确定磁场最小面积的方法
- 格式:doc
- 大小:259.50 KB
- 文档页数:10
有界磁场最小面积全攻略作者:高爱虎来源:《中学物理·高中》2013年第12期带电粒子在磁场中的运动问题,既是高中物理的重点,也是学生学习的难点,同时又是高考的热点.而这类问题中求解有界磁场最小面积的题目更是近年来高考及各类试卷的“新宠儿”.求解有界磁场的最小面积的题目主要考查了学生对平面几何知识与物理知识的综合运用能力,它能够很好的体现高考对学生“分析综合能力、应用数学处理物理问题的能力”的考查.其难点在于粒子做部分圆周运动的圆心、半径、射入磁场点、射出磁场点的确定.下面按磁场区域的形状分类解析.1磁场区域为矩形例1如图1所示,在直角坐标系xOy第一象限的区域内存在沿y轴正方向的匀强电场.现有一质量为m,电量为e的电子从第一象限的某点A(L,38L)以初速度v0沿x轴的负方向开始运动,经过x轴上的点B(L4,0)进入第四象限,先做匀速直线运动然后进入垂直纸面向里的矩形匀强磁场区域,电子偏转后恰好经过坐标原点O,并沿y轴的正方向运动,不计电子的重力.求:(1)电子经过B点的速度v;(2)该匀强磁场的磁感应强度B的大小和矩形磁场的最小面积S.小结求解该类问题时,应依据题意确定圆心的位置、圆的半径、射入磁场点、射出磁场点,从而画出粒子在磁场中运动的部分圆弧;让矩形的一边与射入、射出磁场点的连线重合,另一边(运动轨迹小于半圆周)或三边(运动轨迹大于半圆周)与圆弧相切,据此画出能恰好覆盖运动轨迹的矩形即是最小.2磁场区域为圆形小结磁场区域为三角形的题目当三角形边长最小时粒子圆周运动的轨迹并不是三角形磁场的内切圆,因此在计算最小边长时要注意等边三角形三边的三条中垂线中只有射入、射出磁场点所在边的中垂线过轨迹圆的圆心.4磁场区域为树叶形磁场区域为树叶形的题目的特征是大量相同带电粒子都过磁场中某点.设大量质量为m、带电量为q的粒子以相同速率v垂直射入磁感应强度为B的匀强磁场中,且均过磁场中某点P.则粒子将在磁场中做半径为r=mvBq的匀速圆周运动,且轨迹圆的圆心集合是以P点为圆心、r为半径的圆(以下统称“圆心圆”),如图7虚线所示.下面利用“圆心圆”的知识求解树叶形磁场的最小面积.例4(2009年海南卷)如图8,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A点射出磁场.不计重力,求:(1)此匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积.小结沿“圆心圆”的部分弧平移某条半径即可找到相应的磁场区域边界,从而求出磁场的最小面积.。
磁场的计算和测量方法磁场是我们生活中常见的一种物理现象,它可以通过计算和测量来揭示其特性和行为。
在本文中,我们将探讨磁场的计算和测量方法,并深入了解其原理和应用。
一、磁场的计算方法磁场的计算方法有多种,其中最常见的是通过安培定律和比奥-萨伐尔定律来计算。
安培定律表明,磁场的大小与电流强度成正比,与距离成反比。
因此,我们可以通过测量电流和距离来计算磁场的强度。
具体而言,我们可以使用安培表来测量电流,并使用磁感应强度计来测量距离。
然后,根据安培定律的公式B = μ0 * I / (2πr),其中B表示磁场强度,μ0表示真空中的磁导率,I表示电流强度,r表示距离,我们可以计算出磁场的数值。
此外,还有一种常见的计算方法是通过磁通量和磁场的关系来计算。
磁通量是磁场穿过一个平面的总磁场量,可以通过使用磁感应强度计和测量平面面积来计算。
然后,根据比奥-萨伐尔定律的公式Φ = B * A * cosθ,其中Φ表示磁通量,B表示磁场强度,A表示平面面积,θ表示磁场与平面法线的夹角,我们可以计算出磁场的数值。
二、磁场的测量方法除了计算方法外,我们还可以使用各种仪器和设备来测量磁场。
其中最常见的是磁感应强度计和霍尔效应传感器。
磁感应强度计是一种用于测量磁场强度的仪器,它包含一个磁场感应元件和一个指示器。
当磁感应元件暴露在磁场中时,它会产生一个电压信号,指示器会根据该信号显示磁场的强度。
这种仪器的优点是简单易用,适用于实验室和工业环境中的磁场测量。
另一种常用的磁场测量方法是使用霍尔效应传感器。
霍尔效应是一种基于磁场对电流的影响而产生的电势差现象,可以通过将霍尔效应传感器放置在磁场中来测量磁场的强度。
传感器会产生一个电压信号,该信号与磁场的强度成正比。
这种方法的优点是精确度高,适用于需要高精度测量的应用,如磁共振成像和磁力计。
除了这些仪器和设备,还有其他一些测量方法,如磁力计和磁化强度计。
磁力计是一种用于测量磁场力的仪器,它可以通过测量磁场对物体施加的力来确定磁场的强度。
圆形磁场问题复习题学校:___________姓名:___________班级:___________考号:___________一、多选题(共1小题,每小题5.0分,共5分)1.(多选)如图所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子分别以相同的速度分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入。
则下面判断正确的是()A.两电子在两磁场中运动时,其半径一定相同B.两电子在磁场中运动的时间有可能相同C.进入圆形磁场区域的电子可能先飞离磁场D.进入圆形磁场区域的电子可能后飞离磁场四、计算题(共17小题,每小题18.0分,共306分)2.如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B,方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在与x轴平行的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后方向恰好垂直ON,ON是与x轴正方向成15°角的射线.(电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.)求:(1)第二象限内电场强度E的大小和方向;(2)电子离开电场时的速度方向与y轴正方向的夹角θ;(3)粗略画出电子在电场和磁场中的轨迹;(4)圆形磁场的最小半径R min.3.如图所示,平行板电容器上板M带正电,两板间电压恒为U,极板长为(1+)d,板间距离为2d,在两板间有一圆形匀强磁场区域,磁场边界与两板及右侧边缘线相切,P点是磁场边界与下板N的切点,磁场方向垂直于纸面向里,现有一带电微粒从板的左侧进入磁场,若微粒从两板的正中间以大小为v0水平速度进入板间电场,恰做匀速直线运动,经圆形磁场偏转后打在P点。
一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。
现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。
求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。
(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。
设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。
(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。
答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。
最小磁场矩形面积问题的再探讨作者:叶玉琴丁丹华来源:《中学物理·高中》2013年第05期《物理教师》2012年第3期刊登了一篇题为《怎样处理“题同答异”的问题》(下文称为《怎》文)的文章,文章探讨的问题如下:题如图1,一带电粒子(不计粒子的重力)以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面的磁感应强度为B的匀强磁场区域(图中未画出);粒子飞出磁场后接着沿垂直于电场的方向出入宽度为L的电场中,电场强度的大小为E,方向竖直向上.粒子穿过电场过程中,速度反向改变了60°角.已知带电粒子的质量为m,电荷量为q,粒子进入磁场前的速度方向与水平方向成θ=60°.若磁场区域为矩形,则矩形最小面积为多少?《怎》文开篇提出这样的观点:有些物理问题,因为题目所给的条件不严密,它的答案会随解题者对题目的理解的不同而不同.对于例题中的最小矩形面积问题,《怎》文认为:题目只是确定磁场区域是矩形,并没有要求边界是水平和竖直,留有让学生产生产生歧义的漏洞,因而多数人因为思维定势按图2求磁场区域最小面积为S=Rsinθ·R(1-cosθ)=34R2.【笔者注:此种方法确定的最小矩形的一对对边与粒子进点或出点处半径平行,下文称为“平行半径法”】而事实上有更小的矩形面积区域,如图3,它的面积S′=2Rsin30°·R(1-cos30°)=2-32R2,【笔者注:此种方法确定的最小矩形的一对对边与粒子在磁场中运动的进、出点决定的弦平行,故称之“平行弦法”】鉴于此,笔者认为,第一,关于此类问题的教学处理仅应用“有结果反推原因”的物理方法是不够的,而应给出更严谨、更普遍性的论证,只有这样,才能让学生深刻认识问题、了解问题并掌握解决问题的方法及原理.第二,《怎》文中提出的关于最小矩形磁场区域面积问题的题给条件是严密的,不存在“题同答异”一说,即不存在“答案随解题者对题目的理解的不同而不同”.笔者在教学中确实发现如《怎》文所说的情形:经常有学生拿着题目问,这道题在这里是这个答案,在另一本书上是那个答案.但笔者一点也不烦,因为这正是利用错误资源、澄清认识误区的最好时机!下面笔者对粒子在匀强磁场中做匀速圆周运动中所需的最小矩形磁场区域面积问题作一般性的论证和说明.为方便,令粒子在匀强磁场中做匀速圆周运动的半径为R,圆心角(或曰速度偏向角)为θ,分以下四种情形进行分析论证.21世纪国际社会的竞争归根到底是人才素质的竞争,而创新精神是优秀人才必备的素质.随着新课改的日益全面推行和高考改革的不断深入,近几年来高考试题也越来越突出了对学生能力的考查,主要表现在要求学生在熟练掌握知识的基础上能够灵活地综合运用所学的知识分析问题并寻求最佳的解决方案,这就要求学生具有周密分析、独立思考的能力,因此在教学中如果出现错误资源时,诚如《怎》文所说,这其实正是展现物理教师学术水平和对待问题的态度的最佳时机,同时也是培养中学生的质疑意识和创新精神的最佳时机,教师要积极把握、智慧对待!。
磁场中的“最小面积”问题河南省信阳高级中学陈庆威2016.12.27带电粒子在磁场中运动类题目本身就是磁场中的重难点问题,而求粒子在磁场中运动时的“最小面积”问题,又是这类问题中比较典型的难题。
很多时候面对这种题目,同学们的大脑都是一片空白,没有思路、没有方法、也没有模型。
那么,如何突破这一难题呢?以下是我精心整理的几道相关试题。
相信,我们通过该种模型题的训练,能学会举一反三、活学活用、准确把握模型、深刻理解模型,形成自己独立解决该类问题的思维和方法,从而全面提升我们的解题能力。
例题1:如图所示,一质量为m、电荷量为q的带电粒子,从y轴上的P/点以速度丫射入第一象限所示的区域,入射方向与x 轴正方向成。
角.为了使该粒子能从x轴上的P/点射出该区域,且射出方向与x轴正方向也成a角,可在第一象限适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若磁场分布为一个圆形区域,求这一匕心一圆形区域的最小面积为(不计粒子的重力)一一 .:解析:粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:"二崂则粒子在磁场中做圆周的半径:R =竺qB由题意可知,粒子在磁场区域中的轨道为半径等于r 的圆上的一段圆周,这段圆弧应与入射方向的速度、 出射方向的速度相切,如图所示:则到入射方向所在直线和出射方向所在直线相距为 R 的O,点 就是圆周的圆心.粒子在磁场区域中的轨道就是以0,为圆心、R 为半径的圆上的圆弧 ef,而e 点和f 点应在所求圆形磁场区 域的边界上,在通过 e 、f 两点的不同的圆周中,最小的一个 是以ef 连线为直径的圆周.即得圆形区域的最小半径 一 R sin a =皿sin ° qB 则这个圆形区域磁场的最小面积例题2:如图所示,一带电质点,质量为m,电量为q,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该 质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xoy 平面、 磁感应强度为B 的匀强磁场。
一模型界定带电粒子在有界磁场中运动时,要完成题目要求的运动过程,空间中有粒子必须经过的一个磁场区域,按照题目要求的边界形状或由粒子临界状态下的运动轨迹所决定的有界磁场区域,其面积存在着一个最小值,此模型着重归纳有界磁场最小面积的确定与计算方法.二模型破解在涉及最小磁场面积的题目中,主要有两种类型,一种是单一粒子的运动中所经过磁场的最小面积,这种类型的题目通常对磁场区域的形状有明确的要求,如矩形、圆形、三角形;另一种类型是大量粒子经过磁场的运动,由临界状态下的粒子运动轨迹及对粒子的特定运动形式要求所产生的对磁场边界形状的特定要求,从而形成有界磁场的面积的极值问题.1.单一粒子的运动(i)确定粒子在磁场运动的轨迹半径粒子在磁场运动的轨迹半径通常是已知的或是能够由题目中条件计算得出的,也可在未知时先将半径假设出来.(ii)确定粒子在有界磁场中的入射方向和出射方向粒子在有界磁场中的入射方向和出射方向通常也是由题目给出或能够从题目中条件分析得出.(iii)确定粒子在有界磁场中运动时的入射点与出射点的位置当题目中没有给定粒子在进出磁场的位置时,先延长粒子的入射方向与出射方向所在的直线得到一个交点,粒子在磁场中运动的轨迹圆心必在这两条直线所形成的两对夹角中的其中一条夹角平分线上,由粒子经过磁场前后的运动要求确定圆心所在的夹角平分线;再在此夹角平分线上取一点O,过该点作粒子入射方向、出射方向所在直线的垂线,使O点到两直线的垂直距离等于粒子的运动轨迹半径,则两垂足即分别为粒子进出磁场时的入射点与出射点.(iv)确定有界磁场的边界连接入射点与出射点得到一条线段或直线,并作出粒子在磁场处于入射点与出射点之间的一段运动轨迹圆,再由题目对磁场边界形状的要求确定磁场边界线的位置或圆形磁场的最小半径.①圆形有界磁场(I)当题目对圆形磁场区域的圆心位置有规定时,连接圆心与粒子在磁场中的出射点即得到磁场区域的半径.但是这种情况下磁场区域的大小是固定的.(II)当题目对圆形磁场区域的圆心位置无规定时,若粒子在磁场中转过的圆弧为一段劣弧时,将连接入射点a 与出射点b 所得的线段作为磁场区域的直径,则所得圆即为最小面积的圆形磁场区域,如图1所示.图1图中几何关系为θsin R r =若粒子在磁场中转过的圆弧为半圆弧或一段优弧时,最小磁场区域的边界极限圆弧与粒子运动轨迹重合,即无最小值.②半圆形有界磁场(I)当粒子在磁场中运动轨迹是一段劣弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以ab 为直径作出的半圆弧即为所求,如图2甲所示.图中几何关系为θsin R r =(II)当粒子在磁场中运动轨迹是一段优弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以其中点为圆心作出与粒子运动轨迹相切的圆弧,此圆弧即为半圆形磁场区域的曲线边界,如图2乙所示.图2图中几何关系为)cos 1(θ+=R r (III)当粒子在磁场中运动轨迹是一个半圆弧时,磁场圆形边界与粒子运动轨迹重合.③矩形有界磁场(I)当题目对矩形磁场区域边界某个边有规定时,过入射点或过出射点作已知边界线的平行线或垂线,再作与已知边界线平行或垂直的、与粒子在磁场中运动轨迹相切的直线,则所得矩形即为题目要求的最小矩形.(II)当题目对矩形磁场区域边界无规定时,第一步:连接入射点a 与出射点b 得一条直线ab;第二步:作ab 的平行线且使其与粒子运动轨迹圆相切;第三步:作ab 的两条垂线,若粒子在磁场中转过的是一个优弧时,应使这两条垂线也与粒子运动轨迹圆弧相切,如图3甲所示;若粒子在磁场转过的是一段劣弧时,两条垂线应分别过入射点a 和出射点b,如图3乙所示.所得矩形即为题目要求的最小矩形.图3甲图中几何关系为)cos 1(1θ+=R L 、RL 22=乙图中几何关系为)cos 1(1θ-=R L 、θsin 22R L =○4正三角形有界磁场当粒子在磁场中转过的圆心角超过1200时,先作入射点a、出射点b 连线的中垂线,再从中垂线上某点作粒子运动轨迹圆的两条切线,且使两切线间的夹角为600,则此三条直线所组成的三角形即为题目所要求的最小三角形,如图4甲所示.当粒子在磁场中转过的圆心角不超过1200时,也是先作入射点a、出射点b 连线的中垂线,再从中垂线上某点连接入射点a 与出射点b,使其与ab 组成一正三角形,此正三角形即为所示如图4乙所示.图4甲图中几何关系为θcos 30sin 30cos 00R R L +=;乙图中几何关系为θsin 2R L =.例1.一质量为m 、带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强大小为大小为E ,方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方c 点,如图所示,已知b 到O 的距离为L ,粒子的重力不计,试求:30°v o bcv 0xyyEO 例1题图⑴磁感应强度B⑵圆形匀强磁场区域的最小面积;⑶c 点到b 点的距离例2.如图所示,在直角坐标xOy 平面y 轴左侧(含y 轴)有一沿y 轴负方向的匀强电场,一质量为m,电荷量为q 的带正电的粒子从x 轴上P 处发速度v0沿x 轴正方向进入电场,从y轴上Q 点离开电场时速度方向与y轴负方向间夹角θ=300,Q 点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小qdmv B 0=,粒子能从坐标原点O 沿x轴负方向再进入电场,不计粒子重力,求:例2题图(1)电场强度大小E(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积(3)粒子从P 点运动到O 点的总时间【解析】:(1)设粒子从Q 点离开电场时速度大小v 由粒子在匀强电场中做类平抛运动得:02v v =由动能定理得2022121mv mv qEd -=(2分)解得qdmv E 2320=(1分)例2答图(3)设粒子在匀强电场中运动时间为1t 粒子从Q 点离开电场时沿y 轴负向速度大小为y v 有03v v y例3.如图所示,第三象限内存在互相垂直的匀强电场和匀强磁场,匀强磁场方向向里,大小为B 0,匀强电场场强为E。
磁场大小b计算公式
磁场大小B的计算公式涉及到磁场的各种特定情况,因此需要
根据具体情况来确定。
在一般情况下,可以使用以下公式来计算磁
场大小B:
B = μ0 (I / (2 π r))。
其中,B代表磁场大小,μ0代表真空中的磁导率(μ0约为
4π×10^-7 T·m/A),I代表电流的大小,r代表距离电流的位置。
这个公式描述了通过一根长直导线产生的磁场大小,适用于计算导
线周围的磁场。
在其他情况下,比如环形线圈、螺线管等,磁场大
小的计算公式会有所不同。
例如,对于环形线圈,可以使用公式B
= (μ0 I N) / (2 R),其中N代表匝数,R代表环形线圈的半径。
另外,在电磁学中,还有一些其他情况下的磁场大小计算公式,比如磁铁的磁场大小计算、长直导线两端的磁场大小计算等,每种
情况都有相应的计算公式。
因此,在实际应用中,需要根据具体情
况选择合适的计算公式来计算磁场大小B。
总之,磁场大小B的计算公式是根据具体情况而定的,需要根
据不同情况选择合适的公式进行计算。
希望这些信息能够帮助到你。
确定磁场最小面积的方法电磁场内容历来是高考中的重点和难点。
近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法。
一、几何法例1. 一质量为m、电荷量为+q的粒子以速度v,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x 轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图1所示,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;(2)c点到b点的距离。
图1解析:(1)先找圆心,过b点逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距O点距离为圆的半径,据牛顿第二定律有:Bqv m v R2=①解得RmvqB=0②过圆心作bd的垂线,粒子在磁场中运动的轨迹如图2所示:要使磁场的区域有最小面积,则Oa应为磁场区域的直径,由几何关系知:图2rR=cos30°③由②③得r mv qB=320所以圆形匀强磁场的最小面积为:S r m v q Bmin==ππ22022234 (2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:s vt ·°sin30=④ s at ·°cos30122=⑤ 而a qE m=⑥联立④⑤⑥解得s mv Eq=4302二、参数方法例2. 在xOy 平面内有许多电子(质量为m 、电荷量为e ),从坐标原点O 不断地以相同的速率v 0沿不同方向射入第一象限,如图3所示。
现加一个垂直于xOy 平面向里,磁感应强度为B 的匀强磁场,要使这些电子穿过磁场区域后都能平行于x 轴向x 轴正向运动。
求符合该条件磁场的最小面积。
图3解析:由题意可知,电子是以一定速度从原点O 沿任意方向射入第一象限时,先考察速度沿+y 方向的电子,其运动轨迹是圆心在x 轴上的A 1点、半径为R mv qB=的圆。
该电子沿圆弧OCP 运动至最高点P 时即朝x 轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5。
当电子速度方向与x 轴正向成角度θ时,作出轨迹图4,当电子达到磁场边界时,速度方向必须平行于x 轴方向,设边界任一点的坐标为S x y (),,由图4可知:图4x R y R R ==-sin cos θθ,,消去参数θ得: x y R R 222+-=()可以看出随着θ的变化,S 的轨迹是圆心为(0,R ),半径为R 的圆,即是磁场区域的下边界。
上下边界就构成一个叶片形磁场区域。
如图5所示。
则符合条件的磁场最小面积为扇形面积减去等腰直角三角形面积的2倍。
图5S r R mv eB min=⨯-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪21414222202ππ带电粒子在磁场中运动之磁场最小范围问题剖析江苏省扬中高级中学 刘风华近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场范围为圆形例1 一质量为、带电量为的粒子以速度从O 点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。
解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。
可知,其离开磁场时的临界点与O点都在圆周上,到圆心的距离必相等。
如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。
由,得。
弦长为:,要使圆形磁场区域面积最小,半径应为的一半,即:,面积(2)粒子运动的圆心角为1200,时间。
(3)距离,故点的坐标为(,0)。
点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。
二、磁场范围为矩形例2如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场。
现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点O,并沿轴的正方向运动,不计电子的重力。
求(1)电子经过点的速度;(2)该匀强磁场的磁感应强度和磁场的最小面积。
解析:(1)电子从点开始在电场力作用下作类平抛运动运动到点,可知竖直方向:,水平方向:。
解得。
而,所以电子经过点时的速度为:,设与方向的夹角为θ,可知,所以θ=300。
(2)如图4,电子以与成30°进入第四象限后先沿做匀速直线运动,然后进入匀强磁场区域做匀速圆周运动恰好以沿轴向上的速度经过O点。
可知圆周运动的圆心一定在X轴上,且点到O点的距离与到直线上M点(M点即为磁场的边界点)的垂直距离相等,找出点,画出其运动的部分轨迹为弧MNO,所以磁场的右边界和下边界就确定了。
设偏转半径为,,由图知OQ==,解得,方向垂直纸面向里。
矩形磁场的长度,宽度。
矩形磁场的最小面积为:点评:此题中粒子进入第四象限后的运动即为例1中运动的逆过程,解题思路相似,关键要注意矩形磁场边界的确定。
三、磁场范围为三角形例3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。
为了使该粒子能在AC边上的N点(CM=CN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。
若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。
试求:(1)粒子在磁场里运动的轨道半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;解析:(1)由和,得:,(2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在G点与初速度方向相切,在F点与出射速度相切。
画出三角形,其与圆弧在D、E两点相切,并与圆O交于F、G两点,此为符合题意的最小磁场区域。
由数学知识可知∠FOG=600,所以粒子偏转的圆心角为3000,运动的时间(3)连接并延长与交与H点,由图可知,,=点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。
另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆。
四、磁场范围为树叶形例4在平面内有许多电子(质量为、电量为),从坐标O不断以相同速率沿不同方向射入第一象限,如图7所示。
现加一个垂直于平面向内、磁感强度为的匀强磁场,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积。
解析:电子在磁场中运动半径是确定的,设磁场区域足够大,作出电子可能的运动轨道如图8所示,因为电子只能向第一象限平面内发射,其中圆O1和圆O2为从圆点射出,经第一象限的所有圆中的最低和最高位置的两个圆。
圆O2在x轴上方的个圆弧odb就是磁场的上边界。
其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R 为半径的圆弧O1O m O2。
由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识知电子的飞出点必为每条可能轨迹的最高点。
可证明,磁场下边界为一段圆弧,只需将这些圆心连线(图中虚线O1O2)向上平移一段长度为的距离即图9中的弧ocb就是这些圆的最高点的连线,即为磁场区域的下边界。
两边界之间图形的阴影区域面积即为所求磁场区域面积:。
还可根据圆的知识求出磁场的下边界。
设某电子的速度V0与x轴夹角为θ,若离开磁场速度变为水平方向时,其射出点也就是轨迹与磁场边界的交点坐标为(x,y),从图10中看出,,即(x>0,y>0),这是个圆方程,圆心在(0,R)处,圆的圆弧部分即为磁场区域的下边界。
点评:这道题与前三题的区别在于要求学生通过分析确定磁场的形状和范围,磁场下边界的处理对学生的数理结合能力和分析能力要求较高。
由以上题目分析可知,解决此类问题的关键是依据题意,分析物体的运动过程和运动形式,扣住运动过程中的临界点,应用几何知识,找出运动的轨迹圆心,画出粒子运动的部分轨迹,确定半径,再用题目中规定形状的最小磁场覆盖粒子运动的轨迹,然后应用数学工具和相应物理规律分析解出所求的最小面积即可。