江苏省南通市2012年中考数学模拟试卷一
- 格式:doc
- 大小:1.58 MB
- 文档页数:11
2023年江苏省南通市九年级数学中考复习模拟卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A. B. C. D.32.太阳中心的温度可达,这个数用科学记数法表示正确的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.如图,直线a、b被直线c所截,,若,则的度数为()A. B. C. D.5.一个几何体从不同方向看到的图形如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体6.某学校为了了解学生对“禁止学生带手机进入校园”这一规定的意见,随机抽取100名学生进行调查,这一问题中的样本是()A.100B.被抽取的100名学生的意见C.被抽取的100名学生D.全校学生的意见7.《孙子算经》是中国古代最重要的数学著作,约成书于四、五世纪.其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还余尺,将绳子对折再量长木,长木还剩余1尺,问长木多少尺?”设绳子长x尺,木长y尺,可列方程组为()A. B. C. D.8.如图,在中,,,,则的值是()A. B. C. D.9.如图,AB为的一条弦,C为上一点,将劣弧AB沿弦AB翻折,交翻折后的弧AB交AC于点若D为翻折后弧AB的中点,则()A. B. C. D.10.如图,抛物线与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在上,连接OP,若OP的最小值为3,则C点坐标是()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.分解因式:_______.12.已知一个正多边形的一个外角为,则这个正多边形的边数是________.13.在函数中,自变量x的取值范围是_____.14.若圆锥的侧面积是,母线长是5,则该圆锥底面圆的半径是__________15.如果关于x的不等式组无解,则常数a的取值范围是16.已知,m,n是一元二次方程的两个实数根,则代数式的值等于_______________.17.如图,正方形ABCD的边长为2,E为边AD上一动点,连接CE,以CE为边向右侧作正方形CEFG,连接DF,DG,则面积的最小值为_________.18.平面直角坐标系xOy中,直线与相交于A,B两点,其中点A在第一象限,设点为双曲线上一点,直线AM,BM分别交x轴与C,D两点,则的值为____________.三、解答题:本题共8小题,共64分。
江苏省南通市海安县中考数学一模试卷(解析版)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣2|的值等于()A.2 B.﹣C.D.﹣22.计算a2÷a3的结果是()A.a﹣1 B.a C.a5D.a63.下列水平放置的几何体中,俯视图是矩形的是()A.圆柱 B.长方体C.三棱柱D.圆锥4.一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,45.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.为了说明命题“当b<0时,关于x的一元二次方程x2+bx+2=0必有实数解”是假命题,可以举的一个反例是()A.b=2 B.b=3 C.b=﹣2 D.b=﹣37.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A.π B.π C.π D.π8.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,以下分析错误的是()A.A、C两村间的距离为120kmB.点P的坐标为(1,60)C.点P的意义表示经过1小时甲与乙相遇且距C村60kmD.乙在行驶过程中,仅有一次机会距甲10km9.在同一平面直角坐标系中,函数y=kx+b与y=bx2+kx的图象可能是()A.B.C.D.10.如图,在正方形ABCD外侧作直线DE,点C关于直线DE的对称点为M,连接CM,AM,其中AM交直线DE于点N.若45°<∠CDE<90°,当MN=3,AN=4时,正方形ABCD的边长为()A. B.5 C.5D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.一个多边形的每个外角都等于72°,则这个多边形的边数为.12.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为.13.计算(﹣)×的结果是.14.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.15.分解因式:9m3﹣mn2=.16.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OPA的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)17.平面上,矩形ABCD与直径为QP的半圆K如图如图①摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针开始旋转,如图②,当点P恰好落=.在BC边上时,S阴影18.已知两个不等实数a,b满足a2+18a﹣19=0,b2+18b﹣19=0.若一次函数的图象经过点A(a,a2),B(b,b2),则这个一次函数的解析式是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.20.化简:(1+)÷.21.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.现有一组数:﹣1,,0,5,求下列事件的概率:(1)从中随机选择一个数,恰好选中无理数;(2)从中随机选择两个不同的数,均比0大.23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.24.如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)25.(10分)(贵港三模)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.26.如图,在平面直角坐标系xOy中,双曲线y=(x>0)与直线y=kx﹣k的交点为A (m,2).(1)求k的值;(2)当x>0时,直接写出不等式kx﹣k>的解集:;(3)设直线y=kx﹣k与y轴交于点B,若C是x轴上一点,且满足△ABC的面积是4,求点C的坐标.27.如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.(1)利用尺规作图补全图形;(要求:保留作图痕迹,并简述作图步骤)(2)取BE中点M,过点M的直线交边AB,CD于点P,Q.①当PQ⊥BE时,求证:BP=2AP;②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.28.在平面直角坐标系xOy中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P.在x轴上多次改变点M的位置,得到相应的点P,会发现这些点P竟然在一条抛物线L上!记点P(x,y),连接AP.(1)求出y关于x的函数解析式;(2)若锐角∠APM的正切函数值为.①求点M的坐标;②设点N在直线l2上,点Q在抛物线L上,当PN=1,且AQ,NQ之和最小时,求点Q 的坐标.江苏省南通市海安县中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣2|的值等于()A.2 B.﹣C.D.﹣2【分析】直接根据绝对值的意义求解.【解答】解:|﹣2|=2.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.2.计算a2÷a3的结果是()A.a﹣1 B.a C.a5D.a6【分析】根据同底数幂的除法法则计算即可.【解答】解:a2÷a3=a﹣1,故选A.【点评】本题考查同底数幂的除法,熟练掌握性质和法则是解题的关键.3.下列水平放置的几何体中,俯视图是矩形的是()A.圆柱 B.长方体C.三棱柱D.圆锥【分析】俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.【解答】解:A、圆柱的俯视图为圆,故本选项错误;B、长方体的俯视图为矩形,故本选项正确;C、三棱柱的俯视图为三角形,故本选项错误;D、圆锥的俯视图为圆,故本选项错误.故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.4.一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,4【分析】先把数据按大小排列,然后根据中位数和众数的定义可得到答案.【解答】解:数据按从小到大排列:2、3、4、4、5、5、5,中位数是4;数据5出现3次,次数最多,所以众数是5.故选C.【点评】本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.6.为了说明命题“当b<0时,关于x的一元二次方程x2+bx+2=0必有实数解”是假命题,可以举的一个反例是()A.b=2 B.b=3 C.b=﹣2 D.b=﹣3【分析】利用根的判别式结合b的值分别判断得出即可.【解答】解:A、当b=2时,此时b>0,不合题意,故此选项错误;B、当b=3时,此时b>0,不合题意,故此选项错误;C、当b=﹣2时,此时b<0,则x2﹣2x+2=0,故b2﹣4ac=4﹣8=﹣4<0,故此方程无实数根,故此选项正确;D、当b=﹣3时,此时b<0,则x2﹣3x+2=0,故b2﹣4ac=9﹣8=1>0,故此方程有两个不相等的实数根,故此选项错误.故选:C.【点评】此题主要考查了命题与定理以及根的判别式,正确记忆根的判别式与方程根的情况是解题关键.7.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A.π B.π C.π D.π【分析】先求得正五边形的内角的度数,然后根据弧长公式即可求得.【解答】解:因为正五边形ABCDE的内角和是(5﹣2)×180=540°,则正五边形ABCDE的一个内角==108°;连接OA、OB、OC,∵圆O与正五边形ABCDE相切于点A、C,∴∠OAE=∠OCD=90°,∴∠OAB=∠OCB=108°﹣90°=18°,∴∠AOC=144°所以劣弧AC的长度为=π.故选B.【点评】本题考查了正五边形的内角和的计算以及弧长的计算,难度适中.8.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,以下分析错误的是()A.A、C两村间的距离为120kmB.点P的坐标为(1,60)C.点P的意义表示经过1小时甲与乙相遇且距C村60kmD.乙在行驶过程中,仅有一次机会距甲10km【分析】A、由图可知与y轴交点的坐标表示A、C两村间的距离为120km,再由0.5小时距离C村90km,行驶120﹣90=30km,速度为60km/h,求得a=2;B、求得y1,y2两个函数解析式,建立方程求得点P坐标;C、点P表示在什么时间相遇以及距离C村的距离;D、由B中的函数解析式根据距甲10km建立方程;探讨得出答案即可.【解答】解:A、A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2,故A不符合题意;B、设y1=k1x+120,代入(2,0)解得y1=﹣60x+120,y2=k2x+90,代入(3,0)解得y1=﹣30x+90,由﹣60x+120=﹣30x+90解得x=1,则y1=y2=60,所以P(1,60),故B不符合题意;C、点P表示经过1小时甲与乙相遇且距C村60km,故C不符合题意;D、当y1﹣y2=10,即﹣60x+120﹣(﹣30x+90)=10解得x=,当y2﹣y1=10,即﹣30x+90﹣(﹣60x+120)=10解得x=,当甲走到C地,而乙距离C地10km时,﹣30x+90=10解得x=;综上所知当x=h,或x=h,或x=h乙距甲10km,故D符合题意.故选:D.【点评】此题考查一次函数的运用,一次函数与二元一次方程组的运用,解答时认真分析图象求出解析式是关键,注意分类思想的渗透.9.在同一平面直角坐标系中,函数y=kx+b与y=bx2+kx的图象可能是()A.B.C.D.【分析】根据k、b的正负不同,则函数y=kx+b与y=bx2+kx的图象所在的象限也不同,针对k、b进行分类讨论,从而可以选出正确选项.【解答】解:若k>0,b>0,则y=kx+b经过一、二、三象限,y=bx2+kx开口向上,顶点在y轴左侧,故A、D错误;若k<0,b<0,则y=kx+b经过二、三、四象限,y=bx2+kx开口向下,顶点在y轴左侧,故B错误;若k>0,b<0,则y=kx+b经过一、三、四象限,y=bx2+kx开口向下,顶点在y轴右侧,故C正确;故选C.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.10.如图,在正方形ABCD外侧作直线DE,点C关于直线DE的对称点为M,连接CM,AM,其中AM交直线DE于点N.若45°<∠CDE<90°,当MN=3,AN=4时,正方形ABCD的边长为()A. B.5 C.5D.【分析】连接CN、DM、AC,根据轴对称的性质可得CN=MN,CD=DM,∠DCN=∠DMN,根据正方形的四条边都相等可得AD=CD,然后求出AD=DM,根据等边对等角可得∠DAM=∠DMN,从而得到∠DCN=∠DAM,再求出∠ACN+∠CAN=90°,判断出△ACN是直角三角形,然后利用勾股定理列式求出AC,再根据正方形的边长等于对角线的倍求解.【解答】解:如图所示,连接CN、DM、AC,∵点C关于直线DE的对称点为M,∴CN=MN,CD=DM,∠DCN=∠DMN,在正方形ABCD中,AD=CD,∴AD=DM,∴∠DAM=∠DMN,∴∠DCN=∠DAM,∵∠ACN+∠CAN=∠BCD﹣∠DCN+∠CAD+∠DAM=∠BCD+∠CAD=90°,∴∠ANC=180°﹣90°=90°,∴△ACN是直角三角形,由勾股定理得,AC===5,∴正方形ABCD的边长=AC=×5=.故选D.【点评】本题考查了正方形的性质,轴对称的性质,等边对等角的性质,勾股定理,作辅助线构造出等腰三角形与直角三角形是解题的关键,难点在于把AN、MN的长度以及正方形的对角线组成直角三角形.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.一个多边形的每个外角都等于72°,则这个多边形的边数为5.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:多边形的边数是:360÷72=5.故答案为:5.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.12.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).【分析】二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标.【解答】解:∵方程组的解为,∴一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).故答案为:(1,0).【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.13.计算(﹣)×的结果是2.【分析】根据二次根式的混合运算顺序,首先计算小括号里面的,然后计算乘法,求出算式(﹣)×的结果是多少即可.【解答】解:(﹣)×=(3﹣2)×=×=2即(﹣)×的结果是2.故答案为:2.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.14.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=110°.【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【解答】解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣70°=110°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=110°,故答案为:110.【点评】此题考查平移问题,关键是根据平行线的性质和三角形的外角性质解答.15.分解因式:9m3﹣mn2=m(3m+n)(3m﹣n).【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(9m2﹣n2)=m(3m+n)(3m﹣n),故答案为:m(3m+n)(3m﹣n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OPA的面积为S.则S随x的增大而减小.(填“增大”,“不变”或“减小”)【分析】根据题意可以表示出S与x之间的关系,从而可以解答本题.【解答】解:由题意可得,S==,故S随x的增大而减小,故答案为:减小.【点评】本题考查坐标与图形的性质,解题的关键是找到S与x之间的关系.17.平面上,矩形ABCD与直径为QP的半圆K如图如图①摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针开始旋转,如图②,当点P恰好落=+.在BC边上时,S阴影【分析】首先设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,则可求得∠RKQ的度数,于是求得答案.【解答】解:如图所示:设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H 过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,==,∴S扇形KRQ在Rt△RKE中,RE=RKsin60°=,∴S△PRK=××=,=+;∴S阴影故答案为: +.【点评】本题考查了矩形的性质,直线与圆的位置关系,勾股定理以及锐角三角函数的知识.注意根据题意正确的画出图形是解题的关键.18.已知两个不等实数a,b满足a2+18a﹣19=0,b2+18b﹣19=0.若一次函数的图象经过点A(a,a2),B(b,b2),则这个一次函数的解析式是y=﹣18x+19.【分析】根据两个不等实数a,b满足a2+18a﹣19=0,b2+18b﹣19=0,可得a2=19﹣18a,b2=19﹣18b,进而可得A(a,a2),B(b,b2)变为A(a,19﹣18a),B(b,19﹣18b),设一次函数解析式为y=kx+n,把此两点代入可得关于k、b的方程组,再解即可得到k、b的值,进而可得这个一次函数的解析式.【解答】解:∵两个不等实数a,b满足a2+18a﹣19=0,b2+18b﹣19=0,∴a2=19﹣18a,b2=19﹣18b,设一次函数解析式为y=kx+n,∵图象经过点A(a,a2),B(b,b2),∴图象经过点A(a,19﹣18a),B(b,19﹣18b),∴,解得:,∴一次函数解析式为y=﹣18x+19.故答案为:y=﹣18x+19.【点评】此题主要考查了待定系数法求一次函数解析式,待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.【分析】(1)原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=4+1+﹣1=4+;(2),①×2+②,得5x=5,即x=1,将x=1代入①,得y=﹣1,则原方程组的解为.【点评】此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.20.化简:(1+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式==﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=30,n=20,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.22.现有一组数:﹣1,,0,5,求下列事件的概率:(1)从中随机选择一个数,恰好选中无理数;(2)从中随机选择两个不同的数,均比0大.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出“均比0大”的结果数,然后根据概率公式求解.【解答】解:(1)无理数为,从中随机选择一个数,恰好选中无理数的概率=;(2)画树状图为:共有6种等可能的结果数,其中“均比0大”的结果数为2,所以从中随机选择两个不同的数,均比0大的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.【分析】设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,根据题意可得,乘坐高铁行驶400千米比乘坐普通列车行驶520千米少用3小时,据此列方程求解.【解答】解:设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,依题意,得+3=,解得:x=120,经检验,x=120是原方程的解,且符合题意,则2.5x=300.答:高铁行驶的平均速度是300千米/时.【点评】本题考查了分式方程的应用,解答本题案的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】首先过P作PC⊥AB,垂足为C,进而求出PC的长,利用tan37°=,得BC的长,即可得出答案.【解答】解:过P作PC⊥AB,垂足为C,由已知∠APC=60°,∠BPC=37°,且由题意可知:AC=120米.在Rt△APC中,由tan∠APC=,即tan60°=,得PC==40.在Rt△BPC中,由tan∠BPC=,即tan37°=,得BC=40×0.75≈51.9.因此AB=AC﹣BC=120﹣51.9=68.1,即大楼AB的高度约为68.1米.【点评】此题主要考查了解直角三角形的应用,根据题意正确构造直角三角形是解题关键.25.(10分)(贵港三模)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.【分析】(1)连结OB.由等腰三角形的性质得到∠A=∠OBA,∠P=∠CBP,由于OP⊥AD,得到∠A+∠P=90°,于是得到∠OBA+∠CBP=90°,求得∠OBC=90°结论可得;(2)连结DB.由AD是⊙O的直径,得到∠ABD=90°,推出Rt△ABD∽Rt△AOP,得到比例式=,即可得到结果.【解答】(1)证明:连结OB.∵OA=OB,∴∠A=∠OBA,又∵BC=PC,∴∠P=∠CBP,∵OP⊥AD,∴∠A+∠P=90°,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣(∠OBA+∠CBP)=90°,∵点B在⊙O上,∴直线BC是⊙O的切线,(2)解:如图,连结DB.∵AD是⊙O的直径,∴∠ABD=90°,∴Rt△ABD∽Rt△AOP,∴=,即=,AP=9,∴BP=AP﹣BA=9﹣2=7.【点评】本题考查了切线的判定,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.26.如图,在平面直角坐标系xOy中,双曲线y=(x>0)与直线y=kx﹣k的交点为A (m,2).(1)求k的值;(2)当x>0时,直接写出不等式kx﹣k>的解集:x>2;(3)设直线y=kx﹣k与y轴交于点B,若C是x轴上一点,且满足△ABC的面积是4,求点C的坐标.【分析】(1)利用待定系数法即可解决问题.(2)观察图象,直线y=kx﹣k的图象在y=的上方,由此可以写出不等式的解集.(3)设点C坐标(m,0),直线y=2x﹣2与x轴的交点D坐标为(1,0),根据S△ABC=S△CDA+S△CDB=4,列出方程即可解决.【解答】解:(1)∵点A在双曲线y=上,∴2=,∴m=2,∴点A(2,2).∵点A在直线y=kx﹣k上,∴2=2k﹣k,∴k=2.(2)由图象可知,x>0时,直接写出不等式kx﹣k>的解集为x>2.故答案为x>2.(3)设点C坐标(m,0).∵直线y=2x﹣2与x轴的交点D坐标为(1,0),∴S△ABC=S△CDA+S△CDB=4,∴|m﹣1|(2+2)=4,∴m=3或﹣1.∴点C坐标为(3,0)或(﹣1,0).【点评】本题考查反比例函数与一次函数图象的交点、待定系数法等知识,解题的关键是掌握待定系数法确定函数解析式,学会利用分割法求三角形面积,属于中考常考题型.27.如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.(1)利用尺规作图补全图形;(要求:保留作图痕迹,并简述作图步骤)(2)取BE中点M,过点M的直线交边AB,CD于点P,Q.①当PQ⊥BE时,求证:BP=2AP;②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.【分析】(1)如图,分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;(2)连接PE,先证明PQ垂直平分BE.得到PB=PE,再证明∠APE=60°,得到∠AEP=30°,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;(3)NQ=2MQ或NQ=MQ,分两种情况讨论作出辅助线,证明△ABE≌△FQP,即可解答.【解答】解:(1)如图1,分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;(2)连接PE,如图2,∵点M是BE的中点,PQ⊥BE∴PQ垂直平分BE.∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°∠APE=90°﹣60°=30°,∴BP=EP=2AP.(3)NQ=2MQ或NQ=MQ.理由如下:如图3所示,过点Q作QF⊥AB于点F交BC于点G,则QF=CB.∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,∵∴△ABE≌△FQP(HL).∴∠FQP=∠ABE=30°.又∵∠MGO=∠AEB=60°,∴∠GMO=90°,∵CD∥AB.∴∠N=∠ABE=30°.∴NQ=2MQ.如图4所示,过点Q作QF⊥AB于点F交BC于点G,则QF=CB.同理可证△ABE≌△FQP.此时∠FPQ=∠AEB=60°.又∵∠FPQ=∠ABE+∠PMB,∠N=∠ABE=30°.∴∠EMQ=∠PMB=30°.∴∠N=∠EMQ,∴NQ=MQ.【点评】本题考查了正方形的性质定理、全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,证明三角形全等.28.在平面直角坐标系xOy中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P.在x轴上多次改变点M的位置,得到相应的点P,会发现这些点P竟然在一条抛物线L上!记点P(x,y),连接AP.(1)求出y关于x的函数解析式;(2)若锐角∠APM的正切函数值为.①求点M的坐标;②设点N在直线l2上,点Q在抛物线L上,当PN=1,且AQ,NQ之和最小时,求点Q 的坐标.【分析】(1)利用垂直平分线的性质以及勾股定理得出y与x的函数关系式;(2)①利用P点在第三、四象限分别得出M点坐标;②根据题意首先得出N点坐标再利用待定系数法求出一次函数解析式,联立函数解析式进而得出Q点坐标.【解答】解:(1)如图1,连接AP,作PB⊥y轴于B,由l1垂直平分AM得:PA=PM=﹣y;在Rt△ABP中,BP=OM=x,BA=PM﹣OA=﹣2﹣y,根据勾股定理得:(﹣2﹣y)2+x2=y2,整理得:y=﹣x2﹣1.(2)①当点P在第四象限时,设点P的坐标为(x,﹣ x2﹣1)(x>0).∵直线l2垂直于x轴,∴PM∥y轴.∴∠APM=∠PAB,∴tan∠PAB=tan∠PAB=,即=.∴=,解得x1=4,x2=﹣1(不合题意,舍去).∴此时点M的坐标为(4,0).当点P在第三象限时,由对称性同理可得点M的坐标为(﹣4,0).综上可知,点M的坐标为(4,0)、(﹣4,0).②如图2,当点M为(4,0)时,点P的坐标为(4,﹣5).∵点N在直线l2上且PN=1,∴点N的坐标为N1(4,﹣4)或N2(4,﹣6),当点N在点P上方即N1(4,﹣4)时,连接AN1交抛物线于点Q1,设直线AN1的解析式为y=kx+b(k≠0),把A(0,﹣2),N1(4,﹣4)代入得:解得:.故直线AN1的解析式为:y=﹣x﹣2.由﹣x﹣2=﹣x2﹣1得,解得:x1=1+,x2=1﹣(不合题意,舍去).∴把x=1+代入y=﹣x﹣2得点Q1的坐标为(1+,﹣).当点N在点P下方即N2(4,﹣6)时,过点Q2作Q2D⊥x轴于D,∵点Q2在此抛物线上,∴Q2A=Q2D.。
2012年江苏省南通市某校高考数学二模试卷一、填空题:本大题共14题,每小题5,共70请直接在答题卡上相应位置填写答案.1. 抛物线y2=4x的焦点坐标为________.2. “存在x∈R,x2+2>0”的否定是________.3. 已知椭圆的短轴大于焦距,则它的离心率的取值范围是________.4. 在等差数列{a n}中,a1=3,11a3=5a8,则a10=________.5. 在△ABC中,a=7,b=5,c=3,则A=________.6. 若关于x的不等式:x2+2x+a+2>0的解集为R,则实数a的取值范围为________.7. 若S n为等比数列{a n}的前n项的和,8a2+a5=0,则S6S3=________.8. 焦点坐标为(±5, 0),渐近线的方程为y=±43x的双曲线的标准方程为________.9. 实数x,y满足,x−y≥0,x+y≤1,x+2y≥1,则z=6x+3y的最小值为________.10. 在△ABC中,已知a=1,b=2,A=30∘,则B=________.11. 已知函数f(x)的导函数为f′(x),若f(x)=f′(π9)sin3x+cos3x,则f′(π9)=________.12. 若正实数a,b,c满足:3a−2b+c=0,则√acb的最大值为________.13. 在等差数列{a n}中,若任意两个不等的正整数k,p,都有a k=2p+1,a p=2k+1,设数列{a n}的前n项和为S n,若k+p=m,则S m=________(结果用m表示).14. 若函数f(x)=x3+x2−ax−4在区间(−1, 1)恰有一个极值点,则实数a的取值范围为________.二、解答题:本大题共6个小题.共90解答应写出文字说明,证明过程或演算步骤.15. 已知p:−x2+6x+16≥0,q:x2−4x+4−m2≤0(m>0).(1)若p为真命题,求实数x的取值范围.(2)若p为q成立的充分不必要条件,求实数m的取值范围.16. 在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60∘.(1)求a+bsinA+sinB的值;(2)若a+b=ab,求△ABC的面积S△ABC.17. 如图,某单位准备修建一个面积为600平方米和矩形场地(图中ABCD)的围墙,且要求中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为800元每平方米,设围墙(包括EF)的修建总费用为y元.(1)求出y关于x的函数解析式;(2)当x为何值时,设围墙(包括EF)的修建总费用y最小?并求出y的最小值.18. 如图,在平面直角坐标系xOy 中.椭圆C :x 22+y 2=1的右焦点为F ,右准线为l .(1)求到点F 和直线l 的距离相等的点G 的轨迹方程.(2)过点F 作直线交椭圆C 于点A ,B ,又直线OA 交l 于点T ,若OT →=2OA →,求线段AB 的长; (3)已知点M 的坐标为(x 0, y 0),x 0≠0,直线OM 交直线x 0x 2+y 0y =1于点N ,且和椭圆C 的一个交点为点P ,是否存在实数λ,使得OP →2=λOM →⋅ON →?,若存在,求出实数λ;若不存在,请说明理由.19. 已知函数f(x)=alnx −1x ,a 为常数.(1)若曲线y =f(x)在点(1, f(1))处的切线与直线x +2y −5=0垂直,求实数a 的值; (2)求f(x)的单调区间;(3)当x ≥1时,f(x)≤2x −3恒成立,求实数a 的取值范围.20. 已知数列{x n }和{y n }的通项公式分别为x n =a n 和y n =(a +1)n +b ,n ∈N +. (1)当a =3,b =5时,①试问:x 2,x 4分别是数列{y n }中的第几项?②记c n =x n 2,若c k 是{y n }中的第m 项(k, m ∈N +),试问:c k+1是数列{y n }中的第几项?请说明理由;(2)对给定自然数a ≥2,试问是否存在b ∈{1, 2},使得数列{x n }和{y n }有公共项?若存在,求出b 的值及相应的公共项组成的数列{z n },若不存在,请说明理由.2012年江苏省南通市某校高考数学二模试卷答案1. (1, 0)2. 任意x ∈R ,x 2+2≤03. (0,√22) 4. 20113 5. 120∘6. a >−17. −78. x 29−y 216=19. 310. 90∘11. 3√312. √3313. m214. [1, 5)15. 解:(1)∵ P:−2≤x≤8,∴ p为真命题时,实数x的取值范围[−2, 8].(2)Q:2−m≤x≤2+m∵ P是Q的充分不必要条件,∴ [−2, 8]是[2−m, 2+m]的真子集.∴ {m>02−m≤−2 2+m≥8∴ m≥6.∴ 实数m的取值范围为m≥6.16. 解:(1)由正弦定理可设asinA =bsinB=csinC=2sin60∘=√32=4√33,所以a=4√33sinA,b=4√33sinB,所以a+bsinA+sinB =4√33(sinA+sinB)sinA+sinB=4√33.…(2)由余弦定理得c2=a2+b2−2abcosC,即4=a2+b2−ab=(a+b)2−3ab,又a+b=ab,所以(ab)2−3ab−4=0,解得ab=4或ab=−1(舍去)所以S△ABC=12absinC=12×4×√32=√3.…17. 设AD=t米,则由题意得xt=600,且t>x,故t=600x>x,可得0<x<10√6,则y=800(3x+2t)=800(3x+2×600x )=2400(x+400x),所以y关于x的函数解析式为y=2400(x+400x)(0<x<10√6).y=2400(x+400x )≥2400×2√x⋅400x=96000,当且仅当x=400x,即x=20时等号成立.故当x为20米时,y最小.y的最小值为96000元.18. 解:(1)由椭圆方程为x22+y2=1可得a2=2,b2=1,c=1,F(1, 0),l:x=2.设G(x, y),则由题意可知√(x −1)2+y 2=|x −2|, 化简得点G 的轨迹方程为y 2=−2x +3.… (2)由题意可知x A =x F =c =1, 故将x A =1代入x 22+y 2=1, 可得|y A |=√22,从而AB =√2. …(3)假设存在实数λ满足题意. 由已知得OM :y =y0x 0x①x 0x 2+y 0y =1②椭圆C:x 22+y 2=1③由①②解得x N =2x 0x 02+2y 02,y N =2y 0x 02+2y 02.由①③解得x P2=2x 02x 02+2y2,y P 2=2y 02x 02+2y 02. …∴ OP →2=x P 2+y P 2=2x 02x 02+2y 02+2y 02x 02+2y 02=2(x 02+y 02)x 02+2y 02,OM →⋅ON →=x 0x N +y 0y N =2x 02x 02+2y 02+2y 02x 02+2y 02=2(x 02+y 02)x 02+2y 02.∵ OP →2=λOM →⋅ON →∴ 可得λ=1满足题意. … 19. 解:(1)函数f(x)的定义域为{x|x >0},f′(x)=ax+1x 2.又曲线y =f(x)在点(1, f(1))处的切线与直线x +2y −50垂直, 所以f ′(1)=a +1=2,即a =1. … (2)由f′(x)=ax+1x 2,当a ≥0时,f ′(x)>0恒成立,所以f(x)的单调增区间为(0, +∞).当a <0时,由f ′(x)>0,得0<x <−1a,所以f(x)的单调增区间为(0,−1a);由f ′(x)<0,得x >−1a,所以f(x)的单调减区间为(−1a,+∞). …(3)设g(x)=alnx −1x−2x +3,x ∈[1, +∞),∴ g′(x)=−2x 2+ax+1x 2设ℎ(x)=−2x 2+ax +1,ℎ(0)=1>0当a ≤1时,ℎ(x)=−2x 2+ax +1的对称轴为x =a4<1,ℎ(x)在[1, +∞)上是减函数,ℎ(x)≤ℎ(1)=a −1≤0∴ g′(x)≤0,g(x)在[1, +∞)上是减函数 ∴ g(x)≤g(1)=0,即f(x)≤2x −3当a >1时,令ℎ(x)=−2x 2+ax +1=0得x 1=a+√a 2+84>1,x 2=a−√a 2+84<0当x∈[1, x1)时,ℎ(x)>0,g′(x)>0,g(x)在[1, x1)上是增函数;当x∈(x1, +∞)时,ℎ(x)<0,g′(x)<0,g(x)在(x1, +∞)上是减函数;∴ g(1)<g(x1),即f(x1)>2x−3,不满足题意综上,实数a的取值范围为a≤120. 解:(1)由条件可得x n=3n,y n=4n+5.①令x2=9=y m=4m+5,得m=1,故x2是数列{y n}中的第1项.令x4=81=y k=4k+5,得k=19,故x4是数列{y n}中的第19项.…②由题意知,c n=32n,由c k为数列{y n}中的第m项,则有32k=4m+5,那么c k+1=32(k+1)=9×32k=9×(4m+5)=36m+45=4(9m+10)+5,因9m+10∈N∗,所以c k+1是数列{y n}中的第9m+10项.…(2)设在{1, 2}上存在实数b使得数列{x n}和{y n}有公共项,即存在正整数s,t使a s=(a+1)t+b,∴ t=a s−ba+1,因自然数a≥2,s,t为正整数,∴ a s−b能被a+1整除.①当s=1时,t=a s−ba+1<aa+1∉N∗.②当s=2n(n∈N∗)时,当b=1时,a s−ba+1=a2n−1a+1=−1−a2n1−(−a)=−[1+(−a)+(−a)2+⋯+(−a)2n−1]=(a−1)[1+a2+a4...+a2n−2]∈N∗,即a s−b能被a+1整除.此时数列{x n}和{y n}有公共项组成的数列{z n},通项公式为z n=a2n(n∈N∗).显然,当b=2时,a s−ba+1=a2n−2a+1=a2n−1a+1−1a+1∉N∗,即a s−b不能被a+1整除.③当s=2n+1(n∈N∗)时,t=a s−ba+1=a(a2n−ba)a+1,若a>2,则a2n−ba ∉N∗,又a与a+1互质,故此时t=a(a2n−ba)a+1∉N∗.若a=2,要a2n−ba ∈N∗,则要b=2,此时a2n−ba=a2n−1,由②知,a2n−1能被a+1整除,故t=a(a 2n−ba)a+1∈N∗,即a s−b能被a+1整除.当且仅当b=a=2时,a S−b能被a+1整除.此时数列{x n}和{y n}有公共项组成的数列{z n},通项公式为z n=22n+1(n∈N∗).综上所述,存在b∈{1, 2},使得数列{x n}和{y n}有公共项组成的数列{z n},且当b=1时,数列z n=a2n(n∈N∗);当b=a=2时,数列z n=22n+1(n∈N∗).…。
2024年江苏省南通市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列结果中,是负数的是()A.﹣(﹣2)B.﹣|﹣1|C.3×2D.0×(﹣4)2.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为()A.25.3×104B.2.53×104C.2.53×105D.0.253×106 3.(3分)如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.4.(3分)下列各图中,可看作轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,且AB∥CD,则添加下列一个条件能判定四边形ABCD是菱形的是()A.AC=BD B.∠ADB=∠CDB C.∠ABC=∠DCB D.AD=BC6.(3分)如图,直线l1∥l2,含有30°的直角三角板的一个顶点C落在l2上,直角边交l1于点D,连接BD,使得BD⊥l2,若∠1=72°,则∠2的度数是()A.48°B.58°C.42°D.18°7.(3分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.8.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣4<a≤﹣3D.﹣4≤a<﹣3 9.(3分)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q 从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,△BPQ的面积为S cm2,下列图象能正确反映出S与t的函数关系的是()A.B.C.D.10.(3分)已知实数a,b满足4a2+b=n,b2+2a=n,b≠2a.其中n为自然数,则n的最小值是()A.4B.5C.6D.7二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)因式分解:2x﹣8x3=.13.(4分)底面圆半径为10cm、高为的圆锥的侧面展开图的面积为cm2.14.(4分)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行秒才能停下来.15.(4分)如图,社小山的东侧炼A处有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,20min后到达点C处,此时热气球上的人测得小山西侧点B处的俯角为30°,则小山东西两侧A,B两点间的距离为.16.(4分)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为.17.(4分)若a,b是一元二次方程x2﹣5x﹣2=0的两个实数根,则的值为.18.(4分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:;(2)先化简,再求值:,其中x=3.20.(8分)如图,已知A,D,C,E在同一直线上,BC和DF相交于点O,AD=CE,AB ∥DF,AB=DF.(1)求证:△ABC≌△DFE;(2)连接CF,若∠BCF=54°,∠DFC=20°,求∠DFE的度数.21.(10分)某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用A、B、C、D表示)和4个化学实验考查内容(用E、F、G、H表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是;(2)用列表法或画树状图法中的一种方法,求小刚抽到物理实验B和化学实验F的概率.22.(10分)青年大学习是共青团中央为组织引导广大青年深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神持续引向深人组织的青年学习行动.某校举办了相关知识竞赛(百分制),并分别在七、八年级中各随机抽取20名学生的成绩进行统计、整理与分析,绘制成如图两幅统计图.成绩用x表示,并且分为A、B、C、D、E五个等级,并且分别是:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.七、八年级成绩的平均数、中位数众数如下表:平均数中位数众数七年级76m75八年级777678其中,七年级成绩在C等级的数据为77、75、75、78、79、75、73、75;八年级成绩在E等级的有3人.根据以上信息,解答下列问题:(1)扇形统计图中B等级所占圆心角的度数是,表中m的值为;(2)通过以上数据分析,你认为哪个年级对青年大学习知识掌握得更好?请说明理由;(3)请对该校学生“青年大学习”的掌握情况作出合理的评价.23.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=60°,⊙O的切线CD与AB的延长线相交于点D.(1)求证:BD=BC;(2)若⊙O的半径为6,求图中阴影部分的面积.24.(13分)随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?25.(13分)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.26.(14分)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“平衡点”.例如,点(﹣1,1)是函数y=x+2的图象的“平衡点”.(1)在函数①y=﹣x+3,②y=,③y=﹣x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的函数是;(填序号)(2)设函数y=﹣(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图象绕y轴上一点M旋转180°,M在(0,﹣1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.2024年江苏省南通市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】利用相反数的意义及绝对值的性质化简A、B,再利用乘法法则计算即可得到C、D.【解答】解:∵A、﹣(﹣2)=2,∴A项不符合题意;∵B、﹣|﹣1|=﹣1,∴B项符合题意;∵C、3×2=6,∴C项不符合题意;∵D、0×(﹣4)=0,∴D项不符合题意.故选:B.【点评】本题考查了相反数的意义,绝对值的性质,有理数的乘法法则,掌握绝对值的性质是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253000=2.53×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形,解题关键是抓住轴对称图形是指将一个图形沿着某条直线折叠,直线两旁的部分能够完全重合.5.【分析】根据菱形的判定方法分别对各个选项进行判定,即可得出结论.【解答】解:∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OA=OC,∴△AOB≌△COD(AAS),∴AB=CD,∴四边形ABCD是平行四边形,A、当AC=BD时,四边形ABCD是矩形;故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠CDB,∵∠ADB=∠CDB,∴∠ADB=∠ABD,∴AD=AB,∴四边形ABCD为菱形,故选项B符合题意;C、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠DCB∴∠ABC=∠DCB=90°,∴四边形ABCD是矩形;故选项C不符合题意;D、当AD=BC时,不能判定四边形ABCD为菱形;故选项D不符合题意.故选:B.【点评】本题考查了菱形的判定,平行四边形的判定和性质,等腰三角形的判定和性质,熟练掌握菱形的判定定理是解题的关键.6.【分析】根据平行的性质可得∠DEB=∠1=72°,根据三角形的外角的定义可得∠ADC=42°,再根据平角进行计算即可得到答案.【解答】解:如图,设AB与l1相交于点E,∵l1∥l2,∠1=72°,∴∠DEB=∠1=72°,∵∠A+∠ADC=∠DEB=72°,∠A=30°,∴∠ADE=42°,∵∠ADC+∠BDE+∠2=180°,BD⊥l2,∴∠2=48°.故选:A.【点评】本题主要考查了平行线的性质、三角形外角的定义,平角的定义,熟练掌握平行线的性质、三角形外角的定义,平角的定义是解题的关键.7.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.8.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后根据不等式组有且只有3个整数解,即可得到a的取值范围.【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>a,∴该不等式组的解集是a<x≤2,∵关于x的不等式组有且只有3个整数解,∴这三个整数解是0,1,2,∴﹣1≤a<0,故选:A.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.9.【分析】当0<t≤1时,点P在OE上,当1<t≤2时,点P在OF上,分别求出S与t 的函数关系,即可解答.【解答】解:如图,当0<t≤1时,由题得,PE=BQ=t cm,∵正方向ABCD是边长为2cm,∴P到BC的距离为(2﹣t)cm,∴S=t•(2﹣t)=﹣t2+t,如图,当1<t≤2时,由题得,PF=CQ=(2﹣t)cm,∴四边形CFPQ为矩形,∴PQ=CF=1cm,∴S=t•1=t,故选:D.【点评】本题考查了动点问题的函数图象应用,三角形面积的计算是解题关键.10.【分析】由原式知,(4a2+b)﹣(b2+2a)=0,进一步变形得(2a﹣b)(2a+b﹣)=0,因为b≠2a,所以2a+b﹣=0,得b=﹣2a,代入b2+2a=n得,(﹣2a)+2a=n,配方法求极值.【解答】解:由原式知,(4a2+b)﹣(b2+2a)=0,∴(4a2﹣b2)﹣(2a﹣b)=0∴(2a﹣b)(2a+b)﹣(2a﹣b)=0∴(2a﹣b)(2a+b﹣)=0∵b≠2a∴2a+b﹣=0,∴b=﹣2a,代入b2+2a=n得,(﹣2a)2+2a=n,整理,得n=4a2﹣2a+7=(2a﹣)2+5≥5,∴自然数n的最小值为6故选C.【点评】本题考查等式的基本性质,平方差公式、完全平方公式、配方法求极值;根据式子的具体特征,结合乘法公式对代数式作恒等变形是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x﹣8x3=2x(1﹣4x2)=2x(1+2x)(1﹣2x),故答案为:2x(1+2x)(1﹣2x).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.【分析】先求出圆锥的母线长,再根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面半径为10cm,高为10cm,∴圆锥的母线为=20(cm),∴圆锥的侧面展开图的面积为×(2π×10)×20=200π(cm2).故答案为:200π.【点评】本题考查圆锥的计算,解题的关键是求出圆锥的母线和掌握圆锥的侧面展开图的面积公式.14.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意得,S=﹣0.25t2+10t=﹣0.25(t2﹣40t+400﹣400)=﹣0.25(t﹣20)2+100,∵﹣0.25<0,∴t=20时,飞机滑行的距离最大,即当t=20秒时,飞机才能停下来.故答案为:20.【点评】本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.15.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600(米),∴AD=AC•sin45°=300(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=600(米).故答案为:600.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.16.【分析】证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴,∵DF=6,∴AF===8,∴,∴AE=5,∴EF=AF﹣AE=8﹣5=3,故答案为:3.【点评】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.【分析】先根据一元二次方程的解的定义及根与系数的关系得出a +b =5,a 2=5a +2,再将其代入整理后的代数式计算即可.【解答】解:∵a ,b 是一元二次方程x 2﹣5x ﹣2=0的两个实数根,∴a +b =5,a 2﹣5a ﹣2=0,即:a 2=5a +2,∴,故答案为:5.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,,x 1•x 2=.也考查了一元二次方程的解.18.【分析】过点B 作直线AC 的垂线交直线AC 于点F ,由△BCE 的面积是△ADE 的面积的2倍以及E 是AB 的中点即可得出S △ABC =2S △ABD ,结合CD =k 即可得出点A 、B 的坐标,再根据AB =2AC 、AF =AC +BD 即可求出AB 、AF 的长度,根据勾股定理即可算出k 的值,此题得解.【解答】解:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC =2BD ,又∵OC •AC =OD •BD ,∴OD =2OC .∵CD =k ,∴点A 的坐标为(,3),点B 的坐标为(﹣,﹣),∴AC =3,BD =,∴AB =2AC =6,AF =AC +BD =,∴CD =k ===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先化简,然后算加减法即可;(2)先算括号内的式子,再算括号外的除法,然后将x的值代入化简后的式子计算即可.【解答】解:(1)=3+﹣1﹣=+;(2)=•===,当x=3时,原式==﹣5.【点评】本题考查实数的运算、分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行线的性质得∠A=∠FDE,根据等式的性质可得AC=DE,再由SAS 证明△ABC≌△DFE即可;(2)先根据三角形的外角可得∠DOC=74°,由平行线的性质可得∠B=∠DOC,最后由全等三角形的性质可得结论.【解答】(1)证明:∵AB∥DF,∴∠A=∠EDF,∵AD=CE,∴AD+CD=CE+CD,即AC=DE,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);(2)解:∵∠BCF=54°,∠DFC=20°,∴∠DOC=∠BCF+∠DFC=54°+20°=74°,∵AB∥DF,∴∠B=∠DOC=74°,∵△ABC≌△DFE,∴∠DFE=∠B=74°.【点评】本题考查了全等三角形的判定与性质,平行线的性质,证明三角形全等是解题的关键.21.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出抽到B和F的结果数,然后根据概率公式计算.【解答】解:(1)小刚抽到物理实验A的概率是;故答案为:;(2)画树状图为:共有16种等可能的结果,其中抽到B和F的结果数为1,所以小刚抽到物理实验B和化学实验F的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【分析】(1)求出调查人数以及B等级的学生人数所占的百分比即可求出相应的圆心角度数,根据中位数的定义求出中位数即可得出m的值;(2)通过平均数、中位数、众数的大小比较得出答案;(3)根据平均数、中位数、众数综合进行判断即可.【解答】解:(1)由条形统计图可得,调查人数为2+5+8+2+3=20(人),扇形统计图中B等级所占圆心角的度数是360=90°,将七年级这20名学生的成绩从小到大排列,处在中间位置的两个数的平均数为=75,因此中位数是75分,即m=75,故答案为:90°,75;(2)八年级学生的成绩较好,理由:八年级学生成绩的平均数、中位数、众数均比七年级学生的平均数、中位数、众数大,所以八年级学生成绩较好;(3)青年学生对深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神掌握情况一般,还需要进一步加强学习和宣传.【点评】本题考查条形统计图、扇形统计图,平均数、中位数、众数,理解两个统计图中数量之间的关系以及中位数、众数、平均数的意义是正确解答的前提.23.【分析】(1)连接OC,可证明△BOC是等边三角形,则∠BOC=∠BCO=60°,由CD 与⊙O相切于点C,得∠OCD=90°,即可求得∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,所以∠BCD=∠D,则BD=BC;(2)作CE⊥OB于点E,则CE=OC•sin60°=3,可求得S阴影=S扇形BOC﹣S△BOC=6π﹣9.【解答】(1)证明:连接OC,则OC=OB,∵∠ABC=60°,∴△BOC是等边三角形,∴∠BOC=∠BCO=60°,∵CD与⊙O相切于点C,∴CD⊥OC,∴∠OCD=90°,∴∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,∴∠BCD=∠D,∴BD=BC.(2)解:作CE⊥OB于点E,则∠OEC=90°,∵OC=OB=6,∴CE=OC•sin60°=6×=3,∴S阴影=S扇形BOC﹣S△BOC=﹣×6×3=6π﹣9,∴阴影部分的面积是6π﹣9.【点评】此题重点考查切线的性质、等边三角形的判定与性质、等腰三角形的判定、锐角三角函数与解直角三角形、三角形的面积公式、扇形的面积公式等知识,正确地作出所需要的辅助线是解题的关键.24.【分析】(1)设A种羽毛球拍每副的进价为x元,根据用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A种羽毛球拍m副,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求解即可;(3)设总利润为w元,表示出w与m的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【点评】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,理解题意并根据题意建立相应的关系式是解题的关键.25.【分析】(1)由轴对称的性质可得∠DAP=∠EAP=70°,AD=AE,由等腰三角形的性质和三角形内角和定理可求解;(2)先求出∠AFE=45°,通过证明△CDF∽△BDE,可得BE=CF;(3)先确定点G在以O为圆心,1为半径的圆上运动,再根据等腰直角三角形的性质求解即可.【解答】解:(1)补全图形如图1所示;设∠BAP=x,∴∠DAP=90°﹣x,∵线段AE与AD关于直线AP对称,∴∠DAP=∠EAP=90°﹣x,AD=AE,∴∠BAE=90°﹣2x,AB=AE,∴∠E=∠ABE=45°+x,∴∠AFE=180°﹣(90°﹣x)﹣(45°+x)=45°;(2)BE=CF;证明:如图2,连接DF,DE,BD,∵四边形ABCD是正方形,∴BD=CD,∠CDB=45°,∵线段AE与AD关于直线AP对称,∴DF=EF,∠DFA=∠AFE=45°,∴∠DFE=90°,∴∠FDE=45°=∠CDB,DE=DF,∴∠CDF=∠BDE,,∴△CDF∽△BDE,∴,∴BE=CF;(3)如图3,连接AC,BD交于点O,连接OG,∵四边形ABCD是正方形,∴AO=CO,又∵G是CE中点,∴OG=AE=AD=1,∴点G在以O为圆心,1为半径的圆上运动,∴点P从点B运动到点C,点G的运动到BD上时DG的值最大,且DG的最大值为DO+OG,∵OD=AD=,∴DG的最大值为1.【点评】本题是四边形综合题,考查了正方形的性质,轴对称的性质,相似三角形的判断和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是本题的关键.26.【分析】(1)在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,可知y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;(2)在y=﹣中,令y=﹣x得A(2,﹣2)或(﹣2,2);在y=2x+b中,令y=﹣x 得B(﹣,),当A(2,﹣2)时,C(0,﹣2),可得AB2=2(2+)2,BC2=+(2+)2,AC2=4,分三种情况列方程可得答案;(3)设M(0,m),m<﹣1,求出抛物线y=x2+2x的顶点为(﹣1,﹣1),而点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),可得旋转后的抛物线解析式为y=﹣(x ﹣1)2+2m+1=﹣x2+2x+2m,令y=﹣x得x2﹣3x﹣2m=0,根据旋转后的图象上恰有1个“平衡点”,知x2﹣3x﹣2m=0有两个相等实数根,故9+8m=0,m=﹣,从而得M的坐标为(0,﹣).【解答】解:(1)根据“平衡点”的定义,“平衡点”的横、纵坐标互为相反数,在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,∴y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;故答案为:③;(2)在y=﹣中,令y=﹣x得﹣x=﹣,解得x=2或x=﹣2,∵x>0,∴A(2,﹣2);在y=2x+b中,令y=﹣x得﹣x=2x+b,解得x=﹣,∴B(﹣,),当A(2,﹣2)时,C(0,﹣2),∴AB2=2(2+)2,BC2=+(2+)2,AC2=4,若AB=BC,则2(2+)2=+(2+)2,解得b=﹣3;若AB=AC,则2(2+)2=4,解得b=﹣3﹣6或b=3﹣6;若BC=AC,则+(2+)2=4,解得b=0或b=﹣6(此时A,B重合,舍去);∴b的值为﹣3或﹣3﹣6或3﹣6或0;(3)设M(0,m),m<﹣1,∵y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点为(﹣1,﹣1),点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),∴旋转后的抛物线解析式为y=﹣(x﹣1)2+2m+1=﹣x2+2x+2m,在y=﹣x2+2x+2m中,令y=﹣x得:﹣x=﹣x2+2x+2m,∴x2﹣3x﹣2m=0,∵旋转后的图象上恰有1个“平衡点”,∴x2﹣3x﹣2m=0有两个相等实数根,∴Δ=0,即9+8m=0,∴m=﹣,∴M的坐标为(0,﹣).【点评】本题考查二次函数的综合应用,涉及新定义,等腰三角形,一元二次方程根的判别式,旋转变换等知识,解题的关键是读懂新定义,利用二次函数与一元二次方程的关系解决问题。
2001-2012年江苏南通中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1.(2001江苏南通3分)点P(-3,4)关于原点对称的点的坐标是【】A、(3,-4)B、(-3,-4)C、(3,4)D、(-4,3)【答案】A。
【考点】关于原点对称的点的坐标特征。
【分析】关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(-3,4)关于原点对称的点的坐标是(3,-4)。
故选A。
2.(江苏省南通市2003年3分)在函数y=中,自变量x的取值范围是【】A.x≠-1 B.x≠0 C.x≥-1 D.x≥-1,且x≠0【答案】D。
【考点】函数自变量的取值范围,二次根式和分式有意义的条件。
【分析】根据二次根式被开方数必须是非负数和分式分母不为0在实数范围内有意义,必须x10x1x0x0+≥≥-⎧⎧⇒⎨⎨≠≠⎩⎩。
故选D。
3. (江苏省南通市2004年2分)点M(1,2)关于x轴对称点的坐标为【】A、(-1,2)B、(-1,-2)C、(1,-2)D、(2,-1)【答案】C。
【考点】关于x轴对称的点的坐标【分析】关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数,可知,A(1,2)关于x轴对称点的坐标是(1,-2)。
故选C。
4.(2012江苏南通3分)线段MN在直角坐标系中的位置如图所示,线段M1N1与MN关于y轴对称,则点M的对应的点M1的坐标为【】A.(4,2) B.(-4,2) C.(-4,-2) D.(4,-2)【答案】D。
【考点】平面坐标系与坐标,关于y轴对称的点的坐标特征。
【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,从而点M(-4,-2)关于y轴对称的点M1的坐标是(4,-2)。
故选D。
二、填空题1. (2001江苏南通2分)函数y=1x1-中,自变量x的取值范围是▲ 。
【答案】x1≠。
【考点】函数自变量的取值范围,二次根式和分式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1 x1 -在实数范围内有意义,必须x10x1-≠⇒≠。
2001-2012年江苏南通中考数学试题分类解析汇编(12专题)专题6:函数的图象与性质一、选择题1.(江苏省南通市2002年3分)抛物线y=2x 2-4x +7的顶点坐标是【 】A .(-1,13)B .(-1,5)C .(1,9)D .(1,5) 【答案】D 。
【考点】二次函数的性质。
【分析】利用公式法或利用配方法可求出y=2x 2-4x +7=2(x -1)2+5的顶点的坐标(1,5)。
故选D 。
2. (江苏省南通市2003年3分)已知反比例函数ky x=的图象如图所示,则二次函数22y 2kx x k =-+的图象大致为 【 】A .B .C .D .【答案】D 。
【考点】二次函数的图象,反比例函数的图象。
【分析】由反比例函数的图象得到k 的正负,再与二次函数的图象相比较看是否一致:∵函数ky x=的图象经过二、四象限,∴k<0。
∴抛物线开口向下,对称轴b 1x 02a 4k=-=<,即对称轴在y 轴的左边。
故选D 。
3. (江苏省南通市2004年3分)抛物线21y x x 44=-+-的对称轴是【 】A 、x =-2B 、x =2C 、x =-4D 、x =4【答案】B 。
【考点】二次函数的性质。
【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式bx 2a=-求解: ∵抛物线()2211y x x 4=x 2344=-+----,∴抛物线21y x x 44=-+-的对称轴是直线x=2。
故选B 。
4. (江苏省南通市大纲卷2005年3分)二次函数2y ax bx c =++的图象如图所示, 若42,M a b c =++N a b c =-+,42P a b =+,则【 】A 、0,0,0M N P >>>B 、0,0,0M N P ><>C 、0,0,0M N P <>>D 、0,0,0M N P <><【答案】D 。
南通市教研室2012年数学全真模拟试卷二试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 已知i 为虚数单位,则102i r r ==∑ ▲ .2. 在区间[]12-, 内随机选取一个实数,则该数为正数的概率是 ▲ .3. 对某种电子元件使用寿命跟踪调查,所得样本频率分布直方图如图,若一批电子元件中寿命在100~300小时的电子元件的数量为400,则寿命在500~600小时的电子元件的数量为 ▲ .4. 设定义在区间()π02,上的函数sin 2y x =的图象与1cos 2y x =图象的交点横坐标为α,则tan α的值为 ▲ .5. 运行如图所示的流程图,则输出的结果S 是 ▲ .6. 在△ABC 中,a b c ,, 分别是角A B C , , 的对边,若222a b c , , 成等差数列,则cos B 的最小值为 ▲ .7. 若定义在R 上的函数23()f x ax =(a 为常数)满足(2)(1)f f ->,则()f x 的最小值是 ▲ .8. 已知双曲线22221y x a b-=(00a b >>,)的两个焦点为()10F、)20F ,点P 是)(第3题图)(第5题图)第一象限内双曲线上的点,且121tan PF F ∠=,21tan 2PF F ∠=-,则双曲线的离心率为▲ .9. 函数e x y =的图象在点()e k a k a , 处的切线与x 轴的交点的横坐标为1k a +,其中*k ∈N ,10a =,则135a a a ++= ▲ .10.如图,在66⨯的方格纸中,若起点和终点均在格点的向量a ,b ,c 满足x +y =c a b (,R ∈x y ),则x y += ▲ .11.记123k k k k k S n =+++⋅⋅⋅+, 当123k =⋅⋅⋅,, , 时,观察下列等式: 211122S n n =+, 322111326S n n n =++,4323111424S n n n =++, 5434111152330S n n n n =++-, 6542515212S An n n Bn =+++, ⋅⋅⋅可以推测,A B -= ▲ .12.有一个各条棱长均为a 的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,则包装纸的最小边长是 ▲ .13.定义在[)1+∞, 上的函数()f x 满足:①(2)2()f x f x =;②当[]24x ∈,时,()13f x x =--,则集合{}()(36)x f x f =中的最小元素是 ▲ .14.已知关于x 的实系数一元二次不等式20 ()ax bx c a b ++<≥的解集为R ,则24a b cM b a++=-的最小值是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定.....区域..内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知集合{}2280A x x x =--≤,{}22(23)30B x x m x m m m =--+-∈R ≤, . (1)若[]24AB =, ,求实数m 的值;(2)设全集为R ,若A B ⊆R ð,求实数m 的取值范围.(第10题图)16.(本题满分14分)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AD CD BC CD ⊥⊥, ,且2BC AD =.(1)若点E 为线段PC 的中点,求证://DE 平面PAB ; (2)若二面角P BC A --的大小为π4,求证:平面PAB ⊥平面PBC .17.(本题满分15分)如图,点P 在ABC ∆内,23AB CP BC ===,, πP B ∠+∠=,记B α∠=. (1)试用α表示AP 的长; (2)求四边形ABCP 的面积的最大值,并写出此时α的值.18.(本题满分15分)在平面直角坐标系xOy 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值;(3)设过圆心2(10)C -,的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切线交于点Q ,求证:点Q 在定直线上.19.(本题满分16分)ABCDPE(第16题图)α ABCP(第17题图)已知整数列...{}n a 满足31a =-,74a =,前6项依次成等差数列,从第5项起依次成等比数列.(1)求数列{}n a 的通项公式;(2)求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.20.(本题满分16分)已知函数2()f x x =,()ln g x a x =,a ∈R . (1)若1x ∃≥,()()f x g x <,求实数a 的取值范围;(2)证明:“方程()()f x g x ax -=(0)a >有唯一解”的充要条件是“1a =”.试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,以正方形ABCD 的顶点C 为圆心,CA 为半径的圆 交BC 的延长线于点E 、F ,且点B 为线段CG 的中点. 求证:2GE GF BE BF ⋅=⋅.B .(矩阵与变换)若直线y kx =在矩阵0110⎡⎤⎢⎥⎣⎦对应的变换作用下得到的直线过点(41)P , ,求实数k 的值. C .(极坐标与参数方程)在极坐标系() (02π)ρθθ<≤,中,求曲线2sin ρθ=与cos 1ρθ=的交点Q 的极坐标. D .(不等式选讲)设a b ,为互不相等的正实数,求证:3334()()a b a b +>+.G(第21 —A 题)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,在正方体1111ABCD A B C D -中,1AB =,11 (01)A P AC λλ=<<. (1)若12λ=,求直线PB 与PD 所成角的正弦值;(2)是否存在实数λ,使得直线1AC ⊥平面PBD ?并说明理由.23.我们知道,对一个量用两种方法分别算一次,由结果相同可以构造等式,这是一种非常有用的思想方法——“算两次”(G .Fubini 原理),如小学有列方程解应用题,中学有等积法求高⋅⋅⋅请结合二项式定理,利用等式2(1)(1)(1) (*)n n n x x x n +⋅+=+∈N 证明:(1)220(C )C nr n nnr ==∑; (2)20(C C )C mr m rm n n n r -==∑.南通市教研室2012年数学全真模拟试卷二参考答案1.1-; 2.23; 3.300; 4; 5.2; 6.12; 7.0;8; 9.-6; 10.197; 11.1; 12; 13.12; 14.8.答案解析:1. 102i r r ==∑i 2+(i 3+i 4+i 5+i 6)+(i 7+i 8+i 9+i 10)=i 2=1-;2. 易得正数的取值区间长度是2,总长度是3,由几何概型得所求概率为23;3. 寿命在100~300小时的电子元件的频率是()1311002002005+⨯=,故样本容量是ABCD 1A1B1C1D P(第22题)140020005÷=,从而寿命在500~600小时的电子元件的数量为()320001003002000⨯⨯=;4. 易得锐角α满足1sin 2cos 2αα=,即12sin cos cos 2ααα=,所以1sin cos 4αα=,于是tan α.5. 变量i 的值分别取1,2,3,4,…时,变量S 的值依次为11 1 2 22-,,,,…,不难发现变量S 的值是以3为周期在变化,当i 的取值为2010时,2S =,而后i 变为2011退出循环.6. 易得222222222212 cos 222a cb b b b ac B ac ac a c +-=+===+,≥(当且仅当a c =时等号成立). 7. 由(2)(1)f f ->得23(2)a a ->,即0a >,所以偶函数()f x 在[)0 +∞,上是单调增函数,在(] 0-∞,上是单调减函数,所以min ()(0)0f x f ==;8. sin ∠PF 1F 2=,sin ∠PF 1F 2=,由正弦定理得122PFPF =,又易得tan ∠F 1PF 2=34,所以cos ∠F 1PF 2=45,由利用余弦定理得12 PF PF ,所以12PF PF -,故2a2c =e =;9. 易求得切线方程为()e e k k a a k y x a -=-,令y =0得,x =1k a -,即11k k a a +-=-,故数列{}k a 是等差数列,所以1356a a a ++=-;10.由向量坐标的引入可以认为()()()12 23 3 4a b c ==-=,,,,,,代入x +y =c a b 得172 77x y ==,, 故197x y +=; 11.易观察出A =16,对于5S ,可令n =1得51S =,即有11516212B +++=,所以112B =;12.如图,是某正四棱锥的平面展开图,等腰△ABC 的底边BC 即为所求正方形包装纸的边长的最小值,由余弦定理得6BC ==;(第12题图)13.易得()()991(36)2(18)4(9)816164244f f f f f =====⨯=,由条件可知,[][][]()2 4 4 8 8 16f x ⋅⋅⋅在,,,,,上的最大值依次为1,2,4…,即最大值构成一个以2为公比的等比数列,结合图象 不难发现()=4f x 时x 的最小值是12;14.由题意得240 0b ac a ->≤,,所以2222242()a ab ac a ab b M a b a ab a++++=--≥()2121b b a a b a+⋅+=-,令 (1)b t t a =>,,则()22+14142811t t M t t t +=-++=--≥≥(当且仅当3 3t b a ==,即时等号成立).15.命题立意:本题主要考查集合的交、并、补集运算以及一元二次不等式等基础知识,考查运算求解能力.解:(1)易得集合{}24A x x =-≤≤,集合{}3B x m x m =-≤≤,(4分)由[]2 4AB =,得32 4 m m -=⎧⎨⎩,≥,所以m =5.(7分) (2)由(1)得{}3 R B x x m x m =<->,或ð,(10分) 因为A B ⊆R ð,所以342m m -><或,解得72m m ><-或.(14分)16.命题立意:本题主要考查直线与平面、平面与平面的位置关系、二面角的概念等基础知识,考查空间想象、推理论证能力. 证明:(1)取BP 得中点F ,连结AF ,EF , 又点E 为线段PC 的中点,且AD CD BC CD ⊥⊥,,且2BC AD =, 所以EF //12BC //AD ,所以四边形ADEF 是平行四边形,(2分) 故ED //AF ,又因为DE ⊄平面P AB ,AF ⊂平面P AB ,所以//DE 平面P AB .(5分) (2)因为PD ABCD ⊥平面,且BC ABCD ⊂平面, 所以PD BC ⊥, 又CD BC ⊥, PDCD D PD CD PCD =⊂,、平面, 所以BC PCD ⊥平面.ABCDPE(第16题图)F于是PCD P BC A ∠--是二面角的平面角,即有πPCD ∠=,(7分)此时,PCD △是等腰三角形, 又E PC 是的中点,故DE PC ⊥,(9分)因为BC PCD ⊥平面, 又DE PCD ⊂平面, 所以DE BC ⊥, 又//DE AF , 所以AF PC ⊥,且AF BC ⊥, 又 PCBC C =,PC BC PBC ⊂、平面, 所以AF PBC ⊥平面,(12分)又AF PAB ⊂平面, 所以PAB PBC ⊥平面平面.(14分)17.命题立意:本题主要考查三角形的余弦定理与面积公式以及三角函数的性质等基础知识,考查运算求解能力.解:(1)△ABC 与△APC 中,由余弦定理得,22223223cos AC α=+-⨯⨯, ①()222222cos AC AP AP α=+-⨯⨯π-,②(4分)由①②得()24cos 12cos 90 0 AP AP ααα++-=∈π,,,解得34cos AP α=-;(7分)(2)()()1123sin 2sin 0 22ABC APC S S S AP ααα∆∆=-=⨯⨯-⨯⨯π-∈π,, 由(1)得4sin cos S αα=⋅2sin2 α=,()0 α∈π,(13分)所以当4απ=时,max 2S =.(15分)18. 命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力. 解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,b = 故P 点的轨迹方程是22143y x +=.(5分)(2)法1(几何法) 四边形SMC 2N 的面积=2112SC MN SM MC SM ⋅=⋅⨯=,所以2222cos SM MN MSC SC ==∠=(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以min MN =.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()222211x y x y x y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分) 则圆心2C 到直线MN 的距离d ==因为()2200116x y -+=,所以22000152x y x +=+,从而d =,[]03 5x ∈-,,故当03x =-时d max 12=,因为MN =minMN =(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=, 将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分)19.命题立意:本题主要考查等差、等比数列的定义与通项公式等基础知识,考查灵活运用基本量进行探索求解、推理分析能力.解:(1)设数列前6项的公差为d ,则512a d =-+,613a d =-+,d 为整数. 又a 5,a 6,a 7成等比数列,所以()()231421d d -=-,解得1d =,当n ≤6时,4n a n =-,(3分)由此51a =,62a =,数列从第5项起构成的等比数列的公比为2, 所以,当n ≥5时,52n n a -=. 故54 4 2 5.n n n n a n --⎧=⎨⎩≤,,,≥(7分)(2)由(1)知,数列{}n a 为:-3,-2,-1,0,1,2,4,8,16,… 当m =1时等式成立,即-3-2-1=-6=(-3)⨯(-2)⨯(-1);当m =3时等式成立,即-1+0+1=0;(11分) 当m =2或4时,等式均不成立;(13分)当m ≥5时,312122m m m m a a a -++=,535122(21)72m m m m m a a a --++++=-=⨯,因为31227522772m m m ---=⨯,而5m m ∈Z ≥,,所以272m -是偶数,所以3125272m m --≠⨯,于是1212m m m m m m a a a a a a ++++++≠,故m =1,或m =3.(16分) 20.命题立意:本题主要考查利用导数研究函数的图像与性质等基础知识,考查灵活运用数形结合、化归与转化、分类与讨论思想进行运算求解、推理论证的综合能力.解:(1)记()()()F x f x g x =-,则22()2a x a F x x x x-'=-=,1x ≥, 当0a ≤时,()0F x '>恒成立,故()F x '为[)1+∞, 上的单调增函数,所以min ()(1)1F x F ==,(2分) 当0a >时,由()0F x '=得x =1,即20a <≤时,()0F x '≥恒成立,故()F x 为[)1+∞, 上的单调增函数,所以min ()(1)1F x F ==,(4分)若1,即2a >时,()F x '在1⎡⎢⎣上恒小于0,在)∞上恒大于0,所以()F x在1⎡⎢⎣上的单调递减,在)∞上的单调递增,故()min ()1ln 22a a F x F ==-, 综上所述,()min 21()1ln 222a F x a a a ⎧⎪=⎨->⎪⎩≤,, , , (6分)所以()1ln <22a a -0, 且2a >,解得2e a >.(8分) (2)1充分性:当1a =时,方程2ln x x x -=,即2l n 0x x x --=,记2()l n G x x x x=--,0x >由2(1)(21)121()210x x x x G x x -+--'=--===得1x =(负值已舍), 所以()G x 在(01),上单调递减,在[)1+∞, 上单调递增, 故min ()(1)0G x g ==,即2()ln G x x x x =--在(0)+∞, 有唯一解1x =,即证.(11分)2必要性:因为方程2ln x a x ax -=(0)a >有唯一解,记2()ln h x x a x ax =--,0x >由22()20a x ax a h x x a x x --'=--==得0x =,所以()h x 在0(0)x , 上单调递减,在[)0x +∞, 上单调递增,故min 0()()0h x h x ==,且0()0h x '=(13分)即2000200ln 020x a x ax x ax a ⎧--=⎪⎨--=⎪⎩,,②-①⨯2得002ln 10x x +-=,00x >,记000()2ln 1s x x x =+-,00x >,则函数0()s x 为(0)+∞,上的单调增函数,且(1)0s =,所以方程002ln 10x x +-=有唯一解01x =,将01x =代入②式得1a =,即证.由1、2得,“方程()()f x g x ax -=(0)a >有唯一解”的充要条件是“1a =”.(16分) 21.A .命题立意:本题主要考查相似三角形、圆的相关几何知识,考查推理论证能力. 证明:连结AG ,AE 、AF , 因为AB 垂直且平分CG ,所以AG =AC ,由切割线定理得2AG GE GF =⋅ ①,(3分) 由Rt Rt ABE FBA △∽△得到2AB BE BF =⋅ ②,(5分)因为AG ,所以222AG AB = ③,(7分) 由①②③得,2GE GF BE BF ⋅=⋅.(10分) B .命题立意:本题主要考查二阶矩阵的变换,考查运算求解能力.解:设变换T :x x y y '⎡⎤⎡⎤→⎢⎥⎢⎥'⎣⎦⎣⎦, 则0110x x y y y x '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,(5分) 即 x x y y '=⎧⎨'=⎩,,代入直线y kx =得x ky ''=, 将点(41)P , 代入得k =4.(10分)(注:本题亦可将点(41)P , 在矩阵0110⎡⎤⎢⎥⎣⎦的逆矩阵作用下得到点的坐标代入直线y kx =,从而求出k 的值.)C .命题立意:本题主要考查直线与圆的极坐标方程,考查运算求解能力.解:将直线cos 1ρθ=与圆2sin ρθ=分别化为普通方程得, 直线1x =与圆22(1)1x y +-=,(6分)易得直线1x =与圆22(1)1x y +-=切于点Q ()1 1,, 所以交点Q 的极坐标是)π4,.(10分)D .命题立意:本题主要考查证明不等式的基本方法,考查推理论证能力.证明:因为a >0,b >0, 所以要证3334()()a b a b +>+,①②只要证2234()()()a b a ab b a b +-+>+, 即要证2224()()a ab b a b -+>+,(5分) 只需证()230a b ->, 而a ≠b ,故()230a b ->成立.(10分) (注:本题亦用“作差法”证明.)22.命题立意:本题主要考查空间向量的应用,考查运算求解能力.解:(1)如图,分别以DA ,DC ,D D 1为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -, 则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),由12λ=得()111 222P ,,,所以()()111111 222222PB PD =-=---,,,,,,所以1111cos 3PB PD --+⋅==-,所以,直线PB 与PD .(5分)(2)假设存在符合条件的实数λ,因为()()11 1 1 1 1 0AC BD =--=--,,,,,, 所以10AC BD ⋅=,故1A C BD ⊥. 要使1A C P B D ⊥平面,只需1BP A C ⊥, 由11(1 1 1)A P AC λλ==--,,得(1 1)P λλλ--,,,此时( 1 1)BP λλλ=---,,, 由10AC BP ⋅=得23λ=.(10分) 23.命题立意:本题主要考查二项式定理等基础知识,考查推理论证能力.证明:(1)考虑等式()()()2111n n nx x x +⋅+=+, 等式左边n x 的系数是 ()()()22201122001C C C CC CC C CC Cn n n n n nnnnn nnn n n n --++++=+++=()20C nr n r =∑,等式右边nx 的系数是2C n n, 根据对应项系数相等得,()2C nr n r =∑=2C nn .(5分) (2)仍考虑等式()()()2111n n nx x x +⋅+=+, 等式左边mx 的系数是011220C C C CC CC C m m m mn n n nn nn n--++++=()0C C mr m rn nr -=∑, 等式右边m x 的系数是2C mn, 根据对应项系数相等得,()0C C mr m rn n r -=∑=2C m n .(10分)。
2006年南通市初中毕业、升学考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共130分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共28分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考试号、科目名称用2B铅笔涂写在答题卡上.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在试卷上.一、选择题(本题共12小题;第1~8题每小题2分,第9~12题每小题3分,共28分.每小题只有一个选项是正确的)1.某市今年1月份某一天的最高气温是3℃,最低气温是-4℃,那么这一天的最高气温比最低气温高A.-7℃B.7℃C.-1℃D.1℃2.64的立方根等于A.4 B.-4 C.8 D.-8 3.已知∠α=35°19′,则∠α的余角等于A.144°41′ B.144°81′ C.54°41′ D.54°81′4.根据国家信息产业部2006年5月21日的最新统计,截至2006年4月底,全国电话用户超过7.7亿户.将7.7亿用科学记数法表示为A.7.7×1011B.7.7×1010C.7.7×109D.7.7×1085.如图,AB//CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于A B C DEF G(第5题)A .36°B .54°C .72°D .108°6. 某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m )在1.68~1.70这一小组的频率为0.25,则该组的人数为A .600人B .150人C .60人D .15人 7. 如图,已知PA 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B ,C 两点,PB =2cm ,BC =8cm ,则PA 的长等于A .4cmB .16cmC .20cmD .25cm 8. 二元二次方程组310x y xy +=⎧⎨=-⎩,的解是A .121252 25x x y y =-=⎧⎧⎨⎨==-⎩⎩,,;B .121252 25x x y y ==⎧⎧⎨⎨==⎩⎩,,;C .121252 25x x y y ==-⎧⎧⎨⎨=-=⎩⎩,,; D .121252 25x x y y =-=-⎧⎧⎨⎨=-=-⎩⎩,,; 9. 如图,□ABCD 的周长是28 cm ,△ABC 的周长是22 cm , 则AC 的长为A .6 cmB .12 cmC .4 cmD .8 cm10.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达 D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑 物AB 的高度等于A .631+()mB .631-()mC .1231+()mD .1231-()m11.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为A .1∶2B .2∶1C .1∶4D .4∶112.已知二次函数y =2x 2+9x +34,当自变量x 取两个不同的值x 1,x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与A .x =1时的函数值相等B .x =0时的函数值相等C .x =14时的函数值相等 D .x =94-时的函数值相等 A BC D (第9题)DCA B(第10题)A P · (第7题)BC O第Ⅱ卷(共102分)注意事项:除作图可使用2B 铅笔外,其余各题请使用钢笔或圆珠笔直接答在试题卷中. 题号 二三Ⅱ卷总分 结分人核分人19~20 21~22 23~24 25~262728得分二、填空题(本题共6小题;每小题3分,共18分.请把最后结果填在题中横线上)13.买一个篮球需要m 元,买一个排球需要n 元,则买3个篮球和5个排球共需要 元. 14.正六边形的每一个内角的度数为 °.15.在函数25xy x =-中,自变量x 的取值范围是 .16.如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,且DE ∥BC .若DE =2cm ,BC =3cm ,EC =23cm , 则AC = cm .17.用换元法解方程2141x x x x -+=-,若设1xy x =-,则可得关于y 的整式方程 . 18.如图,直线y =kx (k >0)与双曲线4y x=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值等于 .三、解答题(本题共10小题;共84分)(19~20题,第19题10分,第20题6分,共16分)19.(1)计算02818(51)22--+-; (2)解不等式组13554(4)3(6).x xx x +-⎧>⎪⎨⎪+<+⎩,得分 评卷人得分 评卷人yAxOB(第18题)(第16题)ABCD E 座位号20.已知:△ABC (如图).求作:△ABC 的外接圆(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).(21~22题,第21题6分,第22题7分,共13分)21.张栋同学到百货大楼买了两种型号的信封,共30个,其中买A 型号的信封用了1元5角,买B 型号的信封用了1元2角,B 型号的信封每个比A 型号的信封便宜2分.两种型号信封的单价各是多少?22.已知关于x 的一元二次方程x 2-(m -1)x +m +2=0.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于m 2-9m +2,求6m 的值.得分 评卷人(第20题)ABC(23~24题,第23题7分,第24题8分,共15分)23.2006年2月23日《南通日报》公布了2000年~2005年南通市城市居民人均可支配收入情况(如图所示).根据图示信息:(1)求南通市城市居民人均可支配收入的中位数;(2)哪些年份南通市城市居民人均可支配收入比上一年增加了1000元以上?(3)如果从2006年开始,南通市城市居民人均可支配收入每一年比上一年增加a 元,那么到2008年底可达到18000元,求a 的值.24.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平分∠DAB .(1)求证:AD ⊥CD ;(2)若AD =2,AC =5,求AB 的长.得分 评卷人2000年 2001年 2002年 2003年 2004年 2005年 年份收入(元)79118485864095981093712384· ABCD (第24题)O(25~26题,第25题8分,第26题10分,共18分)25.已知抛物线y =ax 2+bx +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y =ax 2+bx +c 当x <0时的图象;(3)利用抛物线y =ax 2+bx +c ,写出x 为何值时,y >0.26.已知A =a +2,B =a 2-a +5,C =a 2+5a -19,其中a >2.(1)求证B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由.得分 评卷人(第25题) 2 xyO -3 3 4 5 1 1 2 -2 -1 -1-2 -3 · · · A B C(第27题10分)27.已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE·GB=4-22,求正方形ABCD的面积.得分评卷人得分评卷人(第27题)AB CDOEFG(第28题12分)28.如图,在平面直角坐标系中,O 为坐标原点,B (5,0),M 为等腰梯形OBCD 底边OB 上一点,OD =BC =2,∠DMC =∠DOB =60°. (1)求直线CB 的解析式; (2)求点M 的坐标;(3)∠DMC 绕点M 顺时针旋转α(30°<α<60°)后,得到∠D 1MC 1(点D 1,C 1依次与点D ,C 对应),射线MD 1交直线DC 于点E ,射线MC 1交直线CB 于点F ,设DE =m ,BF =n .求m 与n 的函数关系式.2006年南通市初中毕业、升学考试yO xB C D (第28题)数学试题参考答案与评分标准说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、选择题(本题共12小题;第1~8题每小题2分,第9~12题每小题3分,共28分)1.B 2.A 3.C 4.D 5.B 6.A 7.D 8.C 9.D 10.A 11.C 12.B 二、填空题(本题共6小题;每小题3分,共18分)13.3m +5n 14.120 15.x >5 16.2 17.2y 2-4y +1=0 18.20 三、解答题 19.(1)解:02818(51)22--+- =32-2-2+1…………………………………………………………………4分=2+1. …………………………………………………………………5分(2)解:解不等式1355x x+->,得x >1. ………………………………………………7分解不等式4(4x x +<+,得x<2. ………………………………………9分所以不等式组的解集是1<x <2. ……………………………………………10分 20.作法:(1)作线段AB 的垂直平分线l 1; …………………………………………………1分(2)作线段BC 的垂直平分线l 2; ……………………………………………………2分(3)以l 1,l 2的交点O 为圆心,OA 长为半径画圆,则⊙O 即为所求作的圆.……3分画图准确(图略).………………………………………………………………………………6分21.解:设B 型号的信封的单价为x 分,则A 型号的信封的单价为(x +2)分,根据题意,得150120302x x+=+. ............................................................2分 去分母,整理得2780x x --=. 解这个方程,得x 1=8,x 2=-1. (4)分经检验x 1=8,x 2=-1都是原方程的根.但是负数不合题意,舍去. 所以 x+2=10.…………………………………………………………………………………5分答:A 型号的信封的单价为1角,B 型号的信封的单价为8分. ………………………6分22.解:(1)△=(m -1)2-4×(m +2)=m 2-6m -7.………………………………………………1分因为方程有两个相等的实数根,所以 m 2-6m -7=0. 解得 m 1=-1,m 2=7.……………………………………………………………………3分(2)由题意可知,m +2= m 2-9m +2,………………………………………………………4分解得m 1=0,m 2=10. 当m =0时,原方程没有实数根,故m =10. (6)分所以这个方程两实根之和为-9. ……………………………………………………7分 23.解:(1)中位数为9119元.……………………………………………………………………2分(2)2004年,2005年南通市城市居民人均可支配收入比上一年增加了1000元以上.…4分(3)由题意可知,到2008年底,南通市城市居民人均可支配收入为(12384+3a )元,则12384+3a =18000,解得a =1872. 所以,a 的值为1872. ………………………………………………………………7分24.(1)证明:连结BC .∵直线CD 与⊙O 相切于点C ,∴∠DCA =∠B . ∵AC 平分∠DAB ,∴∠DAC =∠CAB . ∴∠ADC =∠ACB . ……………………………………3分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ∴∠ADC =90°,即AD⊥CD ; ……………………………5分(2)解:∵∠DCA =∠B ,∠DAC =∠CAB ,∴△ADC ∽△ACB . ……………………………6分∴AD ACAC AB,∴AC 2=AD ·AB . ……………………7分·O AB CDE(第24题)∵AD =2,AC =5,∴AB = 52. (8)分25.解:(1)由图象,可知A (0,2),B (4,0),C (5,-3),得方程组2,0164,3255.c a b c a b c =⎧⎪=++⎨⎪-=++⎩ …………2分 解得 a=-12,b=32,c=2.∴抛物线的解析式为 213222y x x =-++. ………………4分顶点坐标为(32,258). (5)分(2)所画图如图. …………………………………………………………………6分 (3)由图象可知,当-1<x <4时,y >0. …………………………………………………8分26.(1)证明: B -A =2a 2+a -10. ……………………………………………………………1分∵a >2,∴2a 2>8,∴2a 2+a >10. ∴2a 2+a -10>0,即B -A >0. ……………………………………………3分由此可得B >A . ……………………………………………………………4分 (2)解:B -C =a 2-3a +11=(a -32)2+354. 无论a 为何值,(a -32)2≥0,(a -32)2+354>0,所以B 比C 大. (7)分2 4 2 -3 -2 -1-1 -2 -3 (第25题)1 3 5 1O x yB A C· · ·C -A = a 2+4a -21=(a +7)(a -3). ………………………………………………8分∵a >2,∴a +7>0.当2<a <3时,a -3<0,即(a +7)(a -3)<0,所以A 比C 大; 当a =3时,a -3=0,即(a +7)(a -3)=0,所以A 与C 一样大; 当a >3时,a -3>0,即(a +7)(a -3)>0,所以C 比A 大. ……………………10分27.(1)证明:在正方形ABCD 中,BC =CD ,∠BCD =90°.∵∠DCF =∠BCD =90°,CF=CE , ∴△BCE ≌△DCF . …………………………………………………………3分 (2)解:OG =12BF .……………………………………………………………………………4分事实上:由△BCE ≌△DCF ,得到∠EBC =∠FDC .∵∠BEC =∠DEG ,∴∠DGE =∠BCE =90°,即BG ⊥DF . ∵BE 平分∠DBC ,BG =BG ,∴△BGF ≌△BGD . ∴BD=BF ,G 为DF 的中点.∵O 为正方形ABCD 的中心,∴O 为BD 的中点. ∴OG =12BF . …………………………………………………………………7分 (3)解:设BC =x ,则DC =x ,BD =2x .由(2),得BF = BD =2x .∴CF =BF -BC =(2-1)x .在Rt △DCF 中,DF 2=DC 2+CF 2= x 2+(2-1)2x 2. ……………① ∵∠GDE =∠GBC =∠GBD ,∠DGE =∠BGD =90°,∴△DGE ∽△BGD . ∴DG GEGB DG,即DG 2=GE ·GB =4-22. ∵DF =2DG ,∴DF 2=4DG 2=4(4-22).……②由①,②两式,得 x 2+(2-1)2x 2=4(4-22). 解得 x 2=4.∴正方形ABCD 的面积为4个平方单位. ……………………………………………10分(第27题)A B CDO E F GyO xB C D(第(2)小题)M 231 y OxB C D (第(1)小题)A· (第(3)小题图②)OxBCDME F·C 1D 1 28.解:(1)过点C 作CA ⊥OB ,垂足为A .在Rt △ABC 中,∠CAB =90°,∠CBO =60°,OD =BC =2,∴CA =BC ·sin ∠CBO =3.BA =BC ·cos ∠CBO =1.∴点C 的坐标为(4,3). ………………2分设直线CB 的解析式为y kx b =+,由B (5,0),C (4,3),得05,34.k b k b =+⎧⎪⎨=+⎪⎩ 解得3,5 3.k b ⎧=-⎪⎨=⎪⎩ ∴直线CB的解析式为353y x =-+.………………………………………………4分 (2)∵∠CBM +∠2+∠3=180°, ∠DMC +∠1+∠2=180°, ∠CBM =∠DMC =∠DOB =60°, ∴∠2+∠3=∠1+∠2.∴∠1=∠3. ∴△ODM ∽△BMC . ……………………6分∴OD OM DMBM BC MC==, ∴OD BC BM OM ⋅=⋅.∵B 点为(5,0),∴OB =5. 设OM =x ,则BM =5-x .∵OD =BC =2,∴2×2=x (5-x ). 解得x 1=1,x 2=4.∴M 点坐标为(1,0)或(4,0).……8分 (3)(Ⅰ)当M 点坐标为(1,0)时, 如图 ①,OM =1,BM =4. ∵DC ∥OB ,∴∠MDE =∠DMO . 又∵∠DMO =∠MCB .∴∠MDE =∠MCB .∵∠DME =∠CMF =α,∴△DME ∽△CMF ,∴2142DE DM OD CF CM BM ====,∴CF =2DE .∵CF =2+n ,DE =m , ∴2+n =2m,即y yO x B C D (第(3)小题图①)M E FD 1C 1 · ·124)2nm n =+<<(.10分(Ⅱ)当M 点坐标为(4,0)时,如图②.OM =4,BM =1.同理可得△DME ∽△CMF , ∴221DE DM OD CF CM BM ====,∴DE =2CF .∵CF =2-n ,DE =m ,∴m =2(2-n ),即42(34)m n n =-<<. …………………12分。
2012江苏省南通市中考数学模拟试卷及详解一、选择题(本大题共10小题,每小题3分,满分30分)1.(2011•南通)如果60m表示“向北走60m”,那么“向南走40m”可以表示为()A.﹣20m B.﹣40m C.20m D.40m2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2011•南通)计算的结果是()A.±3B.3C.±3D.34.(2011•南通)下列长度的三条线段,不能组成三角形的是()A.3,8,4B.4,9,6C.15,20,8D.9,15,85.(2011•南通)如图,AB∥CD,∠DCE=80°,则∠BEF=()A.120°B.110°C.100°D.80°6.(2011•南通)下列水平放置的几何体中,俯视图是矩形的为()A.圆柱B.长方体C.三棱柱D.圆锥7.(2011•南通)若3是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣2B.2C.﹣5D.58.(2011•南通)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.59.(2011•南通)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/h C.乙比甲晚出发1h D.甲比乙晚到B地3h10.(2011•南通)设m>n>0,m2+n2=4mn,则=()A.2B.C.D.3二、填空题(本大题共8小题,每小题3分,满分24分)11.(2011•南通)已知∠α=20°,则∠α的余角等于_________.12.(2011•南通)计算:﹣=_________.13.(2005•河南)函数y=中,自变量x的取值范围是_________.14.(2011•南通)七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体重的中位数为_________kg.15.(2011•南通)如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B 恰好与AC上的点B1重合,则AC=_________cm.16.(2011•南通)分解因式:3m(2x﹣y)2﹣3mn2=_________.17.(2011•南通)如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为_________m(结果保留根号).18.(2011•南通)如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=_________.三、解答题(本大题共10小题,满分96分)19.(2011•南通)(1)计算:22+(﹣1)4+(﹣2)0﹣|﹣3|;(2)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.20.(2011•南通)求不等式组的解集,并写出它的整数解.21.(2011•南通)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有_________人,在扇形图中,表示“其他球类”的扇形的圆心角为_________度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有_________人.22.(2011•南通)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.求∠B的度数.23.(2011•南通)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?24.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①_________;②_________.不同点:①_________;②_________.25.(2011•南通)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.26.(2011•南通)如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.27.(2011•南通)已知A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2)五个点,抛物线y=a(x﹣1)2+k(a>0)经过其中的三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)点A在抛物线y=a(x﹣1)2+k(a>0)上吗?为什么?(3)求a和k的值.28.(2011•南通)如图,已知直线l经过点A(1,0),与双曲线y=(x>0)交于点B(2,1).过点P(p,p﹣1)(p>1)作x轴的平行线分别交双曲线y=(x>0)和y=﹣(x<0)于点M、N.(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN =4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.2011年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)1.(2011•南通)如果60m表示“向北走60m”,那么“向南走40m”可以表示为()A.﹣20m B.﹣40m C.20m D.40m考点:正数和负数。
2001-2012年江苏南通中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)一、选择题1. (江苏省南通市2002年3分)用换元法解方程2220x 3x 8x 3x=+-+,若设x 2+3x=y ,则原方程可化为【 】A .20y 2+8y -1=0 B .8y 2-20y +1=0 C .y 2+8y -20=0 D .y 2-8y -20=0 【答案】D 。
【考点】换元法解分式方程。
【分析】根据原方程的特点,把x 2+3x 看作整体,用y 代替,转化为关于y 的分式方程20y 8y=-,去分母并整理得一元二次方程y 2-8y -20=0。
故选D 。
2. (江苏省南通市2002年3分)某厂今年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月上升的百分率是多少?若设4、5月份平均每月上升的百分率为x ,则列出的方程是【 】A .50(1+x )=72B .50(1+x )+50(1+x )2 = 72C .50(1+x )×2=72 D.50(1+x )2 = 72【答案】D 。
【考点】由实际问题抽象出一元二次方程(增长率问题)【分析】设4、5月份平均每月上升的百分率为x ,4月份的产值为50(1+x),则5月份的产值为50(1+x) (1+x) =50(1+x)2。
据此列出方程50(1+x)2=72。
故选D 。
3. (江苏省南通市2004年3分)一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时, 现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是【 】A 、126312312=--x x B 、131226312=-+x xC 、126312312=+-x xD 、131226312=--xx【答案】C 。
【考点】由实际问题抽象出分式方程【分析】关键描述语为:“现在该列车从甲站到乙站用的时间比原来减少了1h .”;等量关系为:提速前所用的时间-提速后用的时间=1。
江苏省南通市2012年中考数学模拟试卷(一)2.计算 (m 3)2的正确结果为( )A .5mB .9mC .6mD .9m 3.如图所示,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ) A .021>-a b B .0>-b a C .02>+b a D .0>+b a4.如图,线段AC 与BD 相交于点O ,且OA =OC ,请添加一个条件,使△OAB ≌△OCD ,这个条件可以是( ) A .∠A =∠D B .OB =OD C .∠B =∠C D .AB =DC 5.下列事件中,是确定事件的有( )①打开电视,正在播放广告;②三角形三个内角的和是180°;③两个负数的和是正数④某名牌产品一定是合格产品A .①②③④B .②③C .②④D .②6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d > 7.如右图,△ABC 中,∠ABC =90°,AB =BC ,三角形的 顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间 的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是()A .172B .52C .24D .73 8.如图,在同一直角坐标系中,一次函数y =ax +c 和二次函数 y =ax 2+bx +c 的图象大致为( )A BC D二、填空题:(本题有10小题,每小题3分,共30分)9.截止目前,某市总人口数约373万,此人口数用科学记数法可表示为 . 10.在实数范围内分解因式9y 4-4= . 11.如果1-x x有意义,那么x 的取值范围是 . 12.已知数据:2,1-,3,5,6,5,则这组数据的众数与极差的和是 . 13.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 .ll 2 l 3ACBAB14.据《新华日报》2009年11月22日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11,按此方式,将二进制数11010换算成十进制数为 .16.已知点A 是反比例函数3y x=-图象上的一点.若AB 垂直于y 轴,垂足为B ,则AOB △的面积= .17.在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画AEC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 .18.如右图,在△ABC 中,∠ACB =90︒,AC =2,BC =1,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴运动时,点C 随之在y 轴上运动, 在运动过程中,点B 到原点O 的最大距离为 .三、解答题:(本大题共有10小题,共96分)19.(本题满分8分)(1)计算:12011|2|5(2009π)2-⎛⎫-++-⨯- ⎪⎝⎭.(2) 解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,20.(本题满分8分)先化简,再求值)252(4239--+÷--a a a a , 其中a 满足062=--a a .21.(本题满分10分)如图,线段AB 的端点在边长为1的小正方形网格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC .⑴请你在所给的网格中画出线段AC 及点B 经过的路径;⑵若将此网格放在一平面直角坐标系中,已知点A 的坐标为309(1)班76543309(1)班 (1,3),点B 的坐标为(-2, -1),则点C 的坐标为 ; ⑶线段AB 在旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ;⑷若有一张与⑶中所说的区域形状相同的纸片, 将它围成一个几何体的侧面,则该几何体底面圆 的半径长为 .22. (本题满分10分) 王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (1)利用图中提供的信息,补全下表:(2)若把24分以上(含24分)记为”优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中数据分布情况,你认为哪个班的学生纠错的得分情况比较整齐一些,并 说明原因.23. ((4,0),顶点G 的坐标为(0,2),将矩形OEFG 绕点O N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求图象经过点A 的反比例函数的解析式; (3)设(2)中的反比例函数图象交EF 于点B , 求直线AB 的解析式.24.(本题满分10分)甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时摸出彩球的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.25.(本题满分10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度12i :且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)图②26.(本题满分10分) (1)如图1,OA 、OB 是⊙O 的半径,且OA ⊥OB ,点C 是OB 延长线上任意一点,过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .则CD =CE 吗?如成立,试说明理由。
(2)若将图中的半径OB 所在直线向上平行移动交OA 于F ,交⊙O 于B ’,其他条件不变,如图2,那么上述结论CD =CE 还成立吗?为什么?(3)若将图中的半径OB 所在直线向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,如图3,那么上述结论CD =CE 还成立吗?为什么图 1 图 2 图 327.(本题满分10分)如图①所示,在直角梯形ABCD 中,∠BAD =90°,E 是直线AB 上一点,过E 作直线//BC ,交直线CD 于点F .将直线向右平移,设平移距离BE 为 (t 0),直角梯形ABCD 被直线扫过的面积(图中阴影部份)为S ,S 关于的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.(1)梯形上底的长AB = ;(2) 直角梯形ABCD 的面积= ;图象理解(3)写出图②中射线NQ 表示的实际意义; (4) 当42<<t 时,求S 关于的函数关系式; 问题解决(5)当t 为何值时,直线l 将直角梯形ABCD 分成的两部分面积之比为1: 3.28.(本题满分10分)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 点D 的坐标为(-2,0).问:直线AC 上是否存在点F ,使得△ODF 是等腰三角形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求△BCE面积的最大值,并求此时E点的坐标.参考答案一、选择题:(每题3二、填空题:(每题3分,共计30分)9、3.73×106; 10、(3y 2+2)(3y +2)(3y -2); 11、x >0且x ≠1;12、17; 13、k >-41且k ≠0; 14、372.87; 15、26; 16、23; 17、(46),或(46)--,; 18、1+ 2;19、(1) -3-2;……(4分)(2)12x -<≤ ……(4分) 20、)252(4239--+÷--a a a a =)3(23+-a ……(4分) 将a =-2代入得原式=-23……(4分) 21、⑴略;……(4分)⑵(5,0);……(2分)⑶π425;……(2分) ⑷45;……(2分) 22、……(3分)(2) 三(1)班成绩优秀的学生有28名;三(2)班成绩优秀的学生有24名;……(4分) (3)S 12<S 22, 三(1)班成绩比较整齐;……(3分) 23、解:(1)△OGA ∽△OMN ……(1分) 理由……(3分) (2)由(1)得AG OGNM OM=, ∴224AG =,解得AG =1。
设反比例函数为ky x=,把A (1,2)代入,得2k =, ∴过点A 的反比例函数的解析式为2y x=。
……(3分)(3)∵点B 的横坐标为4,把4x =代入2y x =中得12y =,故B 1(4)2,设直线AB 的解析式为y mx n =+,把A (1,2)、B 1(4)2,代入,得2142m n m n +=⎧⎪⎨+=⎪⎩,解得1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线AB 的解析式为1522y x =-+。
……(3分) 24. 解:树状图为: ……4分(2)∵ 两红概率P =61,两白概率P =61,一红一白的概率P =46=32, ……2分 ∴ 在甲商场获礼金券的平均收益是:61×5+32×10+61×5=325;在乙商场获礼金券的平均收益是:61×10+32×5+61×10=320.……3分∴ 我选择到甲商场购物. ……1分 25. 过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA tan ∠OAC =100 3 米. 过点P 作PE ⊥AB ,垂足为E .由i =1:2,设PE=x ,则AE =2x . ∴PF =OE =100+2x ,CF =100 3 –x .在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x =100 3 –x , ∴x =100 3- 1003,即PE =100 3- 1003 ……10分26. 解答:(1)证明略:……3分(2)CE =CD 仍然成立,证明略:……3分(3)CE =CD 仍然成立.∵原来的半径OB 所在直线向上平行移动.AO ⊥CF 延长OA 交CF 于G ,在Rt △AEG 中,∠AEG +∠GAE =90°连结OD ,有∠CDA +∠ODA =90°,且OA =OD ∴∠ADO =∠OAD =∠GAE ∴∠CDE =∠CED ∴CD =CE ……3分27.(1)2AB = .……1分 (2)S 梯形ABCD =12 .……1分(3)射线NQ 表示的实际意义:当平移距离BE 大于等于4时,直角梯形ABCD 被直线扫过的面积恒为12.……2分 (4)当42<<t 时,如下图所示,直角梯形ABCD 被直线扫过的面积S =S 直角梯形ABCD -S Rt △DOF 2112(4)2(4)842t t t t =--⨯-=-+-.……2分 (5)①当20<<t 时,有4:(124)1:3t t -=,解得34t =.……2分②当42<<t 时,有1:3)]48(12[:)48(22=-+---+-t t t t ,即28130t t -+=,解得341-=t ,342-=t (舍去).……2分答:当23=t 或34-=t 时,直线l 将直角梯形ABCD 分成的两部分面积之比为1: 3. 28.解: (1)由题知: ⎩⎨⎧=+-=++033903b a b a 解得:⎩⎨⎧-=-=21b a ∴ 所求抛物线解析式为: 322+=x --x y ……3分(2) 存在符合条件的点P , 其坐标为P (-1, 2 )或P (-2725-,2722-) 或P (-2725+,2722+)……3分 (3)过点E 作EF ⊥x 轴于点F , 设E ( a ,-2a -2a +3 )( -3< a < 0 ) ∴EF =-2a -2a +3,BF =a +3,OF =-a∴S 四边形BOCE =21BF ·EF + 21(OC +EF )·OF =21( a +3 )·(-2a -2a +3) + 21(-2a -2a +6)·(-a ) =2929232+--a a =-232)23(+a +863 ∴ 当a =-23时,S 四边形BOCE 最大, 且最大值为 863.……3分 ∴S 四边形BOCE -S △ABC =863-6=815 ∴点E 坐标为 (-23,415)……1分。