平面几何学考练习题
- 格式:doc
- 大小:309.75 KB
- 文档页数:2
高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021ꞏ全国ꞏ统考高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+的距离为p =( )A .1B .2C .D .44.(2020ꞏ全国ꞏ统考高考真题)点(0,﹣1)到直线()1y k x =+距离的最大值为( )A.1BC D .25.(2020ꞏ浙江ꞏ统考高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D6.(2020ꞏ山东ꞏ统考高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( ) A .32100x y --= B .32230x y --= C .2340x y +-=D .2320x y +-=7.(2020ꞏ山东ꞏ统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.(2018ꞏ全国ꞏ高考真题)已知双曲线22221(00)x y C a b a b -=>>:,则点(4,0)到C 的渐近线的距离为A B .2 C .2D .9.(2018ꞏ北京ꞏ高考真题)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .410.(2019ꞏ北京ꞏ高考真题)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65二、多选题11.(2022ꞏ全国ꞏ统考高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒三、填空题12.(2022ꞏ全国ꞏ统考高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.13.(2022ꞏ全国ꞏ统考高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.14.(2021ꞏ全国ꞏ统考高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.15.(2021ꞏ全国ꞏ统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 16.(2019ꞏ江苏ꞏ高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.四、解答题17.(2018ꞏ全国ꞏ高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.18.(2018ꞏ全国ꞏ高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.19.(2019ꞏ江苏ꞏ高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小..于圆..O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.五、双空题20.(2020ꞏ北京ꞏ统考高考真题)已知双曲线22:163x yC-=,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.D【要点分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【答案详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 3.B【要点分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【答案详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B. 4.B【要点分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【答案详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【名师点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题. 5.D【要点分析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【答案详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==故选:D.【名师点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题. 6.D【要点分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【答案详解】设对称的直线方程上的一点的坐标为()x y ,, 则其关于点()1,2-对称的点的坐标为(2,4)x y ---, 因为点(2,4)x y ---在直线2360x y +-=上, 所以()()223460x y --+--=即2320x y +-=. 故选:D.7.D【要点分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【答案详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.8.D【答案详解】要点分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.答案详解:e c a === 1ba∴= 所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d== 故选D名师点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.9.C【要点分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【答案详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.10.D【要点分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【答案详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.11.ACD【要点分析】由AF AM =及抛物线方程求得3(42p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB∠为钝角即可判断D 选项.【答案详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=, 代入抛物线可得2233242p y p p =⋅=,则3()42p A ,则直线AB的斜率为2342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2px y =+,联立抛物线方程得220y py p -=,设11(,)B x y1p y p +=,则1y =2123p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B ,则2p OB OF =≠=,B 错误; 对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确; 对于D,2333(,(,0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又2225()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确. 故选:ACD.12.13,32⎡⎤⎢⎥⎣⎦【要点分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【答案详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦13.22(1)(1)5x y -++=【要点分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【答案详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M到两点的距离相等且为半径R , ∴==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R=M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= [方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线210xy +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= 14【要点分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【答案详解】由已知,3c ==,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.15.()0,1【要点分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【答案详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e N AM B ===∈=. 故答案为:()0,1【名师点睛】关键点名师点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 16.4.【要点分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【答案详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小.由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.17.(1)AM的方程为2y x =-2y x =(2)证明见解析. 【要点分析】(1)根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为=1x ,代入椭圆方程求得点A的坐标为2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛-⎝⎭,利用两点式求得直线AM 的方程; (2)方法一:分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【答案详解】(1)由已知得()1,0F ,l 的方程为=1x .由已知可得,点A的坐标为1,2⎛ ⎝⎭或1,2⎛⎫ ⎪ ⎪⎝⎭. 所以AM的方程为2y x =+2y x =. (2)[方法一]:【通性通法】分类+常规联立 当l 与x 轴重合时,0OMA OMB ∠=∠=o .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.[方法二]:角平分线定义的应用当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y . 由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 点A 关于x 轴的对称点()11,N x y -,则直线BN 的方程为()()()()121121y y x x y y x x +-=+-.令=0y ,()()221211212122111212122122222222mm y x x my y y y x y x y m m x x m y y y y y y m -⋅--+++++=+====-++++,则直线BN 过点M ,OMA OMB ∠=∠. [方法三]:直线参数方程的应用设直线l 的参数方程为=1+cos =sin x t y t αα⎧⎨⎩(t 为参数).(*)将(*)式代入椭圆方程2212x y +=中,整理得()221sin 2cos 10t t αα++-=.则12211sin t t α-⋅=+,1222cos 1sin t t αα+=-+. 又()()11221cos ,sin ,1cos ,sin A t t B t t αααα++,则MA MB k k +=1212sin sin 1cos 21cos 2t t t t αααα+=+-+-1212sin sin cos 1cos 1t t t t αααα+=--()(()()122112sin cos 1+sin cos=cos 1cos 1t t t t t t αα-αα-α-()()()1212122sin cos sin cos 1cos 1t t t t t t ααααα-+=--()()22122sin cos 2sin cos 1sin 1sin 0cos 1cos 1t t αααααααα-+++=--, 即MA MB k k =-.所以OMA OMB ∠=∠. [方法四]:【最优解】椭圆第二定义的应用 当直线l 与x 轴重合时,0OMA OMB ∠=∠=︒.当直线l 与x 轴不重合时,如图6,过点A ,B 分别作准线=2x 的垂线,垂足分别为C ,D ,则有AC BD x ∥∥轴.由椭圆的第二定义,有e AF AC=,||e ||BF BD =,得||||||||AF BF AC BD =,即||||||||AF AC BF BD =.由AC BD x ∥∥轴,有||||||||AF BF CM DM =,即||||||||AF CM BF DM =,于是||||||||AC CM BD DM =,且90ACM BDM ∠=∠=︒.可得AMC BMD ∠=∠,即有∠=∠AMO BMO .[方法五]:角平分线定理逆定理+极坐标方程的应用椭圆22:12x C y +=以右焦点为极点,x轴正方向为极轴,得ρ=设()()12,,,A B ρθρθπ+.22221122||12cos ,||12cos AM BM ρρθρρθ=+-=++.所以1||||AM AF ==2||||BM BF ==由角平分线定理的逆定理可知,命题得证. [方法六]:角平分线定理的逆定理的应用设点O (也可选点F )到直线,MA MB 的距离分别为12,d d ,根据角平分线定理的逆定理,要证OMA OMB ∠=∠,只需证12d d =. 当直线l 的斜率为0时,易得120d d ==.当直线l 的斜率不为0时,设直线l 的方程为:()()11221,,,,x my A x y B x y =+.由方程组22+=1,2=+1,x y x my ⎧⎪⎨⎪⎩得()222210,Δ0m y my ++-=>恒成立,12222m y y m +=-+.12212y y m =-+. 直线MA 的方程为:()1111220,y x x y y d ---==因为点A 在直线l 上,所以111x my =+,故1d =同理,2d =()()()()12121222122222112242121121y y y y my y d d m y my m y my -+-⎡⎤⎣⎦-=⎡⎤⎡⎤+-++-+⎣⎦⎣⎦.因为()121222222022m m y y my y m m +-=-+=++,所以22120d d -=,即12d d =. 综上,OMA OMB ∠=∠.[方法七]:【通性通法】分类+常规联立当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 所以()()()1212121212121220221111MA MB my y y y y y y y k k x x my my my my -++=+=+==------, 故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. [方法八]:定比点差法设()0,1AF FB λλ=≠± ,()()1122,,,A x y B x y ,所以1212+1=1++0=1+x x y y λλλλ⎧⎪⎪⎨⎪⎪⎩,由22112222222+=12+=2x y x y λλλ⎧⎪⎪⎨⎪⎪⎩作差可得,()12121212112111x x x x y y y y λλλλλλλλ+-+-⨯+⨯=+-+-,所以, ()1221x x λλ-=-,又121x x λλ+=+,所以,()121113,322x x λλ⎛⎫=-=- ⎪⎝⎭,故()1222120111221122MA MB y y y y k k x x λλλ-+=+=+=--⎛⎫-+-+ ⎪⎝⎭,MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠.当1λ=时,l 与x 轴垂直,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 故OMA OMB ∠=∠.【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;方法二:根据角平分线的定义可知,利用点A 关于x 轴的对称点N 在直线BM 上,证直线AN 过点M 即可;方法三:利用直线的参数方程证明斜率互为相反数;方法四:根据点M 是椭圆的右准线=2x 与x 轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择; 方法六:类比方法五,角平分线定理的逆定理的应用; 方法七:常规联立,同方法一,只是设直线的方程形式不一样; 方法八:定比点差法的应用.18.(1)112y x =+或112y x =--;(2)证明见解析.【要点分析】(1)根据题意可得直线l 的方程为=2x ,从而得出点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)方法一:设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立.【答案详解】(1)当l 与x 轴垂直时,l 的方程为=2x ,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--;(2)[方法一]:【通性通法】韦达定理+斜率公式 设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由2=+2=2x ty y x ⎧⎨⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠. [方法2]:【最优解】斜率公式+三点共线的坐标表示因为M ,N 在抛物线上,可设()2112,2M t t ,()2222,2N t t ,故()21122,2AM t t =- ,()22222,2AN t t =- .而A ,M ,N 共线,故AM AN ∥,即()()2221122222220t t t t -⋅--⋅=,化简得()()1221410t t t t +-=.而M ,N 是不同的点,故12t t ≠,可得1210t t +=.这样()()()()121212222212121220222211BM BN t t t t t t k k t t t t +++=+==++++.故ABM ABN ∠=∠. 【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解. 19.(1)15(百米); (2)见解析;(3)17+. 【要点分析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.【答案详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识要点分析和解决实际问题的能力.20. ()3,0【要点分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【答案详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C.故答案为:()3,0【名师点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.。
平面几何练习题及解答一、直线与角度1. 给定一条直线L1和两条直线L2和L3,若L1与L2垂直,L2与L3平行,则L1与L3之间的夹角为多少度?解答:由于L1与L2垂直,可得出L2的斜率为无穷大,即L2为竖直线。
而L2与L3平行,说明它们具有相同的斜率。
因此,L3的斜率也为无穷大,即L3也是竖直线。
由此可知,L1与L3之间的夹角为90度。
2. 给定一条直线L和两点A、B,若L与AB的垂线相交于点M,且角AMB为40度,则角LMA的度数是多少?解答:由垂线的性质可得出,角LMA与角AMB互补,它们的度数和为90度。
已知角AMB为40度,因此角LMA的度数为90度减去40度,即50度。
二、三角形3. 已知三角形ABC,其中∠B = 90度,AB = 3 cm,BC = 4 cm,求AC的长度。
解答:根据勾股定理可得:AC² = AB² + BC²AC² = 3² + 4²AC² = 9 + 16AC² = 25AC = √25AC = 5 cm4. 已知三角形ABC,其中AB = 6 cm,BC = 8 cm,AC = 10 cm,求∠B的度数。
解答:根据余弦定理可得:BC² = AB² + AC² - 2 * AB * AC * cosB8² = 6² + 10² - 2 * 6 * 10 * cosB64 = 36 + 100 - 120 * cosB64 = 136 - 120 * cosB120 * cosB = 136 - 64120 * cosB = 72cosB = 72 / 120cosB = 0.6根据反余弦函数可得:∠B = arccos(0.6)∠B ≈ 53.13度三、圆的性质5. 在平面直角坐标系中,给定圆心为O(2, 3),半径为5的圆C,点P(6, 7)是否在圆C上?解答:利用距离公式可计算OP的距离:OP = √((6-2)² + (7-3)²)OP = √((4)² + (4)²)OP = √(16 + 16)OP = √32OP ≈ 5.66由于OP的长度不等于圆C的半径,即5.66不等于5,因此点P不在圆C上。
三年专题 平面解析几何(选择题、填空题)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1 D .x 22+y 2=12.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .133.【2022年全国乙卷】设F 为抛物线C:y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF |=|BF |,则|AB |=( ) A .2B .2√2C .3D .3√24.【2022年全国乙卷】双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 的两支交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A .√52B .32C .√132D .√1725.【2021年甲卷文科】点()3,0到双曲线221169xy -=的一条渐近线的距离为( )A .95B .85C .65D .456.【2021年乙卷文科】设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则P B的最大值为( )A .52B C D .27.【2021年乙卷理科】设B 是椭圆2222:1(0)x y C a b ab+=>>的上顶点,若C 上的任意一点P 都满足||2P B b ≤,则C 的离心率的取值范围是( )A .12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛⎝⎦D .10,2⎛⎤ ⎥⎝⎦8.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12M F M F ⋅的最大值为( )A .13B .12C .9D .69.【2021年新高考2卷】抛物线22(0)y p x p =>的焦点到直线1y x =+p=( )A .1B .2C .D .410.【2020年新课标1卷理科】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9 11.【2020年新课标1卷理科】已知⊙M :222220xyx y +---=,直线l :220xy ++=,P为l 上的动点,过点P 作⊙M 的切线,P A P B ,切点为,A B ,当||||PM AB ⋅最小时,直线A B的方程为( ) A .210xy --= B .210xy +-=C .210xy -+= D .210xy ++=12.【2020年新课标1卷文科】已知圆2260x yx +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4 13.【2020年新课标1卷文科】设12,F F 是双曲线22:13y Cx-=的两个焦点,O 为坐标原点,点P 在C 上且||2O P =,则12P F F △的面积为( )A .72B .3C .52D .214.【2020年新课标2卷理科】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A 5B 5C 5D 515.【2020年新课标2卷理科】设O 为坐标原点,直线x a=与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .3216.【2020年新课标3卷理科】设O 为坐标原点,直线2x =与抛物线C :22(0)yp x p =>交于D ,E 两点,若O D O E⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)17.【2020年新课标3卷理科】设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .818.【2020年新课标3卷文科】在平面内,A ,B 是两个定点,C 是动点,若=1A CBC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线19.【2020年新课标3卷文科】点(0,﹣1)到直线()1y kx =+距离的最大值为( )A .1BC D .220.【2022年新高考1卷】已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1 B .直线AB 与C 相切 C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|221.【2022年新高考2卷】已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°22.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线A B 的距离大于2C .当P B A ∠最小时,P B = D .当P B A ∠最大时,P B =23.【2021年新高考2卷】已知直线2:0l a x b y r+-=与圆222:Cxyr+=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 24.【2020年新高考1卷(山东卷)】已知曲线22:1C m xn y+=.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =±D .若m =0,n >0,则C 是两条直线25.【2022年全国甲卷】设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为______________. 26.【2022年全国甲卷】记双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值______________. 27.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.28.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.29.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________. 30.【2022年新高考1卷】已知椭圆C:x 2a2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________.31.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 32.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 33.【2021年甲卷文科】已知12,F F 为椭圆C :221164xy +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12P QF F =,则四边形12P F Q F 的面积为________.34.【2021年乙卷文科】双曲线22145xy -=的右焦点到直线280xy +-=的距离为________.35.【2021年乙卷理科】已知双曲线22:1(0)xC y m m-=>0m y +=,则C 的焦距为_________.36.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y p x=(0p>)的焦点为F ,P 为C 上一点,P F 与x 轴垂直,Q 为x 轴上一点,且P Q O P⊥,若6F Q =,则C 的准线方程为______.37.【2021年新高考2卷】若双曲线22221x y ab-=的离心率为2,则此双曲线的渐近线方程___________.38.【2020年新课标1卷理科】已知F 为双曲线2222:1(0,0)x y Ca b ab-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.39.【2020年新课标3卷文科】设双曲线C :22221x y ab-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.40.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C交于A ,B 两点,则A B=________.三年专题 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan∠PAQ =2√2,求△PAQ 的面积. 4.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在AB 上;②PQ ∥AB ;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C于P ,Q 两点,且O P O Q⊥.已知点()2,0M ,且M与l 相切.(1)求C ,M的方程;(2)设123,,AA A 是C 上的三个点,直线12AA ,13AA 均与M相切.判断直线23AA 与M的位置关系,并说明理由.6.【2021年乙卷文科】已知抛物线2:2(0)C yp x p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9P Q Q F=,求直线O Q 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20Cxp yp =>的焦点为F ,且F 与圆22:(4)1M xy ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,P A P B 是C 的两条切线,,A B 是切点,求P A B △面积的最大值.8.【2021年新高考1卷】在平面直角坐标系x O y 中,已知点()1F -、()21202F M F M F -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x=上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且T A T B T P T Q⋅=⋅,求直线A B 的斜率与直线P Q 的斜率之和.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b ab+=>>,右焦点为0)F ,且3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线M N 与曲线222(0)x yb x +=>相切.证明:M ,N ,F 三点共线的充要条件是||M N=10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x ya+=(a >1)的左、右顶点,G 为E 的上顶点,8A G GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程. 12.【2020年新课标2卷文科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.13.【2020年新课标3卷理科】已知椭圆222:1(05)25xy C m m+=<<4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x=上,且||||B PB Q =,B PB Q⊥,求A P Q的面积.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b ab+=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且A M A N⊥,A DM N⊥,D 为垂足.证明:存在定点Q ,使得D Q为定值.15.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b ab+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.。
大学几何学考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是欧几里得几何的公理?A. 两点之间可以画一条直线B. 所有直角都相等C. 两点确定一条直线D. 直线外一点与直线上各点连接的线段中,垂线段最短答案:C2. 在平面几何中,一个三角形的内角和是多少?A. 180度B. 360度C. 90度D. 270度答案:A3. 以下哪个几何图形是中心对称图形?A. 正方形B. 矩形C. 等腰三角形D. 等边三角形答案:A4. 一个圆的面积公式是?A. A = πr²B. A = 2πrC. A = πrD. A = 4πr²答案:A二、填空题(每题5分,共20分)1. 一个圆的周长公式是______。
答案:C = 2πr2. 如果一个矩形的长是10cm,宽是5cm,那么它的面积是______平方厘米。
答案:503. 在直角坐标系中,点(3,4)关于x轴的对称点的坐标是______。
答案:(3,-4)4. 一个正方体的体积公式是______。
答案:V = a³三、简答题(每题10分,共30分)1. 什么是勾股定理?请给出其公式并解释其意义。
答案:勾股定理是直角三角形的两条直角边的平方和等于斜边的平方。
公式为a² + b² = c²,其中a和b是直角边,c是斜边。
这个定理说明了在直角三角形中,边长之间的关系。
2. 描述一下什么是相似三角形,并给出相似三角形的性质。
答案:相似三角形是指两个三角形的对应角相等,对应边的比例相等的三角形。
相似三角形的性质包括:对应角相等,对应边成比例,以及面积比等于对应边长比的平方。
3. 解释一下什么是圆的切线,并给出切线的性质。
答案:圆的切线是指在圆上某一点处与圆相切的直线。
切线的性质包括:切线与过该点的半径垂直,且在切点处只有一个切线。
四、计算题(每题15分,共30分)1. 给定一个半径为5cm的圆,求其周长和面积。
初二平面几何考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是线段的性质?A. 线段是直线的一部分B. 线段有两个端点C. 线段可以无限延长D. 线段的长度是固定的答案:C2. 一个三角形的内角和是多少度?A. 90°B. 180°C. 270°D. 360°答案:B3. 如果一个角是直角三角形的一个锐角的2倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C4. 一个圆的半径是5厘米,那么它的直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A5. 一个正六边形的内角是多少度?A. 90°B. 120°C. 150°D. 180°答案:B二、填空题(每空1分,共10分)6. 一个正方形的对角线长度是边长的________倍。
答案:√27. 如果一个角是30°,那么它的补角是________度。
答案:1508. 直角三角形中,如果一个锐角是45°,那么另一个锐角是________度。
答案:459. 一个圆的周长是它的直径的________倍。
答案:π10. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________三角形。
答案:直角三、简答题(每题5分,共10分)11. 请说明什么是等腰三角形,并给出一个例子。
答案:等腰三角形是指至少有两边长度相等的三角形。
例如,一个三角形的三边长分别为3厘米、3厘米和5厘米,那么它就是一个等腰三角形。
12. 请解释什么是相似三角形,并给出一个判定条件。
答案:相似三角形是指两个三角形的对应角相等,对应边成比例的三角形。
一个判定条件是如果两个三角形的三个对应角都相等,那么这两个三角形是相似的。
四、计算题(每题15分,共30分)13. 如图所示,三角形ABC是一个直角三角形,其中∠C是直角。
平面几何练习题及答案一、选择题1. 已知三角形ABC中,∠A=90°,AB=3cm,BC=4cm,求AC的长度。
A. 5cmB. 6cmC. 7cmD. √7cm2. 在矩形PQRS中,若PS=6cm,QR=8cm,求对角线PR的长度。
A. 10cmB. 12cmC. 14cmD. √(6²+8²)cm3. 圆O的半径为5cm,点A在圆上,点B在圆外,且OA=5cm,OB=10cm,求AB的长度。
A. 5cmB. 10cmC. 15cmD. √(10²-5²)cm二、填空题4. 已知等腰三角形的底边长为6cm,两腰长为5cm,求其面积。
答案:____cm²5. 已知直角三角形的两条直角边分别为3cm和4cm,求其外接圆的半径。
答案:____cm6. 已知正六边形的边长为a,求其内切圆的半径。
答案:____三、计算题7. 在三角形DEF中,DE=7cm,DF=8cm,EF=9cm,求三角形DEF的面积。
8. 已知圆的半径为r,圆心为O,点A在圆上,点B在圆外,OA=r,OB=2r,求AB的长度。
9. 已知矩形LMNP的长为10cm,宽为6cm,求其内切圆的半径。
四、证明题10. 证明:在直角三角形中,斜边的中线等于斜边的一半。
11. 证明:如果一个三角形的两边和其中一边上的高相等,那么这个三角形是等腰三角形。
12. 证明:在等边三角形中,每个内角都是60°。
五、解答题13. 已知圆的半径为r,求圆的周长和面积。
14. 已知矩形ABCD的长为a,宽为b,求对角线AC的长度。
15. 已知三角形ABC的三个顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形ABC的面积。
答案:1. D2. D3. D4. 12cm²5. 2.5cm6. a/√37. 27cm²8. 5r9. 2cm10. 利用直角三角形斜边上的中线等于斜边的一半的性质证明。
立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4cm ,CD 是斜边上的高沿CD 把△ABC 折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A ,B 的位置,使二面角A -CD -B 是直二面角?证明你的结论.(2)试在平面ABC 上确定一个P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值. 解:(1)用直尺度量折后的AB 长,若AB =4cm ,则二面角A -CD -B 为直二面角.∵ △ABC 是等腰直角三角形,(),cm 22DB AD ==∴又∵ AD ⊥DC ,BD ⊥DC .∴ ∠ADC 是二面角A -CD -B 的平面角.有时当,cm 4AB ,22DB AD ===.90ADB .AB DB AD 222︒=∠∴=+(2)取△ABC 的中心P ,连DP ,则DP 满足条件 ∵ △ABC 为正三角形,且 AD =BD =CD .∴ 三棱锥D -ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC , ∴ DP 与平面内任意一条直线都垂直. (3)当小球半径最大时,此小球与三棱锥的4个面都相切,设小球球心为0,半径为r ,连结OA ,OB ,OC ,OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有ABC O ABD O ADC O BCD O BCD A V V V V V -----+++=代入得3623r -=,即半径最大的小球半径为3623-.A B C第1题图 A BCD第1题图2.如图,已知正四棱柱ABCD —A 1B 1C 1D 1的底面边长为3,侧棱长为4,连结A 1B ,过A 作AF ⊥A 1B 垂足为F ,且AF 的延长线交B 1B 于E 。
(Ⅰ)求证:D 1B ⊥平面AEC ; (Ⅱ)求三棱锥B —AEC 的体积; (Ⅲ)求二面角B —AE —C 的大小. 证(Ⅰ)∵ABCD —A 1B 1C 1D 1是正四棱柱,∴D 1D ⊥ABCD .连AC ,又底面ABCD 是正方形, ∴AC ⊥BD ,由三垂线定理知 D 1B ⊥AC . 同理,D 1B ⊥AE ,AE ∩AC = A , ∴D 1B ⊥平面AEC .解(Ⅱ)V B -AEC = V E -ABC . ∵EB ⊥平面ABC ,∴EB 的长为E 点到平面ABC 的距离. ∵Rt △ABE ~ Rt △A 1AB ,∴EB =.4912=A A AB∴V B -AEC = V E -ABC =31S △ABC ·EB=31×21×3×3×49=.827(10分)解(Ⅲ)连CF ,∵CB ⊥平面A 1B 1BA ,又BF ⊥AE ,由三垂线定理知,CF ⊥AE .于是,∠BFC 为二面角B —AE —C 的平面角,在Rt △ABE 中,BF =59=⋅AE BE BA , 在Rt △CBF 中,tg ∠BFC =35,∴∠BFC = arctg 35.即二面角B —AE —C 的大小为arctg 35.3.如图,正三棱柱ABC —A 1B 1C 1的底面边长为1,点M 在BC 上,△AMC 1是以M 为直角顶点的等腰直角三角形. (I )求证:点M 为BC 的中点; (Ⅱ)求点B 到平面AMC 1的距离; (Ⅲ)求二面角M —AC 1—B 的正切值. 答案:(I )证明:∵△AMC 1是以点M 为直角 顶点的等腰直角三角形,ABCA 1B 1C 1M 第3题图∴AM ⊥MC 1且AM=MC 1∵在正三棱柱ABC —A 1B 1C 1中, 有CC 1⊥底面ABC.∴C 1M 在底面内的射影为CM , 由三垂线逆定理,得AM ⊥CM.∵底面ABC 是边长为1的正三角形,∴点M 为BC 中点. (II )解法(一)过点B 作BH ⊥C 1M 交其延长线于H. 由(I )知AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1.∴AM ⊥BH. ∴BH ⊥平面AMC 1. ∴BH 为点B 到平面AMC 1的距离. ∵△BHM ∽△C 1CM. AM=C 1M=,23在Rt △CC 1M 中,可求出CC 1.22 .6623212211=⇒=⇒=∴BH BH M C BM CC BH 解法(二)设点B 到平面AMC 1的距离为h. 则11BMC A AMC B V V --=由(I )知 AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1 ∵AB=1,BM=.22,23,2111===CC MC AM 可求出 AM S h S MB C AMC ⋅=⋅∆∆113131 232221213123232131⨯⨯⨯⨯=⨯⨯⨯h 66=h (III )过点B 作BI ⊥AC 1于I ,连结HI.∵BH ⊥平面C 1AM ,HI 为BI 在平面C 1AM 内的射影. ∴HI ⊥AC 1,∠BIH 为二面角M —AC 1—B 的平面角. 在Rt △BHM 中,,21,66==BM BH ∵△AMC 1为等腰直角三角形,∠AC 1M=45°.∴△C 1IH 也是等腰直角三角形. 由C 1M=.332,63,23122==-=H C BH BM HM 有 ∴.36=HI .21==∠∴HI BH BIH tg 4.如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2,AB=1,F 是CD 的中点.(Ⅰ)求证:AF ∥平面BCE ; (Ⅱ)求多面体ABCDE 的体积; (Ⅲ)求二面角C-BE-D 的正切值. 证:(Ⅰ)取CE 中点M ,连结FM ,BM ,则有AB DE FM //21//.∴四边形AFMB 是平行四边形. ∴AF//BM ,∵⊂BM 平面BCE , ⊄AF 平面BCE , ∴AF//平面BCE .(Ⅱ)由于DE ⊥平面ACD , 则DE ⊥AF .又△ACD 是等边三角形,则AF ⊥CD .而CD∩DE=D ,因此AF ⊥平面CDE .又BM//AF ,则BM ⊥平面CDE .BM AB V V V CDE B ACD B ABCDE ⋅⋅⋅⋅+⋅⋅=+=--22213124331232233233=⋅⋅+=. (Ⅲ)设G 为AD 中点,连结CG ,则CG ⊥AD .由DE ⊥平面ACD ,⊂CG 平面ACD , 则DE ⊥CG ,又AD∩DE=D , ∴CG ⊥平面ADEB .作GH ⊥BE 于H ,连结CH ,则CH ⊥BE . ∴∠CHG 为二面角C-BE-D 的平面角. 由已知AB=1,DE=AD=2,则3=CG ,∴23122111212)21(21=⨯⨯-⨯⨯-⋅+=∆GBE S . 不难算出5=BE .∴23521=⋅⋅=∆GH S GBE ,∴53=GH . ∴315==∠GH CG CHG tg . 5.已知:ABCD 是矩形,设PA=a ,PA ⊥平面ABCD.M 、N 分别是AB 、PC 的中点.(Ⅰ)求证:MN ⊥AB ;(Ⅱ)若PD=AB ,且平面MND ⊥平面PCD ,求二面角P —CD —A 的大小; (Ⅲ)在(Ⅱ)的条件下,求三棱锥D —AMN 的体积. (Ⅰ)连结AC ,AN. 由BC ⊥AB ,AB 是PB 在底面ABCD 上的射影. 则有BC ⊥PB. 又BN 是Rt △PBC 斜边PC 的中线, 即PC BN 21=. 由PA ⊥底面ABCD ,有PA ⊥AC ,则AN 是Rt △PAC 斜边PC 的中线,即PC AN 21=BN AN =∴又∵M 是AB 的中点, AB MN ⊥∴(也可由三垂线定理证明)(Ⅱ)由PA ⊥平面ABCD ,AD ⊥DC ,有PD ⊥DC.则∠PDA 为平面PCD 与平面ABCD 所成二面角的平面角由PA=a ,设AD=BC=b ,CD=AB=c , 又由AB=PD=DC ,N 是PC 中点,则有DN ⊥PC又∵平面MND ⊥平面PCD 于ND , ∴PC ⊥平面MND ∴PC ⊥MN , 而N 是PC 中点,则必有PM=MC.b ac b c a =∴+=+∴.41412222 此时4,1π=∠=∠PDA PDA tg .即二面角P —CD —A 的大小为4π(Ⅲ)AMD N AMN D V V --=,连结BD 交AC 于O ,连结NO ,则NO 21PA. 且NO ⊥平面AMD ,由PA=a324231a NO S V AMD AMD N =⋅=∴∆-. 6.如图,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点。
专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。
【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。
【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。
将点集K中的点按图标记为其中有8对点之间的距离为。
由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。
对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。
故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
学考练习13:直线与方程
1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( )
A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =3
3x +2
2. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).
A. 2
B. 3
C. 4
D. 5
3. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -2
4.两条直线023=++m y x 和0323)1(2
=-+-+m y x m 的位置关系是( )
A.平行
B.相交
C.重合
D.与m 有关
5.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[]2,2- B .(][)+∞⋃-∞-,22, C .[)(]2,00,2⋃- D .()+∞∞-,
6. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -9
7.到直线2x +y +1=0的距离为
5
5
的点的集合是( ) A.直线2x +y -2=0 B.直线2x +y =0
C.直线2x +y =0或直线2x +y -2=0
D.直线2x +y =0或直线2x +2y +2=0
8. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 . 9. 在直线03=+y x 上求一点,使它到原点的距离和到直线023=-+y x 的距离相等,则此点的坐标为 . 10.已知点P (2,-1).
(1)求过P 点与原点距离为2的直线l 的方程;
(2)求过P 点与原点距离最大的直线l 的方程,最大距离是多少?
(3)是否存在过P 点与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.
学考练习14:圆的方程
1.圆的方程是(x -1)(x +2)+(y -2)(y +4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(
21,-1) C 、(-1,2) D 、(-2
1
,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x +y -2=0上的圆的方程为( )
A .(x -3)2+(y +1)2=4
B .(x -1)2+(y -1)2=4
C .(x +3)2+(y -1)2=4
D .(x +1)2+(y +1)2=4 3.两圆06422=+-+y x y x 和0622=-+x y x 的连心线方程为( ) A .x +y +3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y +7=0 4.方程052422=+-++m y mx y x 表示圆的充要条件是( )
A .
141<<m B .141><m m 或 C .4
1
<m D .1>m 5.圆O 1:0222=-+x y x 与圆O 2:0422=-+y y x 的位置关系是( )
A .外离
B .相交
C .外切
D .内切
6.圆034222=-+++y y x x 到直线x +y +1=0的距离为2的点共有( ) A .4 B .3 C .2 D .1
7.设直线过点(a ,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( ) A .± 2 B .±2 C .±2 2 D .±4
8.求经过点A (-1,4)、B (3,2)且圆心在y 轴上的圆的方程
9.点(1,2-a a )在圆x 2
+y 2
-2y -4=0的内部,则a 的取值范围是( )
A .-1<a <1
B . 0<a <1
C .–1<a <51
D .-5
1
<a <1
10.ABC ∆的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程.
学考练习15:圆锥曲线
1. 椭圆15
32
2=+y x 的焦距是( ) .A 22 .B 24 .C 2 .D 2
2. 抛物线y x =2的准线方程是( )
A.014=+x
B.014=+y
C.012=+x
D.012=+y
3.椭圆552
2
=+ky x 的一个焦点是(0,2),那么k 等于 ( ) .A 1- .B
5 .C 1 .D 5-
4.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心
率为( ) A .2 B
.
2
C
D .5 5. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )
(A) 2 (B) 3 (C) 4 (D) 5
6.双曲线12
2=+y mx 的虚轴长是实轴长的2倍,则m 等于 ( ) .A 41-
.B 4- .C 4 .D 4
1
7. 双曲线)0(122≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42
=的焦点重合,则mn 的值为
( )
A .163
B .83
C .316
D .38
8.抛物线)0(22
>=p px y 上一点M 到焦点的距离为a ,则点M 到准线的 距离是
9.过点)2,3(-A 的抛物线的标准方程是
10.在抛物线)0(22
>=p px y 上,横坐标为4的点到焦点的距离为5,则p 的值是
学考练16:圆锥曲线
1. 双曲线的渐近线方程是19
42
2=-y x ( )
A .x 32±
B .x 94±
C .x 23±
D .x 49
± 2. 椭圆12
92
2=+y x 的焦点为21F F 、,P 为椭圆上任意一点,且 41=PF 则=2PF ( ) A 5 B 4 C 3 D 2 3. 抛物线 2
4
1x y =
的准线方程是 ( ) A 0116=+x
B 0116=+y
C 01=+x
D 01=+y
4.双曲线 12642
2
-=-y x 的焦点是虚轴长与实轴长分别是 ( )
.A 2,3 .B 22,32 .C
3,2 .D 32,22
5.椭圆932
2
=+y x 的离心率等于 ( ) .A
36 .B 26 .C 23 .D 4
6
6. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )
(A) 2 (B) 3 (C) 4 (D) 5
7.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心
率为 ( ) A .2 B C D .5
8.椭圆
1100642
2=+y x 的焦点坐标是_____________________;顶点坐标为:______________ 9.已知双曲线222
2-=-y x ,则渐近线方程是
10.已知抛物线的方程x y 42
=,直线L 过焦点F ,且斜率为1,与抛物线交于A 、B 两求: (1)直线L 的方程;(2)求线段AB 的中点坐标;(3)求公共弦长AB ;。