自激振荡或自振荡,如图所示。 自振荡是人们特别感兴趣的一个 问题,对它的研究有很大的实际意义。
Nanjing University of Technology
四、非线性系统的正弦输入响应 正弦信号作用下,线性系统的输出是与输入信 号同频率的正弦信号。 而非线性系统在正弦信号作用下的响应则很复 杂,一般不是正弦信号,但仍是周期信号;有 时输出信号频率为输入频率的倍频、分频等现 象。 非线性系统响应还有其他与线性系统不同的现 象,无法用线性系统的理论来解释。在一些情况 下,引入某些非线性环节,使系统获得比线性系 统更为优异的性能。实际上大多数智能控制都 属于非线性控制范畴。
Nanjing University of Technology
图7-6-3非线性控制系统的稳定性分析
二、自振荡分析
Nanjing University of Technology
• 若复平面中-1/N (X)曲线与G (j)曲线有交点,则该交 点对应着可能的等幅振荡,问题是这个等幅振荡能否稳 定地存在?也就是说,如果系统受到某个扰动使振荡的 振幅发生变化,系统是否具有恢复到扰动前的等幅振荡 状态的能力?如果系统具备这种能力,则该等幅振荡能 够稳定地存在,并能被观察到,称这个稳定的等幅振荡为 自持振荡。反之,振荡不能稳定地存在,必然转移到其它 运动状态(收敛到零或发散)。 • 以图7-6-3(c) 为例进行分析。图中-1/N (X)曲线与G (j)曲线有两个交点a和b, 对应于不同的振荡频率和振 幅。对a点,振幅及频率为Xa及 (j),若由于扰动使振 荡的振幅略有增大,这时工作点将沿-1/N (X)曲线由a 点移动到c点。由于c点不被G (j)所包围,故系统进入稳 定区,周期振荡的振幅要衰减,并逐步恢复到Xa,即自动返 回原状态;若由于扰动使振荡的振幅略有减小,这时工 作点将沿-1/N (X)曲线由a 点转移到d点,由