专用铣床液压系统设计说明
- 格式:doc
- 大小:329.50 KB
- 文档页数:19
摘要1.铣床概述铣床是用铣刀对工件进行铣削加工的机床。
铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。
2.液压技术发展趋势液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。
液压气动技术具有独特的优点,如:液压技术具有功率传动比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,并易与微电子、电气技术相结合,形成自动控制系统。
主要发展趋势如下:1.减少损耗,充分利用能量2.泄漏控制3.污染控制4.主动维护5.机电一体化6.液压CAD技术7.新材料、新工艺的应用3. 主要设计内容本设计是设计专用铣床工作台进给液压系统,本机床是一种适用于小型工件作大批量生产的专用机床。
可用端面铣刀,园柱铣刀、园片及各种成型铣刀加工各种类型的小型工件。
设计选择了组成该液压系统的基本液压回路、液压元件,进行了液压系统稳定性校核,绘制了液压系统图,并进行了液压缸的设计。
关键词铣床;液压技术;液压系统;液压缸ABSTRACT1. Milling machine is general to stateMilling machine is to carry out the machine tool of milling processing with milling cutter for workpiece. Milling machine excludes can milling plane, groove, gear teeth, thread and spline axle are outside, can still process more complex type surface, efficiency has high planer comparatively, when mechanical production and repair department get extensive application.2. Hydraulic technology develops tendencyHydraulic technology is that the one of crucial technical, world countries that realize modern transmission and control give great attention to the development of hydraulic industry. Hydraulic pneumatic technology has unique advantage , such as: Hydraulic technology has power weight than is big, volume is little, frequently loud and high, pressure and rate of flow may control sex well, it may be flexible to deliver power , is easy to realize the advantages such as the sport of straight line; Pneumatic transmission has energy saving, free from contamination, low cost and safe reliable, structural simple etc. advantage , and is easy to form automatic control system with microelectronics and electric in technology. Develop tendency mainly to be as follows:1. Reduce wastage , use energy2 fully. Leak control3. Pollute control4. Defend5 initiatively. Electromechanical unifinication6. Hydraulic CAD technical7. The application of new material and new technology3. Design content mainlyQuantity of production. May use the garden column milling cutter, garden flat and milling cutter of end panel and is various to process the small-sized workpiece of various types into type milling cutter.Designing have selected to form hydraulic element and the basically hydraulic loop of this hydraulic system , have carried out hydraulic systematic stability school nucleus , have drawn hydraulic system to seek , and have carried out the design of hydraulic big jar.Key words milling machine;hydraulic technology;hydraulic system;hydraulic big jar目录摘要 2 毕业设计任务书 5 第一章专用铣床液压系统设计 7 1.1 技术要求 7 1.2 系统功能设计 71.2.1 工况分析 71.2.2 确定主要参数,绘制工况图 81.2.3 拟定液压系统原理图 101.2.4 组成液压系统 10 1.3系统液压元件、辅件设计12 第二章专用铣床液压系统中液压缸的设计17 2.1 液压缸主要尺寸的确定 17 2.2 液压缸的结构设计 20 致谢24 参考文献 25毕业设计任务书一、设计课题专用铣床液压系统设计二、设计依据某铣床工作台为卧式布置(导轨为水平导轨,其静、动摩擦因数µs=0.2;µd=0.1),拟采用缸筒固定的液压缸驱动工作台,完成工件铣削加工时的进给运动;工件采用机械方式夹紧。
半自动液压专用铣床液压系统课程设计说明书测控技术基础课程设计设计题目: 半自动液压专用铣床液压系统设计序号3**: **专业:机械设计制造及其自动化班级: 20101051学号: **********指导教师:一、设计任务 1二、设计内容 21.负载与运动分析 21.1工作负载 21.2摩擦负载 21.3负载图与速度图的绘制22.液压系统主要参数的确定 42.1液压缸的选定 43.编制液压缸的工况图54.液压系统图的拟定74.1选择基本回路74.2组成液压系统85.液压元件的选择 85.1确定液压泵的规格和电动机功率85.2确定其他元件及辅件96.验算液压系统性能106.1验算系统压力损失 106.2验算系统发热与温升137.参考文献: 13附录: 14半自动液压专用铣床液压系统设计一、设计任务1.设计要求设计一台用成型铣刀在加工件上加工出成型面的液压专用铣床,工作循环:手工上料??自动夹紧??工作台快进??铣削进给??工作台快退??夹具松开??手工卸料。
2.设计参数工作台液压缸负载力(KN):FL 夹紧液压缸负载力(KN):Fc工作台液压缸移动件重力(KN):G 夹紧液压缸负移动件重力(N):Gc工作台快进、快退速度(m/min):V1V3 夹紧液压缸行程(mm):Lc工作台工进速度(mm/min):V2 夹紧液压缸运动时间(S):tc工作台液压缸快进行程(mm):L1 导轨面静摩擦系数:μs0.2工作台液压缸工进行程(mm):L2 导轨面动摩擦系数:μd0.1工作台启动时间(S):t0.5序号3 FL8.8 Fc3.8 G1.5 Gc80 V14.5 V2350 L290 Lc10 tc23.液压传动与控制系统设计一般包括以下内容:1、液压传动与控制系统设计基本内容:1 明确设计要求进行工况分析;2 确定液压系统主要参数;3 拟定液压系统原理图;4 计算和选择液压件;5 验算液压系统性能;6 编制技术文件。
专用铣床液压系统设计课程设计引言:随着工业技术的发展,液压系统在机械设备中的应用越来越广泛。
在专用铣床中,液压系统的设计对于提高机械设备的性能和工作效率起着至关重要的作用。
本文将以专用铣床液压系统设计为主题,探讨液压系统的设计原则、组成部分以及设计过程。
一、液压系统设计原则1. 功能需求:根据专用铣床的工作需求确定液压系统的功能,包括工作压力、流量、速度等参数。
2. 安全性:设计时需考虑液压系统的安全性,确保系统能够稳定运行,避免发生泄漏、爆炸等危险。
3. 可靠性:设计时需考虑液压系统的可靠性,选择高品质、耐用的液压元件,确保系统长时间稳定运行。
4. 经济性:设计时需考虑液压系统的成本,合理选择液压元件和控制装置,使系统具有较高的性价比。
二、液压系统组成部分1. 液压泵:负责将机械能转化为液压能,提供给液压系统所需的压力和流量。
2. 液压缸:负责将液压能转化为机械能,实现对工作件的加工和运动控制。
3. 液压阀:用于控制液压系统的压力、流量和方向等参数。
4. 油箱:贮存液压油,保证液压系统的正常运行。
5. 滤清器:用于过滤液压油中的杂质和污染物,保护液压系统的元件。
6. 液压管路:将液压能传输到不同的液压元件中。
7. 液压控制装置:包括液压控制阀、传感器等,用于控制和监测液压系统的工作状态。
三、液压系统设计过程1. 确定工作需求:根据专用铣床的加工要求和工作条件,确定液压系统的工作压力、流量和速度等参数。
2. 选择液压元件:根据工作需求选择合适的液压泵、液压缸、液压阀等液压元件,确保其性能和质量符合要求。
3. 设计液压管路:根据专用铣床的结构和工作方式,设计合理的液压管路,确保液压能够传输到各个液压元件中,并满足工作需求。
4. 安全措施:在设计过程中,需考虑液压系统的安全性,采取相应的安全措施,如设置泄压阀、安装压力传感器等。
5. 控制系统设计:根据专用铣床的工作要求,设计液压控制系统,包括液压控制阀、传感器等,实现对液压系统的精确控制。
液压传动液压专用铣床动力滑台液压系统设计说明一、设计目标二、系统组成1.液压泵站:液压泵可以采用叶片泵、齿轮泵或柱塞泵。
根据实际需要选择合适的泵站,并配置相应的电机和控制系统。
2.执行元件:液压专用铣床动力滑台的执行元件主要包括主阀、缸体、活塞、油缸和密封元件等。
活塞与液压缸连接,通过液压力推动滑台运动。
3.控制元件:液压系统的控制元件主要包括油箱、单向阀、伺服阀和电磁阀等。
通过合理配置这些元件,可以实现对滑台运动的控制和调节。
4.辅助元件:液压系统的辅助元件主要包括压力表、液压油冷却器、滤油器和油管等。
这些辅助元件的作用是保证系统的稳定性和可靠性。
三、系统工作原理1.启动液压泵站,液压泵开始工作,将液压油从油箱中抽取,并通过油管输送到主阀处。
2.根据控制信号,主阀控制液压油的流向。
在滑台上升的过程中,主阀打开,将液压油从液压缸的下腔进入上腔。
在滑台下降的过程中,主阀关闭,使液压油从液压缸的上腔流回油箱。
3.伺服阀和电磁阀根据控制信号控制系统的压力和流量。
通过调节伺服阀和电磁阀的开启和关闭程度,可以实现对滑台运动的调节和控制。
4.液压油冷却器和滤油器的作用是保持液压油的温度和清洁度,提高系统的工作效率和寿命。
四、设计考虑因素在设计液压传动液压专用铣床动力滑台液压系统时,需要考虑以下因素:1.滑台的移动速度和负载大小:根据滑台的移动速度和负载大小,选择合适的液压泵站和液压缸,并适当配置伺服阀和电磁阀,以保证系统的工作性能。
2.滑台的精度要求:根据滑台的精度要求,选择合适的密封元件和控制元件,以提高系统的精度和稳定性。
3.系统的稳定性和可靠性:通过合理的液压回路设计和辅助元件配置,提高系统的稳定性和可靠性,并确保系统在长时间工作过程中不发生故障。
4.安全性考虑:设计时需考虑系统的安全性,选择符合相关标准的元件,并配置相应的安全装置,以确保系统在工作过程中不会发生事故。
五、总结液压传动液压专用铣床动力滑台液压系统设计需要考虑多个因素,包括滑台的移动速度和负载大小、精度要求、系统的稳定性和可靠性以及安全性等。
专用铣床液压系统设计
专用铣床液压系统是由专用铣床夹具、液压支架、液压缸、电磁阀、液压泵等元件组
成的液压系统,其主要任务是控制专用铣床的动作,它可以通过液压缸,实现专用铣床夹
具的自动变位和调整机床行程,精确完成工件加工。
专用铣床液压系统可以实现液压支架
升降、专用铣床安装、回转把手控制及自动补偿运动等功能。
专用铣床液压系统的设计,需要考虑的因素比较多,需要从流体机械、电气和控制几
个方面进行全面的分析,在设计中要考虑材料的选择和结构的优化,流动压力、液力学和
振动的数值仿真分析,还要科学组织液压元件,应用液压控制理论,满足加工条件,确保
铣床运转可靠、平稳和安全,最终实现工件质量的最高效率加工。
专用铣床液压系统的设计一般要求满足下列条件:
(1)液压系统的设计必须与专用铣床的原理是一致的,以保证专用铣床的正常运行;
(2)液压系统要具备良好的密封性能,确保系统内部各液压元件安全运行;
(3)液压系统的各液压动力元件之间要有协调的控制和联调,使之形成完整的联动
系统;
(4)液压系统要采用可靠性高、操作简便、应用可靠性良好的液压控制元件和控制
系统。
专用铣床液压系统设计要求对液压工程的复杂性以及液压组件的精密性进行充分的考虑,要考虑如何优化液压系统的结构,实现液压系统的简化,提高工作效率、降低运行成本,可靠的保障工件的质量。
专用铣床液压系统设计课程设计专用铣床液压系统设计课程设计一、引言在现代机械加工领域,铣床是一种常用的机床设备。
为了提高铣床的运行效率和精度,液压系统被广泛应用于铣床中。
本课程设计旨在通过对专用铣床液压系统的设计,使学生掌握液压系统的原理和设计方法。
二、液压系统基础知识1. 液压系统概述液压系统是利用流体传递能量的一种动力传动系统。
它由液压泵、执行元件、控制元件和辅助元件等组成。
2. 液压传动基本原理液体在容器中形成封闭的流体传递介质,通过液压泵产生的高压油将能量传递到执行元件上,从而实现工作机构的运动。
3. 液压执行元件常见的液压执行元件包括油缸、马达和阀门等。
油缸通过受力面积差异实现线性运动,马达则通过转子与定子之间的摩擦力实现旋转运动。
三、专用铣床液压系统设计1. 设计目标专用铣床液压系统的设计目标是实现铣床的高效率、高精度和安全稳定的运行。
2. 系统组成专用铣床液压系统主要由液压泵、油缸、控制阀和辅助元件等组成。
液压泵负责产生高压油,油缸负责驱动工作台进行运动,控制阀则用于控制油液的流向和压力。
3. 液压系统参数选择根据铣床的工作要求和性能指标,选择合适的液压元件参数。
包括液压泵的流量、工作台的移动速度和承载能力等。
4. 液压系统布局设计根据铣床结构和工作台运动方式,合理布局液压元件。
保证油路畅通,减小能量损失和泄漏。
5. 液压系统控制策略设计根据铣床的工作过程,确定合理的控制策略。
可以采用手动控制或自动控制方式,实现对工作台运动的精确控制。
6. 液压系统安全保护设计在液压系统中添加安全保护装置,如过载保护阀、压力传感器和液压缸的行程限位装置等,以确保铣床的安全运行。
四、课程设计步骤1. 确定课程设计内容和目标明确课程设计的具体内容和目标,包括液压系统的基本原理、专用铣床液压系统的设计要求等。
2. 学习液压系统基础知识学生需要通过自学或教师讲解等方式,掌握液压系统的基本原理、执行元件和控制元件等知识。
设计过程及说明一、设计题目设计一专用铣床工作台液压系统,工件台驱动装置采用单杆液压缸,要求实现的工作循环为“快进——工进——快退——停止”。
二、设计要求设计一台专用铣床,若工作台、工件和夹具的总重力为5500N,轴向切削力为30000N,工作台总行程为0.4m,工作行程为0.15m,快进、快退速度为 4.5m\min、工进速度为0.06m~1m\min,加速、减速时间均为0.05s,工作台采用平导轨、静摩擦系数为0.2、动摩擦系数为0.1,试设计该机床的液压传动系统。
三、执行元件运动与负载分析1.运动分析与速度循环图1)运动分析运动分析师对液压系统一个工作循环中,各阶段的运动速度变化情况进行定性分析。
在此次设计的液压系统中,一个工作循环中有快进→工进→快退→停止,其定性工作循环图如图1-1所示。
速度循环图是要表示在一个工作循环内各个阶段运动速度随位移变化的情况,在知道执行机构各段的运动速度和总行程及相关参数后,各段行程可由运动学公式定量计算得到。
图1-2为滑台速度循环图。
图中各段的行程由下式计算。
启动行程:减速行程:制动行程:工进行程:快进行程:反向启动行程:反向制动行程:快退行程:式中,S1、S2、S3、S4、S5、S6、S7、S8——分别为启动、快进、减速、工进、制动、反向启动、快退、反向制动行程,mm;S¬——总行程,mm;ν1、ν2、ν3——分别为快进、工进、快退速度,m/s;t1、t3、t5、t6、t8——各为启动、减速、制动、反向启动、反向制动时间,s。
计算中,启动、制动和速度转换时间若无特特殊要求可取0.01~0.5s,在此计算中均取0.1s.由下列公式计算出快速、工进、快退时间:式中:t2、t4、t7——分别为快进、工进、快退的时间,s.2、负载分析与负载循环图1.液压缸负载分析一般情况下,液压缸承受的负载由六部分组成,即工作负载F w、导轨摩擦负载F f、惯性负载F a、重力负载F g、密封负载F s和背压负载F b。
专用铣床液压系统设计课程设计一、引言随着工业技术的不断进步,液压系统在机械设备中的应用越来越广泛。
专用铣床是一种常见的机械设备,其液压系统是确保其正常运行的重要组成部分。
本课程设计将对专用铣床液压系统进行设计,以确保其在工作过程中具有稳定、高效的性能。
二、液压系统设计原理液压系统是通过液体传递能量来实现机械运动的系统。
在专用铣床中,液压系统主要用于控制铣刀的进给、主轴的转速和位置,以及工作台的移动等。
液压系统的设计需要考虑以下几个方面:1. 工作压力:根据铣床的工作需求和液压元件的承载能力,确定液压系统的工作压力。
通常,专用铣床的工作压力在10-20MPa之间。
2. 流量需求:根据铣床的工作速度和移动距离,确定液压系统的流量需求。
流量的大小直接影响液压系统的响应速度和工作效率。
3. 液压元件的选择:根据液压系统的工作压力和流量需求,选择适当的液压元件,如液压泵、液压阀、液压缸等。
液压元件的选择要考虑其工作性能、可靠性和维护成本等因素。
4. 液压系统的控制方式:根据铣床的工作需求,确定液压系统的控制方式。
常见的控制方式有手动控制、自动控制和数控控制等。
三、液压系统设计步骤1. 确定系统要求:根据专用铣床的工作特点和要求,明确液压系统的工作压力、流量需求和控制方式等。
2. 选择液压元件:根据系统要求,选择合适的液压元件。
液压泵的选择要考虑其流量和压力特性;液压阀的选择要考虑其控制特性和可靠性;液压缸的选择要考虑其负载能力和运动特性等。
3. 绘制液压系统图:根据系统要求和液压元件的选择,绘制液压系统图。
液压系统图应包括液压泵、液压阀、液压缸等液压元件的连接关系和管路布置。
4. 计算液压系统参数:根据系统要求和液压元件的特性,计算液压系统的参数,如泵的流量和压力、液压缸的负载和速度等。
5. 设计液压系统控制装置:根据系统要求和控制方式,设计液压系统的控制装置。
控制装置可以采用手动操作、电气控制或计算机控制等方式。
湖南大学运载工程学院课程设计说明书课程名称:液压与气压传动题目名称:液压专用铣床班级:2010姓名:学号:指导教师:评定成绩:教师评语:指导老师签名:2013年月日目录摘要: (1)1、设计要求与题目 (1)2、设计要求3、设计题目二、负载分析与速度分析 (3)1.负载分析2.速度分析三、确定液压缸主要参数 (5)1.初选液压缸的工作压力2.计算液压缸结构参数3.计算液压缸在工作循环各阶段压力、流量和功率值四、拟定液压系统图 (8)1.选择基本回路2.回路合成五、液压元件的选择 (9)1.液压泵及驱动电机功率的确定2.元件、辅件选择六、系统油液温验算 (11)七、参考文献 (12)液压与气压传动课程设计摘要:本文在专用铣床液压系统设计中,主要对专用铣床的液压系统进行了总体设计,根据工况条件对负载与速度进行了科学分析、还拟定优化了液压系统图,并且对液压缸参数确定、液压元器件选择等方面进行了设计,并且从温升方面对液压系统性能进行了验算。
关键词:液压系统 专用铣床 控制元件选择 性能验算 液压泵参数一、 设计要求与题目 1、1设计要求:1.学生必须独立完成设计,可以搜集、参考同类机械资料,深入理解后才能借鉴,但决不允许抄袭。
2.提交设计计算说明书一份。
3.液压传动系统原理图一张(CAD 绘制) 1、2设计题目:设计一台专用铣床,工作台要求完成:快进——工进—快退的自动工作循环。
设计要求如下:铣床最大切削力9000N ,铣床工作台重量3000N ,工件夹具最大重量为1000N ,工作台快进、快退速度为4.5m/min ,工作进给速度为60~1000mm/min ,启动、减速制动时间为0.05s ,工作台导轨水平放置,静、动摩擦分别为2.0=s f ,1.0=d f ,工作台快进行程为200mm 。
工作行程为200mm 。
试设计该机床的液压系统。
二 、负载分析与速度分析1.负载分析已知工作负载N 9000F w =,重力负载0F G =。
液压课程设计-专用铣床的液压系统液压课程设计专用铣床的液压系统一、概述本课程设计主要涉及液压系统的设计和操作,即专用液压铣床系统。
铣床是一种机械工具,广泛应用于机械制造和金属加工领域。
它有三个运动轴,一个叫X轴,一个叫Y轴,一个叫Z轴,可以根据用户的需求加工各种特殊轨迹和各种复杂部件,最大限度地提高零件精度和生产效率。
由于专用液压铣床系统高效可靠,易于操作和维护,以及体积小巧,因此在工业场景中越来越多地使用。
二、特点1. 复杂可靠:液压系统有多种部件组成,由油泵、液压缸、液压回路、液压控制器及元件等构成,系统不同元件之间能够发生相互协同作用,实现高可靠的操作。
2. 精确控制:凭借特殊的液压控制器,可以根据用户的实际需要,智能控制液压系统的各部件,实现高精度的控制,保证加工准确。
3. 高度集成:相比于传统的控制结构,液压系统的优势在于所有液压部件能够直接安装在液压床头上,易于安装,降低了空间损耗,降低了系统重量,提高系统效率。
1. 系统分析:专用液压铣床的液压系统的设计可以广泛应用于工业领域。
因此,在进行设计之前,应对系统进行充分分析,确定系统的工作压力、移动速度等参数,以选择合适的液压元件。
2. 元件选择:为了使液压系统能够正常工作,还需要正确选择元件,包括液压缸、液控开关、油泵等,确保系统能够满足用户的使用需求。
3. 线路布置:完成全部组件的选择之后,即可开始绘制液压系统的线路图,此过程要根据系统的实际运行情况和特性进行计算,建立完善的液压系统回路结构。
四、总结本课程设计论述了专用液压铣床的液压系统的设计,介绍了系统的特点和设计步骤。
可见,正确的液压系统设计对于专用液压铣床的使用有很大的帮助,其声明能够保证系统的高效性、稳定性、可靠性和安全性,提高加工效率并确保零件精度。
液压传动课程设计计算说明书设计题目:专用铣床液压系统设计机械系机械及自动化专业班级 031013班学号 20030343设计者:夏国庆指导教师:钱雪松(老师)学校:河海大学校区2006 年 6 月30 日一、设计流程图液压系统设计与整机设计是紧密联系的,设计步骤的一般流程如图下面将按照这一流程图来进行本次液压课程设计。
二、设计依据:专用铣床工作台重量G1=3000N,工件及夹具重量G2=1000N,切削力最大为9000N,工作台的快进速度为4。
5m/min,工进速度为60~1000mm/min,行程为L=400mm(工进行程可调),工作台往复加速、减速时间的时间t=0.05s,假定工作台用平导轨,静摩擦系数fj=0.2,动摩擦系数fd=0.1。
设计此专用铣床液压系统。
三、工况分析液压系统的工况分析是指对液压执行元件进行运动分析和负载分析,目的是查明每个执行元件在各自工作过程中的流量、压力、功率的变化规律,作为拟定液压系统方案,确定系统主要参数(压力和流量)的依据。
负载分析 (一) 外负载 max c F =9000N 其中max c F 表示最大切削力。
对于专用铣床铣削时铣刀所承受的主切削力大小(单位N )为:c p F Pfa = (N)式中 P — 单位切削力(2/N mm )f — 每转进给量(mm/r )p a — 背吃刀量(mm ) 下面将进行具体参数的计算:由公式 f u fn = 可得 (其中f u 表示每分钟进给速度,n 表示铣刀的转速) 由设计依据可知 n=300r/min ??工进速度f u =60—1000mm/min ,故我们取f u =300mm/min 。
3001/300f u f mm r n ===对于单位切削力P ,由以下的常用金属材料的单位切削力表可得,我们选P=20002/N mm 。
对于铣削背吃刀量p a ,我们选用硬质合金铣刀,查铣工计算手册可得,取p a =1.5mm 。
根据以上的公式 c p F Pfa =可得:20001 1.53000()c p F Pfa N ==⨯⨯=因为3000<max c F =3185N ,所以选取的合适 (二) 阻力负载静摩擦力:Ffj=(G1+G2)·fj其中 Ffj —静摩擦力N G1、G2—工作台及工件的重量N fj —静摩擦系数由设计依据可得:Ffj=(G1+G2)·fj=(4000+1800)X0.2=1160N 动摩擦力Ffd=(G1+G2)·fd 其中 Ffd —动摩擦力N fd —动摩擦系数同理可得: Ffd=(G1+G2)·fd=(4000+1800)X0.1=580N(三) 惯性负载机床工作部件的总质量m=(G1+G2)/g=5800/9.81=592kg 惯性力Fm=m ·a=5592493600.1⨯=⨯N 其中:a —执行元件加速度 m/s ² 0t u u a t-=ut —执行元件末速度 m/s ² u0—执行元件初速度m/s ² t —执行元件加速时间s因此,执行元件在各动作阶段中负载计算如下表所示:按上表的数值绘制负载如图所示。
对于速度而言,设计依据中已经有了明确的说明,所以按照设计依据绘制如下:图2铣床液压缸速度图四、初步确定油缸参数,绘制工况图1、初选油缸的工作压力、由上可以知道,铣床的最大负载F=3580N ,根据下表可得: 表 按负载选择液压执行元件的工作压力选系统的工作压力P1=2Mpa 。
由设计要求可知,导轨要求快进、快退的速度相等,故液压缸选用单活塞杆式的,快进时采用差动连接,且液压缸活塞杆直径d≈0.7D。
快进和工进的速度换接用三位四通电磁阀来实现。
铣床液压系统的功率不大,为使系统结构简单,工作可靠,决定采用定量泵供油。
考虑到铣床可能受到负值负载,故采用调速阀的进油节流加背压阀的调速回路,所以回油路上具有背压P2,取背压P2=0.5Mpa 。
2、计算油缸尺寸可根据油缸的结构及连接方式计算油缸的面积、油缸直径D 及活塞杆直径d 计算出后应按标准予以圆整,然后再计算油缸的面积: 此时由工进时的负载值按计算公式计算液压缸面积:62261235801065.510()0.96(220.5)10m FA m p p ηϕ-===⨯-⨯-⨯ 621222213110A A A m ϕ-===⨯ 0.052D m === 0.7070.7070.0520.037d D m m ==⨯=在将这些直径按照国标圆整成标准值得:D=0.06m, d=0.04m由此就求得液压缸两腔的实际有效面积为242128.26104D A m π-==⨯,22422()15.7104D d A m π--==⨯。
3、油缸各工况的压力、流量、功率的计算(1)、工进时油缸需要的流量Q 工进 3/min mQ 工进= A1·U 工进=4328.26100.30.0008/min m -⨯⨯= A1:工进时油压作用的面积2m U 工进—工进时油缸的速度 mm/min (2)、快进时油缸需要的流量Q 快进 3/min m 差动连接时:Q 快进=(A1-A2) ·U 快进=4315.71050.0063/min m --⨯⨯=(28.26) A1、A2—分别表示油缸活塞腔、活塞杆截面积 m ² U 快进—油缸快进时的速度mm/min (3)、快退时油缸需要的流量Q 快退 , 3/min mQ 快退= A2·U 快退=4315.71050.0078/min m -⨯⨯=U 快退—油缸退回时的速度, mm/min(4)、工进时油缸的压力1221(/)/ 1.60m p F p A A MPa η=+=P 2—为工进时回油腔的背压,上面已经选取为0.5Mpa 。
(5)、快进时油缸压力212(/)/0.96m p F pA A A MPa η=+-=启动() 212(/)/ 1.26m p F pA A A MPa η=+-=加速() 212(/)/0.86m p F pA A A MPa η=+-=快速()这里:F 分别表示快速启动、加速、快速时油缸的推力, P —分别表示快速启动、加速、快速时油缸的压力。
p ∆表示管路中压力损失大小,这里我们取值为0.3Mpa 。
(6)、快退时油缸压力212/)/0.77m P F P A A MPa η=+=启动( 212/)/ 1.61m P F P A A MPa η=+=加速( 212/)/ 1.28m P F P A A MPa η=+=快退(F —分别表示快速启动、加速、快速时油缸的推力, P —分别表示快速启动、加速、快速时油缸的压力。
P2的值为0.5MPa油缸工作循环中各阶段的压力、流量、功率实际值如表2所示:表2 液压缸在不同工作阶段的压力、流量和功率值由以上所计算的数据我们绘制出工况图如下所示:流量压力功率图3液压缸工况图五、确定液压系统方案和拟订液压系统原理图(一) 确定油源及调速方式由以上的计算可以知道,铣床液压系统的功率不大,工作负载的变化情况很小,因此,为使系统结构简单,工作可靠,决定采用定量泵供油。
考虑到铣床可能受到负值负载,故采用回油路调速阀节流调速方式,并选用开式循环。
从工况图中我们可以清楚的看出,在液压系统的工作循环中,液压缸要求油源提供的流量变化并不是很大,因此工进和快进的过程中,所需流量差别较小。
故我们选用定量单液压泵供油。
(二)选择基本回路1. 选择换向回路及速度换接方式由设计依据可以知道,设计过程中不考虑工件夹紧这一工序,并且从快进到工进时,输入液压缸的流量从6.3L/min降到0.8L/min,速度变化不是很大,所以采用电磁换向阀来实现速度的换接。
压力继电器发讯,由电磁换向阀实现工作台的自动启动和换向。
同时为了实现工作台能在任意位置停止,泵不卸载,故电磁阀必须选择O型机能的三位四通阀,如下图所示:由于要求工作台快进与快退速度相等,故快进时采用差动连接来实现快速运动回路,且要求液压缸活塞杆直径d≈0.7D。
(三)选择调压回路设计过程中,在油源中采用溢流阀来调定系统的工作压力,因此调压问题基本上已经在油源中解决,无须在另外设置调压系统。
这里的溢流阀同时还能起到安全阀的作用。
1、组合成液压系统图将上面所选的液压基本回路组合在一起,便可得到以下的液压系统原理图。
同时电磁铁的动作顺序表如下:表 3 液压专用铣床电磁铁动作顺序表图4 专用铣床液压系统原理图1-油箱;2-过滤器;3-叶片泵;4--溢流阀;5-三位四通电磁换向阀 6单向调速阀;7-两位三通电磁换向阀;8-工作缸;9-压力继电器六、选择液压元气件 (一) 液压泵的选择由以上的设计可以得到,液压缸在整个工作过程中的最大压力是1.61Mpa ,如取进油路上的压力损失为0.4Mpa ,则此时液压泵的最大工作压力是p P =1.61+0.4=2.01Mpa 。
由以上的计算可得,液压泵提供的最大流量是7.8L/min,因为系统较为简单,取泄漏系数 1.1l K =,则两个液压泵的实际流量应为: 1.17.8/min 8.58/min p q L L =⨯=由于溢流阀的最小稳定溢流量为3L/min ,而工进时输入到液压缸的流量是3.8L/min ,由流量液压泵单独供油,所以液压泵的流量规格最少应为6.8L/min 。
根据以上的压力和流量的数值查阅机械设计手册,最后选用YB1-6.3型单叶片液压泵,其排量大小为6.3ml/r,当液压泵的转速为1450r/min 时,该液压泵的理论流量为9.14L/min 。
取液压泵的容积效率为0.9v η=,则液压泵的实际流量大小为:6.312000.9/1000 6.8/min p q L =⨯⨯=由于由以上的计算过程中,我们知道了液压缸在快退时的输入功率最大,此时液压泵的工作压力是1.28+0.4(进油路上的压力损失)=1.68Mpa ,流量为6.8L/min ,查表可得,取液压泵的总效率0.7p η=,则液压泵驱动电机所需的功率为1.68 6.80.3600.7p ppp q P kW η⨯===⨯根据以上的数据查机械设计手册选用Y801型电动机,其额定功率为0.55kW ,额定转速为1200r/min 。
(二)阀类元气件及辅助元气件的选择根据阀类及辅助元气件所在油路的最大工作压力和通过的最大实际流量,可选择这些器件的型号和规格如下表:表4 元气件的型号及规格(三)确定油管直径由于液压泵在选定之后液压缸在各个工作阶段的进、出流量已与原来的数值不同,所以要重新计算,计算如下表4所示:表5 液压缸的进出、流量由上表中的数值,按照书中推荐的油液在压油管的流速u=3m/s 可得,液压缸有杆腔和无杆腔相连的油管径分别为:22 6.94d mm ===2210.4d mm ===两根油管按YB231—64选用外径为13mm ,壁厚为1.2mm 的冷拔无缝钢管。