下所示: 平方损失函数(squared loss):采用最小二乘法,用在线 性回归 绝对误差损失(Absolute error loss):用在线性回归 铰链损失(Hinge Loss):主要用于支持向量机。 对数似然损失函数(logarithmic loss):主要在逻辑回归中 使用 其他损失(如0-1损失)
recall_score(y_true, y_pred,average)
F1 score
F1分数(F1 Score)用于衡量二分类模型精确 度,是精确率和召回率的调和值,变化范围在01。F1计算公式如下所示: sklearn.metrics模块提供f1_score函数,形式如 下所示:
F1
2TP
r2_score(y_true, y_pred)
损失函数
损失函数(loss function)用来估量模型的预测值与真实值 的不一致程度,是一个非负实值函数。损失函数在统计学和机 器学习中被用于模型的参数估计,即通过最小化损失函数求解 和评估模型。 损失函数又称为代价函数(Cost Function),或成本函数。 成本函数和损失函数是同义词 并且可以互换使用,但稍有不同。 损失函数有时也称为误差函数(error function),用于单个训 练样本。 代价函数,是整个训练数据集的所有样本误差的平均损失。
AUC面积
AUC(Area Under Curve)是指ROC曲线下的 面积,由于ROC曲线一般都处于y=x这条直线的上方 ,所以AUC的取值范围在0.5和1之间。AUC只能用于 评价二分类,直观的评价分类器的好坏,值越大越好 sklearn.metrics模块提供roc_auc_score函数,形式如 下所示: sklearn.metrics.roc_auc_score(y_true, y_score)