2012学案与评测理数苏教版:第1单元 第二节命题及其关系、充分条件与必要条件)
- 格式:doc
- 大小:89.50 KB
- 文档页数:3
教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。
2. 学会判断充分条件和必要条件。
3. 掌握充分条件和必要条件与命题真假之间的关系。
4. 能够运用充分条件和必要条件解决实际问题。
二、教学重点与难点重点:充分条件和必要条件的概念及判断。
难点:充分条件和必要条件与命题真假之间的关系。
三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。
2. 准备一些练习题,用于巩固所学知识。
四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。
”让学生思考这个实例中的条件和结论之间的关系。
2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。
定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。
教师讲解如何判断充分条件和必要条件,并举例说明。
3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。
五、课后作业1. 完成练习册的相关题目。
2. 举出生活中的实例,运用充分条件和必要条件进行分析。
教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
如有需要,可在下一节课进行针对性讲解。
六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。
2. 教师举例解释这些概念,并让学生进行判断。
七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。
2. 学生分享自己在课堂练习中的收获和感悟。
八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。
2. 学会判断充分条件和必要条件。
3. 掌握充分条件和必要条件与命题之间的关系。
4. 能够运用充分条件和必要条件解决实际问题。
二、教学内容1. 充分条件和必要条件的定义。
2. 充分条件和必要条件的判断方法。
3. 充分条件和必要条件与命题的关系。
4. 运用充分条件和必要条件解决实际问题。
三、教学重点与难点1. 教学重点:充分条件和必要条件的概念及判断方法。
2. 教学难点:充分条件和必要条件与命题的关系,以及运用充分条件和必要条件解决实际问题。
四、教学方法1. 采用自主学习、合作探究的教学方法,引导学生积极参与课堂讨论。
2. 通过实例分析,让学生直观地理解充分条件和必要条件的概念。
3. 利用多媒体课件,生动展示充分条件和必要条件的判断过程。
4. 开展课堂练习,及时反馈学生学习情况。
五、教学过程1. 导入新课:引导学生回顾命题的基本概念,引入充分条件和必要条件。
2. 自主学习:让学生自主探究充分条件和必要条件的定义及判断方法。
3. 课堂讲解:讲解充分条件和必要条件的判断方法,并通过实例进行分析。
4. 互动环节:组织学生进行小组讨论,交流充分条件和必要条件的应用心得。
5. 课堂练习:布置练习题,让学生巩固所学内容。
6. 总结归纳:对本节课的内容进行总结,强调充分条件和必要条件的重要性。
7. 布置作业:布置课后作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对充分条件和必要条件的理解和掌握程度。
2. 练习题解答:检查学生是否能正确判断充分条件和必要条件,并运用到实际问题中。
3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力。
七、教学策略的调整1. 根据学生的学习情况,适时调整教学进度和难度。
2. 对于学习困难的学生,提供个别辅导和帮助。
3. 鼓励学生积极参与课堂讨论,提高课堂氛围。
§1.2命题及其关系、充分条件与必要条件考试要求 1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p微思考1.否命题与命题的否定有什么区别?提示否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},当p是q的充分条件时,集合A与B之间有什么样的关系?若p是q的必要不充分条件,集合A与B之间有什么样的关系?提示当p是q的充分条件时,A⊆B;当p是q的必要不充分条件时,B A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)当p是q的充分条件时,q是p的必要条件.(√)(3)“x>1”是“x>0”的充分不必要条件.(√)(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√) 题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案 A3.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 C解析由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要不充分条件.4.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等题组三易错自纠5.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.6.若“x2-x-6>0”是“x>a”的必要不充分条件,则a的最小值为________.答案 3解析由x2-x-6>0,解得x<-2或x>3.因为“x2-x-6>0”是“x>a”的必要不充分条件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故a的最小值为3.题型一命题及其关系1.命题“若xy=0,则x=0”的逆否命题是()A.若xy=0,则x≠0 B.若xy≠0,则x≠0C.若xy≠0,则y≠0 D.若x≠0,则xy≠0答案 D解析“若xy=0,则x=0”的逆否命题为“若x≠0,则xy≠0”.2.给出以下命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③若ab是正整数,则a,b都是正整数;④若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是________.(写出所有真命题的序号)答案①解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②的否命题为“不全等三角形的面积不相等”,但不全等的三角形的面积也可能相等,故②为假命题;③若ab是正整数,则a,b不一定都是正整数,例如a =-1,b =-3,故③为假命题;④构造函数f (x )=x ,g (x )=-x ,则f (x )-g (x )=2x ,显然f (x )-g (x )单调递增,故④为假命题.综上①为真命题.3.命题“若a <0,则一元二次方程x 2+x +a =0有实根”与其逆命题、否命题、逆否命题中真命题的个数是________. 答案 2解析 当a <0时,Δ=1-4a >0,所以方程x 2+x +a =0有实数根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x 2+x +a =0有实根,则a <0”,因为方程有实根,所以判别式Δ=1-4a ≥0,所以a ≤14,显然a <0不一定成立,故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故真命题的个数为2. 4.命题p :若x >0,则x >a ;命题q :若m ≤a -2,则m <-1.若p 的逆命题,q 的逆否命题都是真命题,则实数a 的取值范围是________. 答案 [0,1)解析 命题p 的逆命题是:若x >a ,则x >0,当它是真命题时,a ≥0.又q 的逆否命题为真命题,则命题q 为真命题,即若m ≤a -2,则m <-1,∴a -2<-1,即a <1,综上有0≤a <1. 思维升华 (1)写一个命题的其他三种命题时,需注意 ①对于不是“若p ,则q ”形式的命题,需先改写. ②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分、必要条件的判定例1 (1)已知p :⎝⎛⎭⎫12x<1,q :log 2x <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由⎝⎛⎭⎫12x<1知x >0,所以p 对应的x 的范围为(0,+∞),由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件. (2)“a >2,b >2”是“a +b >4,ab >4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a >2,b >2,则a +b >4,ab >4.当a =1,b =5时,满足a +b >4,ab >4,但不满足a >2,b >2,所以a +b >4,ab >4⇏a >2,b >2, 故“a >2,b >2”是“a +b >4,ab >4”的充分不必要条件. 思维升华 充分条件、必要条件的两种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练1 (1)已知a ,b ,c ,d 是实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 当a =b =c =d =0时,ad =bc ,但a ,b ,c ,d 不成等比数列,当a ,b ,c ,d 成等比数列时,ad =bc ,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件.(2)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行,则2λ(1-λ)-6(λ-1)=0, 解得λ=1或λ=-3,经检验λ=1或λ=-3时两直线平行,故选A.题型三 充分、必要条件的应用例2 已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件, 即所求m 的取值范围是[0,3].若将本例中条件改为“若x ∈A 是x ∈B 的必要不充分条件”,求m 的取值范围.解 由x ∈A 是x ∈B 的必要不充分条件,知B A , ∴⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m ≤1+m ,1-m >-2,1+m ≤10,解得0≤m ≤3或0≤m <3,∴0≤m ≤3, 故m 的取值范围是[0,3].思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)使2x ≥1成立的一个充分不必要条件是( )A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案 B解析 由2x≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若关于x 的不等式|x -1|<a 成立的充分不必要条件是0<x <4,则实数a 的取值范围是________. 答案 [3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分不必要条件是0<x <4,所以(0,4)(1-a ,1+a ),所以⎩⎪⎨⎪⎧ 1-a ≤0,1+a >4或⎩⎪⎨⎪⎧1-a <0,1+a ≥4,解得a ≥3.课时精练1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( ) A .逆命题 B .否命题 C .逆否命题 D .否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1 答案 D解析 原命题的逆否命题是把条件和结论都否定后,再交换条件和结论,注意“-1<x <1”的否定是“x≥1或x≤-1”.3.命题“若x2+y2=0,则x=y=0”的否命题是()A.若x2+y2=0,则x,y中至少有一个不为0B.若x2+y2≠0,则x,y中至少有一个不为0C.若x2+y2≠0,则x,y都不为0D.若x2+y2=0,则x,y都不为0答案 B解析否命题既否定条件又否定结论.4.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由ln(x+1)<0⇒0<x+1<1,即-1<x<0,故“x<0”是“ln(x+1)<0”的必要不充分条件,故选B.5.命题“若m>-1,则m>-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为() A.1 B.2 C.3 D.4答案 B解析原命题为真命题,从而其逆否命题也为真命题;逆命题“若m>-4,则m>-1”为假命题,故否命题也为假命题,故选B.6.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a+7是无理数,则a是无理数”的逆否命题.其中为真命题的是()A.①②③B.②③④C.①③④D.①④答案 C解析①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;②的否命题为“不是矩形的图形的对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”,因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1,所以③是真命题;④原命题为真,逆否命题也为真.7.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 设f (x )=x +ln x ,显然f (x )在(0,+∞)上单调递增, ∵a >b ,∴f (a )>f (b ),∴a +ln a >b +ln b ,充分性成立; ∵a +ln a >b +ln b ,∴f (a )>f (b ),∴a >b ,必要性成立,故“a >b ”是“a +ln a >b +ln b ”成立的充要条件,故选C.8.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是( ) A .a >3 B .a <3 C .a >4 D .a <4 答案 A解析 若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.因为当x >1时,f (x )>3,∴a >3. 9.设a ,b 是两个平面向量,则“a =b ”是“|a |=|b |”的________条件. 答案 充分不必要解析 由向量的相关定义知a =b ⇒|a |=|b |,|a |=|b |⇏a =b , 故“a =b ”是“|a |=|b |”的充分不必要条件. 10.下列命题中为真命题的是________.(填序号) ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若a >b ,则ac >bc ”的逆否命题. 答案 ②解析 对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若a >b ,则ac >bc ”为假命题,所以它的逆否命题为假命题.11.(2020·青岛二中检测)直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点的充要条件是________. 答案 -1<k <3解析 直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2,解得-1<k <3.12.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43.13.(2020·深圳模拟)对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令x =1.8,y =0.9,满足|x -y |<1,但〈1.8〉=2,〈0.9〉=1,〈x 〉≠〈y 〉,可知充分性不成立.当〈x 〉=〈y 〉时,设〈x 〉=x +m ,〈y 〉=y +n ,m ,n ∈[0,1),则|x -y |=|n -m | <1,可知必要性成立.所以“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.故选B.14.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.15.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,0≤x ≤2,B ={x |x +m 2≥2},p :x ∈A ,q :x ∈B ,p 是q 的充分条件,则实数m 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,-54∪⎣⎡⎭⎫54,+∞ 解析 由y =x 2-32x +1=⎝⎛⎭⎫x -342+716,0≤x ≤2, 得716≤y ≤2,∴A =⎣⎡⎦⎤716,2. 又由题意知A ⊆B ,∴2-m 2≤716,∴m 2≥2516. ∴m ≥54或m ≤-54. 16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案 ⎝⎛⎦⎤0,255 解析 画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝⎛⎦⎤0,255.。
第1章常用逻辑用语1.1 命题及其关系一、学习内容、要求及建议二、预习指导1.预习目标(1)了解命题的逆命题、否命题与逆否命题的意义;会分析四种命题的相互关系.(2)感悟四种命题真假性的判断方法:直接判断、利用等价性判断.(3)理解充分条件、必要条件与充要条件的意义;会判断充分条件、必要条件与充要条件.(4)感悟和体会判断充分条件、必要条件与充要条件的方法:直接利用定义、利用命题的真假性、利用关系结构图、利用集合知识.2.预习提纲(1)什么叫命题?两个命题怎样才能成为互逆命题?(2)四种命题之间的相互关系你会用图来表示吗?(3)充分条件、必要条件与充要条件的意义:如果p ⇒ q,那么p是q的_________,q是p的___________;如果p ⇔q,那么p是q的__________.(4)阅读课本第5页至第9页内容,并完成课后练习.(5)结合课本第6页的例1,学会写出命题的逆命题、否命题与逆否命题;结合课本第6页的例2,体会判断命题、逆命题、否命题与逆否命题真假的方法;结合课本第7页的例1,感悟和体会判断充分条件、必要条件与充要条件的方法.(6)请小结四种命题真假性的判断方法以及充分条件、必要条件与充要条件的判断方法,并与同学交流.3.典型例题(1)如何判断一个命题的真假?例1 判断下列语句是不是命题?若是,判断其真假,若不是,请说明理由.①x2-5x+6=0;②当x=4时,2x<0;③垂直于同一条直线的两条直线必平行吗?④一个数不是合数就是质数;⑤求证:若x∈R,方程x2+x+1=0无实根.分析:可以判断真假的语句叫做命题,命题非真即假,二者必居其一.对于不含逻辑联结词的简单命题,可直接判断其真假.解:①不是命题,因为语句中含有变量x,在不给定变量的值之前,我们无法确定该语句的真假(这种含有变量的语句叫“开语句”);②是命题,它是能作出真假判断的语句,它是一个假命题;③不是命题,因为没有对垂直于同一条直线的两条直线是否平行作出判断,疑问句不是命题;④是命题,假命题,因为数1既不是质数也不是合数;⑤不是命题,它是祈使句,没有作出判断.点评:开语句、疑问句、祈使句、感叹句都不是命题.(2)如何写出四种命题,它们的真假关系如何?例2 已知命题:有一组对边平行,而另一组对边相等的四边形是平行四边形.请判断这个命题和它的否命题的真假.分析:我们先要把命题写成为“若p则q”的形式,然后写出命题的逆命题、否命题与逆否命题.解:等腰梯形的一组对边平行,另一组对边相等,但等腰梯形不是平行四边形,故原命题是假命题.又平行四边形的一组对边平行,另一组对边相等,即逆命题是真命题,据逆命题和否命题的等价性知,否命题是真命题.点评:直接举反例可知原命题为假命题.而否命题的真假难判定,则通过判定其等价命题--逆命题的真假来推得结论.原命题与逆否命题、逆命题与否命题是等价命题,它们同真或同假.例3 原命题“若xy=1,则x,y互为倒数”,请写出它的逆命题、否命题和逆否命题,并判断真假.分析:因为互为逆否命题的两个命题同真或同假,所以要判断四种命题的真假,只需判断其中两个的真假,然后利用等价性得到另两个命题的真假.解:原命题“若xy=1,则x,y互为倒数”是真命题,逆否命题:“若x,y不互为倒数,则xy≠1”,因为原命题与逆否命题是等价命题,它们同真或同假,所以逆否命题是真命题;逆命题:“若x,y互为倒数,则xy=1”,是真命题,否命题:“若xy≠1,则x,y不互为倒数”,因为逆命题与否命题是等价命题,它们同真或同假,所以否命题是真命题.因此原命题、逆命题、否命题、逆否命题都是真命题.点评:本题是利用四种命题的关系判断四种命题的真假.例4 已知p:x+y≠3,q:x≠1 或y≠2,则p是q的________ 条件(填:充要、充分而不必要、必要而不充分、既不充分又不必要).解:∵ p:x+y ≠3,q:x≠1 或y≠2∴ 非p:x+y =3,非q:x =1 且y =2当非q成立时,x =1 且y =2,则x+y =3,即非p成立,∴非q⇒非p;但当非p成立时,非q不一定成立,如x=y=1.5时,x+y =3,非p成立,非q不成立,故:非p⇒非q.∴ p ⇒ q 且q ⇒p ,p 是q 的充分而不必要条件.点评: p 、q 都是否定性说法,考察命题“若p 则q ”、“若q 则p ”的真假性较难,故先判断其逆否命题“若非q 则非p ”、 “若非p 则非q ” 的真假,再利用等价性判断命题“若p 则q ”、“若q 则p ”的真假,从而判断条件的充要性.例5 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么,(1) s 是q 的什么条件;(2) r 是q 的什么条件;(3) p 是q 的什么条件.解:据题意(1)s 是q 的充要条件;(2)r 是q 的充要条件;(3)p 是q 的必要条件.点评:这是多条件的充分条件、必要条件、充要条件的关系判定,应根据定义,考察p 、q 、r 、s 的互推关系,画出它们的关系结构图,再予以判定.例6 已知p :1123x --≤,q ::x 2-2x + 1-m 2≤0(m > 0),若非p 是非q 的充分而不必要条件,求实数m 的取值范围. 解:由x 2-2x +1-m 2≤0,(m >0)得1-m ≤x ≤1+m ,故非q :A ={x |x > 1+m 或x < 1-m ,m > 0}, 由2311≤--x ,得 -2≤x ≤10, 故非p : B ={ x | x >10或x <-2},∵ 非p 是非q 的充分而不必要条件,∴ B ≠⊂A . ∴ ⎩⎨⎧≤+-≥-10121m m 且等号不能同时取, 解得:m ≤3,又m >0,∴ 0 < m ≤3.∴ 实数m 的取值范围是(]3,0. 点评:本例由“非p 是非q 的充分而不必要条件”得“非p ⇒非q 但非q \⇒非p ”,然后借助集合间关系求得m 的取值范围.本题也可用四种命题的关系,将已知条件等价转化为“q ⇒p 且p \⇒q ”,然后求解.请再用等价转化的思想解答本例.(3)相关的证明问题的处理:①要证明p 是q 的充分不必要条件,只要证明“若p 则q ”为真,而“若q 则p ”为假; ②要证明p 是q 的必要不充分条件,只要证明“若q 则p ”为真,而“若p 则q ”为假; ③要证明p 是q 的充要条件,只要证明“若p 则q ”与 “若q 则p ”都为真,即:对于充要条件的证明,一般分充分性和必要性两种情况分别加以证明,缺一不可;④要证明p 是q 的既不充分又不必要条件,只要说明“若p 则q ”与“若q 则p ”都为假.例7 方程ax 2+2x +1=0(a ≠0)至少有一负实根的充要条件是_____.分析:由a ≠0知方程是一元二次方程,方程至少有一负根包括两种情形:有一非负根和一负根、有两个负根,应分类讨论.解:将x =0代入原方程,得1=0,不合题意,因此方程无零根.(1)方程有一正根和一负根001<⇔<⇔a a; (2)方程有两个负根100102044≤<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=∆⇔a aaa . 综合(1)、(2),方程ax 2+2x +1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤1. 点评:本题运用一元二次方程的根与系数的关系(韦达定理),结合分类讨论思想求解. 例8 求证:关于x 的方程ax 2+bx +c =0有一实根x =1的充要条件是a +b +c =0.证明:必要性:若方程ax 2+bx +c =0有一根x =1,则由根的定义得:0112=+⨯+⨯c b a ,即a+b+c =0;充分性:若a+b+c =0,则由ax 2+bx +c=0,得ax 2+bx -(a+b )=0,∴0)1()1(2=-+-x b x a ,∴0])1()[1(=++-b x a x ,所以方程有一根x =1.综上所述,方程ax 2+bx +c=0有一根x =1的充要条件是a+b+c =0.点评:对于充要条件的证明,一般都分“充分性”和“必要性”两种情况分别加以证明,缺一不可. 证明时不要颠倒充分性和必要性.4.自我检测(1)判断下列语句是不是命题?若是,判断其真假,若不是,请说明理由.① 3是12的约数;② 大角所对的边大于小角所对的边;③ π是无理数吗?④ 一个数不是质数就是合数.(2)写出下列命题的逆命题,否命题,逆否命题.① 原命题:若a =0,则ab =0② 原命题:对角线相等的平行四边形是矩形.(3)填空:(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空) ① “AB +BC =AC ”是“A 、B 、C 三点共线”的___________条件;② “l ∥AB ”是“A、B 到l 等距离”的________条件.③ “ab =0”是“a 2+b 2=0”的________条件.④ 若a ≠0,则“x =1是方程ax 2+bx +c =0的一个根”是“a+b+c =0”的_______条件.(4) ① “(1-|x |)(1+x )>0”是“|x |<1”的__________条件;② “a ≠1”是“a 2≠1”的________条件;③ “A ⊇B ”是“(A∩C )⊇(B∩C )”的_________条件 .三、 课后巩固练习A 组1.若命题m 的逆命题是n ,命题m 的否命题是r ,则n 是r 的_______.(填逆命题、否命题、逆否命题)2.写出命题 “若x 2+y 2=0,则x ,y 全为零”的逆命题,否命题,逆否命题.3.以下四个命题的的真假是 _________ .(1)原命题:若一个自然数的末位数字为5,则这个自然数能被5整除;(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为5;(3)否命题:若一个自然数的末位数字不为5,则这个自然数不能被5整除;(4)逆否命题:若一个自然数不能被5整除,则这个自然数的末位数字不为5.4.判断命题“若a ,b 是偶数,则a+b 是偶数”的逆否命题的真假.5.判断命题“若m >0,则x 2+x -m =0有实根”的逆否命题的真假.6.写出命题“若x ≠y ,则x 2≠y 2”的逆命题,否命题,逆否命题,并判断真假.7. 指出下列命题中,p 是q 的什么条件,q 是p 的什么条件.(1)p :|x |≤1,q :|x |<2; (2)p :x >-1,q : |x |<1 .8. 若a 、b 、c 都是实数,试从(A )ab =0;(B )a+b =0;(C )a 2+b 2=0;(D )ab >0;(E )a+b >0;(F )a 2+b 2>0,分别选出适合下列条件者,用代号填空:(1)使a 、b 都为0的充分条件是________________;(2)使a 、b 都不为0的充分条件是______________;(3)使a 、b 中至少有一个为0的充要条件是____________;(4)使a 、b 中至少有一个不为0的充要条件是_______________.9.a 、b ∈R,条件⎩⎨⎧>>11b a 是条件⎩⎨⎧>>+12ab b a 的_________.10.已知A 和B 是两个命题,如果A 是B 的充分条件,那么非A 是非B 的什么条件? 11.⎩⎨⎧>>+44αββα是⎩⎨⎧>>22βα的______条件.12.设P :{x |0<x <5},Q :{x ||x -2|<5},则P 是Q 的________.(填充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件).13.“a ≠0”是“ab ≠0”的______条件.14.“a 2-b 2是偶数”成立的______条件是“a -b =0”.15.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分但不必要条件,那么丙是甲的___________条件.16.方程3x 2-10x +k =0有两个异号的实根的充要条件是_____.17.下列四组条件: ①甲:b a >; 乙:ba 11< ②甲:0<ab ; 乙:||||b a b a -<+ ③甲:b a =; 乙:ab b a 2=+④甲:⎩⎨⎧<<<<1010b a ; 乙:⎩⎨⎧<-<-<+<1120b a b a其中甲是乙的充分但不必要条件的是____________(请把正确命题的序号填上).B 组 18.如果否命题为“若x +y ≤0,则x ≤0”,写出相应的原命题,逆命题与逆否命题.19.原命题为“末位数是0的整数,可以被5整除”,写出逆命题,否命题,逆否命题.20.把命题“负数的平方是正数”改写成“若p 则q ”的形式,并写出它的逆命题,否命题,逆否命题.21.有下列命题:(1)“若x 2+y 2=0,则x ,y 全为0”的否命题;(2)“全等三角形是相似三角形”的否命题;(3)“若m >1,则关于x 的不等式mx 2-2(m +1)x -(m -3)>0的解集为R ”的逆命题;(4)“若a +5是无理数,则a 是无理数”的逆否命题.其中,是真命题的是___________ .22.命题“各位数字之和是3的倍数的正整数可以被9整除”,与它的逆命题,否命题及逆否命题中假命题有_____个,真命题有______个.23.写出命题“若A ⊆B ,则AB =A ”的逆命题,并判断真假. 24.设原命题是“当a >0时,若|x |<a ,则-a <x <a ”写出它的逆命题,否命题,逆否命题,并判断真假.25.下列四个命题:①若a 、b 是无理数,则a +b 是无理数;②若A ∩B =A ,则A =B ;③x ≠2且y ≠3是x+y ≠5的充分不必要条件; ④00≥⇔≥ab ba 其中,假命题是________________(请把序号填上)26.已知直角坐标平面上四点坐标分别为:A (1,1),B (-1,1),C (-1,-1),D (1,-1),P 是y 轴上任意一点,试判断:P 在y 轴上是∠APD=∠BPC 的什么条件?27.已知p 是r 的充分条件,r 是q 的必要条件,r 又是s 的充分条件,q 是s 的必要条件,那么(1)s 是p 的什么条件? (2)r 是q 的什么条件? (3)在p 、q 、s 、r 中,哪几对互为充要条件?28.设条件p :|43|1x -≤;条件q :0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .29.已知条件p :ax 2+2ax +1>0的解集为R ;条件q :0<a <1,则p 成立是q 成立的什么条件?30.设n N +∈,则一元二次方程240x x n -+=有整数根的充要条件是n = .31.求证:不等式mx 2+4mx +1>0的解集为(+∞∞-,)的充要条件是0≤m <14. C 组32.给定下列两个关于异面直线的命题:命题Ⅰ:若平面α内的直线a 与平面β内的直线b 为异面直线,直线c 是α与β的交线,那么,c 至多与a ,b 中的一条相交;命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线.那么,命题Ⅰ、命题Ⅱ是否正确?33.定义在R 上的函数y =f (x -1)是单调减函数,其图象如图所示,给出三个结论:(1)f (0) =1;(2)f (1)<1;(3)f (0)<0.5.其中正确的命题是 .34.给出以下命题:①若04log )4(log 2<≤+a a a a ,则a 的取值范围是(1,∞+); ②函数2log )(=x f )15(2+-x x 的单调递 减区间为)25,(-∞;③若数列{a n }前n 项之和为S n =3n -2,则数列{a n }的通项公式a n =2×3n -1;④若定义在R 上的函数f (x -1)的图象关于直线x =1对称,则f (x ) 为偶函数.则以上命题中正确命题的序号为 .35.判断命题“若ab =0,则a ≠0且b ≠0”的否命题的真假.36.判断命题“若ab ≤15,则a ≤5或b ≤3”的否命题的真假.知识点 题号 注意点四种命题 1~6,18~25,32~36 判断一个命题的真假时要注意原命题和逆否命题同真假,顾原命题难判断真假时可以判断其逆否命题充要条件 7~16,17,26~31, 要分清“ 的充要条件是 ”和“____________是 的充要条件”四、学习心得五、拓展视野我们规定真命题赋值为1,假命题赋值为0,“1”或“0”均称作命题的“真值”. 命题A :“在同一个直角坐标系中,曲线y = a x(a > 0)的图象与y = x 的图象至多有一个交点.”那么,命题A 的真值是_______.解:当a =1和0 < a < 1时,y = a x 与y = x 的图象有且仅有一个交点;而当a > 1时,若取a = 2 ,则x =1时,y = a x = 2>1,(1, 2)在直线y =x 的上方;当x =2时,y = a x =2,(2, 2)是两曲线的一个交点,当x = 3时,y = a x = 2 2 < 3,(3, 22)在直线y = x 的下方;当x = 4时,y = a x= 4,(4 , 4)是两曲线的另一个交点;当x > 4时,(2)x > x ,两曲线再无交点.所以,当a = 2时,y = a x 的图象与y =x 的图象有两个交点,故命题A 是假命题,其真值为0.点评:题中当0 < a ≤1时两曲线只有一个公共点,但当a > 1且a 比较接近1时,如解中的a =2,或a = 1.1等,两曲线有两个公共点.而当a 较大时,如a =2,a =3等时,两曲线无公共点.判断一个命题为假,只需找出一个反例.故A 是假命题.1.1 命题及其关系自我检测1.解:(1)是命题,它是能作出真假判断的语句,因为12=3×4,所以它是一个真命题;(2)是命题,它是能作出真假判断的语句,它是一个假命题,因为没有考虑“在同一个三角形中”这个条件;(3)不是命题,因为没有作出判断,疑问句不是命题;(4)是命题,它是能作出真假判断的语句,它是一个假命题,因为1既不是质数也不是合数。
一、教材分析本节课选自苏教版高中数学选修2-3《命题及其关系-充分条件与必要条件》。
这部分内容是学生在学习了简单逻辑用语和复合命题之后,对命题及其关系的进一步拓展。
充分条件和必要条件是描述命题之间关系的重要概念,对于学生理解命题的内在联系,提高逻辑思维能力具有重要意义。
二、教学目标1. 理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。
2. 能够运用充分条件和必要条件分析实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和口头表达能力。
三、教学重点与难点1. 教学重点:充分条件和必要条件的概念及其判断方法。
2. 教学难点:充分条件和必要条件的区分和应用。
四、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生通过自主学习、合作交流,掌握充分条件和必要条件的概念及判断方法。
五、教学过程1. 导入新课:通过一个生活实例,引导学生思考充分条件和必要条件的关系。
2. 自主学习:学生自主阅读教材,理解充分条件和必要条件的概念。
3. 案例分析:分析具体案例,让学生判断其中的充分条件和必要条件。
4. 小组讨论:学生分组讨论,交流判断充分条件和必要条件的心得。
5. 总结提升:教师引导学生总结充分条件和必要条件的判断方法。
6. 课后作业:布置相关练习题,巩固所学知识。
教案连载,请期待后续章节。
六、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与度、理解程度等,以便对教学方法和策略进行调整,提高教学质量。
七、课后作业1. 请用充分条件和必要条件判断下列命题:(1)如果一个人是学生,他一定有身份证。
(2)一个三角形是等边三角形当且仅当它的三条边相等。
2. 结合生活中的实例,运用充分条件和必要条件分析问题。
八、课后辅导针对学生在课后作业中出现的问题,教师应及时给予辅导,帮助学生巩固知识点,提高解题能力。
九、拓展与延伸为了激发学生的学习兴趣,提高学生的综合素质,可以布置一些拓展与延伸的课题,如:1. 研究充分条件和必要条件在实际问题中的应用,举例说明。
∵120x x q =<·∴方程20x px q ++=有两个异号实根(2)再证必要性∵方程20x px q ++=有两个异号实根,设其为12x x ,∴120x x <·∵12x x q =·∴0q <由(1)(2)原命题得证。
评析 注意,证明充分必要条件,实际上需要证明原命题和逆命题都成立. 它亦等价于证明:(1)原命题和否命题都成立;(2)逆否命题和逆命题都成立;(3)逆否命题和否命题都成立.这种等价转换的思想,就能使思路更广阔,方法更灵活,复杂问题简单化.六、回顾反思本节课的主要内容是“充要条件”的判定方法,即如果p ⇒q 且q ⇒p ,则p 是q 的充要条件.七、课后练习1. “xy >0”是“|x+y |=|x |+|y |”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.“A ∩B=A ”是A=B 的( ).A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.在下列电路图中,闭合开关A 是灯泡B 亮的什么条件:如图(1)所示,开关A 闭合是灯泡B 亮的 条件;如图(2)所示,开关A 闭合是灯泡B 亮的 条件;如图(3)所示,开关A 闭合是灯泡B 亮的 条件;如图(4)所示,开关A 闭合是灯泡B 亮的 条件;4.抛物线y=ax 2+bx+c (a ≠0)的对称轴为x=2的充要条件是______________;5.判断下列各题中条件是结论的什么条件:(1)条件A ∶ax 2+ax+1>0的解集为R ,结论B ∶0<a <4;(2)条件p ∶A B ,结论q ∶A ∪B=B.6.已知全集R ,A={x ||x-3|>6},B={x ||x |>a,a ∈N +}.当a为何值时.①A 是B 的充分而不必要条件;②A 是B 的必要而不充分条件;③A 是B 的充要条件.八、参考答案:1. A 2.B3.图(1):充分但不必要条件;图(2):必要但不充分条件;图(3):充要条件;图(4):既不充分也不必要条件.4.4a+b=05.解: (1)∵△=a 2-4a <0,即0<a <4∴当0<a <4时,ax 2+ax+1>0恒成立.故B ⇒A.而当a=0时,ax 2+ax+1>0恒成立,∴A B.故A 为B 的必要不充分条件.(2)∵A B ⇒A ∪B=B ,而当A=B 时,A ∪B=B ,即q p ,∴p 为q 的充分不必要条件.6. p ≥4时,“4x+p <0”是“x 2-x-2>0”的充分条件,不存在实数p ,使 “4x+p <0”是“x 2-x-2>0”的必要条件.思考题:试寻求关于x 的方程x 2+mx+n=0有两个小于1的正根的一个充要条件.解法1:关于x 的方程x 2+mx+n=0有两个小于1的正根⇔方程在(0,1)内有实根⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>><-<≥∆0)1(0)0(1200f f m ⇔⎪⎪⎩⎪⎪⎨⎧>++><<-≥-01002042n m n m n m ⇔⎪⎪⎩⎪⎪⎨⎧>++<<<<-≥-011002042n m n m n m . 解法2:方程在(0,1)内有实根 ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-+->>+≥∆0)1)(1(0)1()1(00021212121x x x x x x x x ⇔⎪⎪⎩⎪⎪⎨⎧>++><<-≥-01002042n m n m n m ⇔⎪⎪⎩⎪⎪⎨⎧>++<<<<-≥-011002042n m n m n m .。
第二节 命题及其关系、充分条件与必要条件
一、填空题
1. 下面有四个命题:
①集合N 中最小的数是1;
②若-a 不属于N ,则a 属于N ;
③若a ∈N ,b ∈N ,则a +b 的最小值为2;
④x 2+1=2x 的解集可表示为{1,1}.
其中真命题的个数为________.
2. 命题“若一个数是负数,则它的平方是正数”的逆命题是“________________________________________________________________________ ________________________________________________________________________”.
3. (2010·广东改编)“x >0”是“3x 2>0”成立的________条件.(填“充分”、“必
要”或“充要”)
4. (2011·苏州中学检测)命题“若x >0,则x 2>0”的否命题是________命题(填“真”
或“假”).
5. (2010·上海改编)“x =2k π+π4
(k ∈Z )”是“tan x =1”成立的________条件.(填“充分”、“必要”、“充要”或“既不充分也不必要”)
6. 命题“若x ,y 是奇数,则x +y 是偶数”的逆否命题是________________,它是________命题(填“真”或“假”).
7. 下列说法中正确的是________.(填上你认为正确的所有序号)
①一个命题的逆命题为真,则它的逆否命题一定为真;
②“a >b ”与“a +c >b +c ”不等价;
③“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”;
④一个命题的否命题为真,则它的逆命题一定为真.
8. 给定下列命题:
①若k >0,则方程x 2+2x -k =0有实数根;
②若x +y ≠8,则x ≠2或y ≠6;
③“矩形的对角线相等”的逆命题;
④“若xy =0,则x 、y 中至少有一个为0”的否命题.
其中真命题的序号是________.
9. 设p :-1≤4x -3≤1,q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要而不充
分条件,则实数a 的取值范围为________.
二、解答题
10. 写出下列命题的逆命题、否命题和逆否命题.
(1)若a >b ,则ac 2>bc 2;
(2)若在二次函数y =ax 2+bx +c 中b 2-4ac <0,则该二次函数图象与x 轴有公共点
11. 指出下列各组命题中p 是q 的什么条件.
(1)p :(x -2)(x -3)=0;q :x -2=0;
(2)p :四边形的对角线相等;q :四边形是平行四边形.
12. p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.
参考答案
1. 0 解析:①假命题,集合N 中最小的数是0;②假命题,如a =12
时,命题不成立;③假命题,如a =0,b =1,则a +b =1;④假命题,{1,1}与集合中元素的互异性矛盾,其解集应为{1}.
2. 若一个数的平方是正数,则它是负数
解析:结论与条件互换位置即可.
3. 充分 解析:当x >0时,x 2>0,有3x 2>0,“x >0”是“3x 2>0”成立的充分条
件; 由于3-12=1>0,而-1<0,则3x 2>0不是x >0成立的充分条件.
综上,“x >0”是“3x 2>0”成立的充分不必要条件.
4. 假 解析:若x >0,则x 2>0的否命题是若x ≤0,则x 2≤0,为假命题.
5. 充分 解析:tan ⎝
⎛⎭⎪⎫2k π+π4=tan π4=1,所以是充分条件;反之不成立,如tan
5π4
=1. 6. 若x +y 不是偶数,则x ,y 不都是奇数 真 解析:原命题是真命题,所以其逆否命题也是真命题.
7. ④ 解析:否命题和逆命题互为逆否命题,有着一致的真假性.
8. ①②④ 解析:①∵Δ=4-4(-k )=4+4k >0,∴①是真命题.
②其逆否命题为真,故②是真命题.
③逆命题:“对角线相等的四边形是矩形”是假命题.
④否命题:“若xy ≠0,则x 、y 都不为零”是真命题.
9. ⎣⎢⎡⎦
⎥⎤0,12 解析:綈p 是綈q 的必要不充分条件, ∴q 也是p 的必要不充分条件.
又∵p :x ∈⎣⎢⎡⎦
⎥⎤12,1,q :x ∈[a ,a +1], ∴⎣⎢⎡⎦
⎥⎤12,1[a ,a +1], ∴⎩⎪⎨⎪⎧ a ≤12
,a +1≥1,且两个等号不同时成立,
解得0≤a ≤12.。