. 解:设边长为a ,易证 ANC'N 是菱形 且MN =a 2,A'C =a 3 ∴S□AMC'N = 2a 26'AC 21MN =⋅由于AMC'N 在面ABCD 上的射影即 为正方形ABCD ∴ S□ABCD =2aD B D AC BAC MN∴ 36a 26a cos 221==θ ∴ 36arccos1=θ 取CC'的中点M',连结DM'则平行四边形DM'C'N 是四边形AMC'N 在CC'D'D 上的射影,S□DM'C'M =2a 21 ∴ 66a 26a21cos 222==θ ∴66arccos2=θ 6. 解:作DF ⊥AB 于F ,CE ⊥AB 于E , ∵ AC =CD =1 ∠ABC =30° ∴ AD =2,BC =3 , AB =2, BD =2 在Rt △ABC 中, 23231AB BC AC CE =⨯=⋅=,同理 1222ABBDAD DF =⨯=⋅= ∴ 1DF BD BF 22=-=21CE AC AE 22=-= ∴ 212112EF =--= ∴ θ⋅-++=cos DF EF 2EF DF CE CD 2222∴ 33cos =θ BF E ACD即所求角的大小为33arccos。
二面角专题训练一.解答题(共14小题)1.如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.2.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的余弦值.3.如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.4.如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC为等腰三角形,求二面角A﹣BD﹣C的大小.5.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,求证:θ+φ=.6.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(I)证明:CD⊥AE;(II)证明:PD⊥平面ABE;(III)求二面角A﹣PD﹣C的大小.7.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.8.如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.9.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.10.如图,在五面体ABCDEF中,AB∥DC,,CD=AD=2,四边形ABFE为平行四边形,FA⊥平面ABCD,,求:(Ⅰ)直线AB到平面EFCD的距离;(Ⅱ)二面角F﹣AD﹣E的平面角的正切值.11.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.12.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(I)设E是DC的中点,求证:D1E∥平面A1BD;(II)求二面角A1﹣BD﹣C1的余弦值.13.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.(1)求证:AD⊥BC.(2)求二面角B﹣AC﹣D的大小.(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.14.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC.已知,求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E﹣PC﹣D的大小.二面角专题训练参考答案与试题解析一.解答题(共14小题)1.如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.中,,故所求二面角的大小为2.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的余弦值.=ADB=,ADB=,的余弦值为3.如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.BC得同理可得的平面角.的大小4.如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC为等腰三角形,求二面角A﹣BD﹣C的大小.所以与的大小.由夹角公式求与,所以∠因此只有中,,的坐标为,所以与夹角的大小等于二面角,.5.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,求证:θ+φ=.,即可得到结论.=D==.6.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(I)证明:CD⊥AE;(II)证明:PD⊥平面ABE;(III)求二面角A﹣PD﹣C的大小.,可得.中,.的大小是7.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.=的坐标,同时易得,>,进而由同角三角函,=AC CD=AB==AB BC=V=×=,从而EF=;DEF=的平面角的正切值为,由⊥||=1或(舍),||=1|或(舍),)||=,||=1V=××|||h=(Ⅱ)由(Ⅰ)知(,,)设非零向量=的法向量,则由⊥可得,l+m=0⊥可得,m+,n==,﹣=<>=,>的平面角的正切值为8.如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.,PG=BG=,因此二面角的余弦值为9.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.OB=MO=,则,,所以所以,所求二面角的正弦值是10.如图,在五面体ABCDEF中,AB∥DC,,CD=AD=2,四边形ABFE为平行四边形,FA⊥平面ABCD,,求:(Ⅰ)直线AB到平面EFCD的距离;(Ⅱ)二面角F﹣AD﹣E的平面角的正切值.的法向量,则直线=AB.的距离为,知中,,,从而,的平面角的正切值为点为坐标原点,的方向为)可得.即因,解得.②联立①,②解得,所以.得,.即.故,,,11.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.BCABAB==所成角的正弦值为12.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(I)设E是DC的中点,求证:D1E∥平面A1BD;(II)求二面角A1﹣BD﹣C1的余弦值.得,则为平面,,则的余弦值为13.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.(1)求证:AD⊥BC.(2)求二面角B﹣AC﹣D的大小.(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.=BC=ACAB=AC=BC=BM=,MN=CD=,BN=AD=BMN= BMN=arccos=x=CE=14.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC.已知,求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E﹣PC﹣D的大小.:PD=,,,的大小为.。
高考数学二面角专题训练1.(06某某卷)如图,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O 。
(Ⅰ)证明PA ⊥BF ;(Ⅱ)求面APB 与面DPB 所成二面角的大小。
解:(Ⅰ)在正六边形ABCDEF 中,ABF 为等腰三角形,∵P 在平面ABC 内的射影为O ,∴PO ⊥平面ABF ,∴AO 为PA 在平面ABF 内的射影;∵O 为BF 中点,∴AO ⊥BF ,∴PA ⊥BF 。
(Ⅱ)∵PO ⊥平面ABF ,∴平面PBF ⊥平面ABC ;而O 为BF 中点,ABCDEF 是正六边形 ,∴A 、O 、D 共线,且直线AD ⊥BF ,则AD ⊥平面PBF ;又∵正六边形ABCDEF 的边长为1,∴12AO =,32DO =,BO =。
过O 在平面POB 内作OH ⊥PB 于H ,连AH 、DH ,则AH ⊥PB ,DH ⊥PB ,所以AHD ∠为所求二面角平面角。
在AHO 中,,1tan AO AHO OH ∠==。
在DHO中,3tan 27DO DHO OH ∠===;而tan tan()AHD AHO DHO ∠=∠+∠== (Ⅱ)以O 为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,12-,0),B(2,0,0),D(0,2,0),∴1(0,,1)2PA =--,3(1)2PB =-,(0,2,1)PD =-设平面PAB 的法向量为111(,,1)n x y =,则1n PA ⊥,1n PB⊥,得111102102y x ⎧--=⎪⎪-=⎪⎩,123(2,1)3n =-;设平面PDB 的法向量为222(,,1)n x y =,则2n PD ⊥,2n PB ⊥,得22210102y x -=⎧-=⎩,2231(,1)32n =;121212cos ,||||n n n n n n ⋅<>==⋅2. (06卷)如图,在底面为平行四边表的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角E AC B --的大小.解法一:(Ⅰ)PA ⊥平面ABCD ,∴AB 是PB 在平面ABCD 上得射影, 又AB ⊥AC ,AC ⊂平面ABCD , ∴AC ⊥PB.(Ⅱ)连接BD ,与AC 相交与O ,连接EO , ABCD 是平行四边形 ∴O 是BD 的中点 又E 是PD 的中点, ∴EO PB.又PB ⊄平面AEC ,EO ⊂平面AEC , ∴PB 平面AEC ,(Ⅲ)取BC 中点G ,连接OG ,则点G 的坐标为,,022a b ⎛⎫ ⎪⎝⎭,0,,02b OC ⎛⎫= ⎪⎝⎭又(,0,0),OE AC a =b b=(0,-,),220,0,OE AC OG AC ∴==,,OE AC OG AC ∴⊥⊥EOG ∴∠是二面角E AC B -=的平面角。
五种方式求二面角及练习题一、概念法:从一条直线起身的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,别离在两面内引两条射线与棱垂直,这两条垂线所成的角的大小确实是二面角的平面角。
1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --2.如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60,M 在侧棱的中点 (1)求二面角的余弦值。
S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --A B CDAD C B二、三垂线法:三垂线定理:在平面内的一条直线,若是和那个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上那么通常常利用三垂线定理法求二面角的大小。
1. 如图,在直四棱柱ABCD -A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA =2, E 、E 、F 别离是棱AD 、AA 、AB 的中点。
(1) 证明:直线EE //平面FCC ;(2)求二面角B -FC -C 的余弦值。
2.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.三.补棱法1111111111EABCF E A BCDD本法是针对在解组成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的概念法与三垂线法解题。
即当二平面没有明确的交线时,一样用补棱法解决1.已知斜三棱柱ABC—A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
求二面角专题
4
5
如何用空间向量求解二面角
求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、射影法、向量法等若干种。
而这些方法中最简单易学的就是向量法,但在实际教学中本人发现学生利用向量法求解二面角还是存在一些问题,究其原因应是对向量法的源头不尽了解。
本文就简要介绍有关这类问题的处理方法,希望对大家有所帮助。
在立体几何中求二面角可归结为求两个向量的夹角问题.对于空
间向量→a 、→b ,有cos <→a ,→
b >=
→
→→
→⋅⋅|
|||b a b
a .利用这一结论,我们可以
较方便地处理立体几何中二面角的问题.
例1 在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .求面VAD 与面VDB 所成的二面角的大小.
证明: 建立如图空间直角坐标系,并设正方形边 长为1,依题意
得AB −−→
= (0,1,0),是面VAD 的法向量, 设n →
= (1,y ,z)是面VDB 的法向量,则
0,0.n VB n VB →−−→→−−→
⎧⋅=⎪⎨⎪⋅=⎩
⇒1,y z =-⎧⎪
⎨=⎪⎩⇒n →= (1,-1
,-3
)。
∴cos <AB −−→,n →
>
||||
AB n
AB n −−→→
−−→→
⋅⋅=
-
7
, 又由题意知,面VAD 与面VDB
所成的二面角为锐角,所以其大小为
arccos
7
例2如图,直三棱柱ABC —A 1B 1C 1中,∠ACB =90︒,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M .
⑴求证CD ⊥平面BDM ;
⑵求面B 1BD 与面CBD 所成二面角的大小. 解:⑴略
⑵如图,以C 为原点建立坐标系.设BD 中点为G ,连结B 1G ,则
依
G(4,14,14),BD −−→= (
-2,12,1
2
),
1B G −−→
= (
-
4,-34,1
4
), ∴BD −−→
·1B G −−→
= 0,∴BD ⊥B 1G .
又CD ⊥BD ,∴CD −−→
与1B G −−→
的夹角θ等于所求二面角的平面角.
∴ cos θ=
11||||
CD B G CD B G −−→−−→
−−→
−−→
⋅⋅=
. 所以所求二面角的大小等于π-
. 例3如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱
y B
B 1
C 1
A 1
C
A
D
M
PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求二面角C —PB —D 的大小
解:如图所示建立空间直角坐标系,D 为坐标原点,设a DC =
设点F 的坐标为000()x y z ,,,
PA −−→
=PB λ−−→
,则000()()x y z a a a a λ-=-,,,,.
从而000(1)x a y a z a λλλ===-,,.所以
PE −−→
=
00011
(,
,)(,(),())2222
a a x y z a a a λλλ---=---.
由条件EF ⊥PB 知,PE −−→·PB −−→
= 0,即0)2
1()21
(222=---+-a a a λλλ,解得3
1=λ.
∴点F 的坐标为2()333
a a a
,,,且()366a a a PE −−→=--,,,
2()333
a a a
FD −−→
=---,,,
∴PB −−→
·FD −−→
222
20333
a a a =--+
=,即FD PB ⊥,故EFD ∠是二面角C —PB —D 的平面角.
∵PE −−→
·FD −−→
=222291896a a a a =-+=
,且||6PE a −−→==
,
||3
FD a −−→
==,
∴2
1cos 2||||
a PE FD
EFD PE FD −−→−−→
−−→−−→
⋅∠=
=
=
,∴3
π
=∠EFD .
所以,二面角C —PB —D 的大小为3
π
.
例4 已知三棱柱OAB —1O A 1B 1中,平面11O OBB ⊥平面OAB ,∠
AOB =︒90,∠OB O 1=︒60,且OB =1OO = 2,OA =3,求二面角1O —AB —O 的大小.
解:以O 为原点,分别以OA ,OB 所在的直线为x ,y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系.如图,则O (0,0,0),1O (0,1,3),A(3,0,0),1A (3,1,3),B(0,2,0).
∴−→−1AO = (-3,1,3),−→
−AB = (-3,2,0).
显然−→
−OZ 为平面AOB 的法向量,取→
1n = (0,0,1),设平面AB O 1的法向量为→
2n = (x ,y ,z),则
→
2n ·−→
−1AO = 0,→
2n ·−→
−AB = 0.
即⎪⎩⎪⎨⎧=+-=++-0
230
33y x z y x ,令y =3,x = 2,z = 1,则→2n = (2,3,1).
∴cos <→1n ,→
2n >=
|
|||2121→
→
→
→⋅⋅n n n n =
2
21=
42,即<→1n ,→2n >= arccos 4
2
. 故二面角1O —AB —O 的大小为arccos
4
2
.。