注水与井网
- 格式:ppt
- 大小:1.59 MB
- 文档页数:60
石油注水井知识点总结一、石油注水井的原理和作用1.1 石油注水井的基本原理石油注水井是通过向油田中注入水来提高地层压力,进而推进石油流向井口,从而提高采收率的产油方式。
石油注水井的基本原理是利用地层水平向引压原油流动,通过增加地层压力使原油向井口运移并提高采收率。
1.2 石油注水井的作用①增加地层压力,推进石油流向井口,从而提高采收率。
②改善油层物理性质,提高原油粘度,减小地层渗透率,减缓水驱油,防止原油水平运移,控制毛细作用等。
③在提高采收率的同时减小油田地质压力,延缓地层动摩擦力作用,减小地质压力梯度,减少地质压力对油井产能的影响。
二、石油注水井的构造2.1 石油注水井的类型按照注水井的注水方式和工作特点可以分为常规注水井、有压注水井、水驱气驱注水井、压裂注水井、辅助注水井等。
2.2 石油注水井的构造组成石油注水井主要由井口设备、注水管线、注水泵、注水井水处理设备等组成。
井口设备包括防喷器、油管、波纹管、注水管道等。
注水管线是指连接水源和注水井的管道系统,包括水源沟、生产水处理装置和输水管道等。
注水泵是注水井的核心设备,一般包括离心泵、螺杆泵等。
注水井的水处理设备主要包括除杂设备、水质调节设备、水泵系统等。
2.3 石油注水井的井筒结构石油注水井的井筒结构一般由水平井段和垂直井段组成。
水平井段是指位于井下水平方向上的井段,垂直井段是指井眼位置从地表到油层上部的井段。
水平井段是石油注水井的重点区域,其设计和施工质量直接影响着注水井的有效注水产能。
三、石油注水井的工程设计3.1 井网布点设计石油注水井的井网布点设计是决定其注水效果和注水产能的关键因素。
井网布点设计要充分考虑油层地质特征、含水层分布、渗透率分布、水源条件等因素,确定合理的注水井布点,避免重复开发和盲目开发,提高石油注水井的开发效率。
3.2 注水井的选址和设计注水井选址和设计是注水井工程设计的关键环节之一,它直接影响着石油注水井的建设成本和注水效果。
仿水平井注水开发裂缝井网适配优化设计研究
随着油田开发的的深入,水平井注水技术被广泛应用。
由于注水量大、注水强度高等原因,常常会出现井网裂缝的问题。
这些裂缝会导致水平井的注水效果降低,甚至降低油井开采率。
本文针对水平井注水开发中存在的问题,提出一种适配优化设计方案,以提高注水井网的技术效果。
针对裂缝问题,我们需要了解其产生的原因。
裂缝的产生主要有两个原因,一是由于地层力学性质不匹配,造成井网在注水过程中受到不均匀的应力作用,从而导致裂缝的发生;二是由于注水流量和压力过大,超过井网的承载能力,也会导致井网产生裂缝。
针对以上问题,我们提出了适配优化设计方案。
通过地质勘探和实地调研,获取地层的物理性质和力学性质,建立地质模型。
然后,利用数值模拟软件进行水平井注水过程的模拟分析,评估井网的受力情况。
根据数值模拟结果,我们可以确定注水井的布置位置、注水流量和注水压力等参数。
在确定了井网的参数后,我们还可以通过优化设计来进一步提高注水效果。
这里的优化设计包括两个方面:井网布置优化和注水井参数优化。
井网布置优化是指确定注水井的位置和间距,以确保井网的覆盖范围和覆盖密度均匀。
注水井参数优化是指确定注水流量和注水压力等参数,使其既满足开采需要,又不会对井网造成不均匀的应力作用。
通过适配优化设计方案,我们可以有效地降低注水井网裂缝的发生几率,提高注水效果。
这对于提高油田的开采率和经济效益具有重要的意义。
浅析油藏注水开发技术摘要:注水开发是各油田常用的采油开发措施。
不同性质的油藏或区块,从油田地质特征出发,选择合理的注水方式,有利于发挥本油藏或区块的能力,提高油藏采收率,获得最大的经济效益和社会效益。
本文介绍注水开发原理,注水方式,影响油田注水开发效果的因素,提出改善油田注水开发效果的有效途径。
关键词:注水开发是油田开发过程中的一项重要采油技术。
然而,在实际的原油注水生产过程中,由于注入的液体与储层岩石、矿物和储层流体不匹配,往往会造成地层堵塞。
这将导致注水井吸水能力降低,注水压力升高。
水中的腐蚀性气体和微生物也会对设备和管道造成腐蚀,不仅会增加采油成本,还会加剧油藏的堵塞。
因此,在油田注水开发过程中,应注意开发技术应用中的相关问题,在结合油田地质特征的基础上,提高注水开发技术的应用水平。
1 注水开发技术的概况1.1 技术原理注水采油是指在证明依靠自然能源进行采油不经济或不能维持一定的采油率时,通过人工向储层注水来维持或补充储层能量来开采原油的一种方法。
注入的水将原油从储层中排出。
从而降低了石油开采难度,提高了油井产量和油藏采收率。
油田注水是油田生产过程中最重要的工作环节之一。
它不仅能有效补充地层能量,提高开发速度,提高原油采收率,而且能保证油田高产稳产。
注水技术可以提高油井的产量和采收率,具有良好的经济效益,是现代油田的主要开发方式。
1.2 技术分类根据注水时间,注水技术可分为三种类型:超前注水、同步注水和延迟注水。
先进注水是指在油井投产前注入注水井,含油饱和度不低于原始含油饱和度,地层压力高于原始地层压力,建立有效驱替体系的注采方法,提前注水可以使地层压力保持在较高水平。
同步注水是指在油田进入生产阶段后的短时间内注水,使地层压力保持在饱和地层压力以上,使油井具有较高的生产能力,有利于保持较高的采油速度,实现长期稳产。
滞后注水是指利用天然能源对油田进行初次开采。
当天然能源不足时,进行注水二次开发。
油藏工程基础一、油藏的驱动方式及开采特征:1、弹性驱动-----油藏无边水或底水,又无气顶,且原始油层压力高于饱和压力时,随着油层压力的下降,依靠油层岩石和流体弹性膨胀能驱油的方式。
一般为封闭油藏和断块油藏。
2、溶解气驱-----在弹性驱阶段,当油层压力下降到低于饱和压力时,随着油层压力的进一步降低,原处于溶解状态的气体将分离出来,气泡的膨胀能将原油驱向井底。
其弹性能主要来自气泡的膨胀,而不是来自液体和岩石的膨胀。
在开采过程中,随着井底流压的急剧下降,井底附近严重脱气,油层孔隙中很快形成混合流动,随着压力的进一步降低,逸出的气体增加。
由于气体的流度大于原油的流度,气体抢先流入井底,使驱油的动力很快丧失。
同时,原油中的溶解气逸出后原油的粘度增加,使流度进一步恶化。
表现为生产气油比急剧上升,当能量极大的消耗后生产气油比很快下降,同时产量下降。
3、水压驱动----当油藏与外部的水体相连通时,油藏开采后由于压力下降,使其周围水体中的水流入油藏进行补给。
分刚性水驱和弹性水驱。
刚性水驱是以油藏压力基本保持不变为其特征,驱动能量主要是边水的重力作用,水侵量完全补偿了采液量,总压降越大采液量越大。
形成条件是:油层与边水或底水连通性较好,有良好的供水水源,油水层有良好的渗透性。
通常也将注水开发看成刚性水驱(当注采比等于1时)。
油藏进入稳产期,由于有充足的边水、底水或注入水,能量消耗得到及时补充,压力基本保持不变。
当边水、底水或注入水推至油井后,油井开始见水,含水不断增加,产油量开始下降,但产液量可保持不变。
弹性水驱主要依靠含油区和含水区压力降低而释放的弹性能量进行开采。
当压降范围扩大到水体边界后,没有充足的能量供给,整个水动力学系统将呈现拟稳态流动,整个系统的压力降落与采液量的增加成正比关系,直到油层压力低于饱和压力而转为溶解气驱为主。
形成条件是:有边水或底水,但活跃程度不能弥补采液量,人工注水的注水速度小于采液速度开发看成刚性水驱。
压裂及注水方法1.压裂压裂是指采油或采气过程中,利用水力作用,使油气层形成裂缝的一种方法,又称水力压裂。
油气层压裂工艺过程用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高油气层的渗透能力,以增加注水量(注水井)或产油量(油井)。
常用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。
压裂选井的原则:(1)油气层受污染或者堵塞较大的井;(2)注不进去水或注水未见效的井。
(1)分层及选择性压裂我国有很多多层油气田,通常要进行分层压裂。
另外,在油田开发层系划分中,有的虽同属一个开发层系,但油层非均质特性强,存在层内分层现象,这通常称为选择性压裂。
1.封隔器分层压裂封隔器分层压裂是目前国内外广泛采用的一种压裂工艺技术,但作业复杂、成本高。
根据所选用的封隔器和管柱不同,有以下四种类型。
1) 单封隔器分层压裂用于对最下面一层进行压裂,适于各种类型油气层,特别是深井和大型压裂。
2) 双封隔器分层压裂可对射开的油气井中的任意一层进行压裂。
3) 桥塞封隔器分层压裂。
4) 滑套封隔器分层压裂国内采用喷砂器带滑套施工管柱,采用投球憋压方法打开滑套。
该压裂方式可以不动管柱、不压井、不放喷一次施工分压多层;对多层进行逐层压裂和求产。
2.限流法分层压裂用于欲压开多层而各层破裂压力有差别的油井。
通过控制各层射孔孔眼数量和直径,并尽可能提高注入排量,利用先压开层孔眼摩阻提高井底压力而达到一次分压多层的目的。
有A、B和C三个油层,相应的破裂压力分别为24,20和22MPa ,按射孔方案射开各自的孔眼。
当注入井底压力为20 MPa时,B层压开;然后提高排量,因孔眼摩阻正比于排量,B层孔眼摩阻达到2 MPa时的注入井底压力为22 MPa,即C层被压开;继续提高排量,B层孔眼摩阻达到4MPa时的井底注入压力为24 MPa,A层被压开。
射孔孔眼的作用类似于井下节流器,随排量增加,井底压力不断提高,从而逐层压开。
含水率油井日产水量q w 与日产液量q L 之比叫含水率(f w ),亦叫含水百分数,可用下式计算; f w =%100⨯Lw q q 含水上升率每采出1%的地质储量含水率的上升值叫含水上升率。
它是评价油田开发效果的重要指标。
含水上升率越小,油田开发效果越好。
可按下式计算:I NW =%100⨯∆∆Rf W 式中:I NW -含水上升率,%;∆ f w —阶段末、初含水率之差;∆R —阶段末、初采出程度之差.存水率未采出的累积注水量与累积注水量之比叫存水率.它是衡量注入水利用率的指标,存水率越高,注入水的利用率越高。
计算公式为:W f =%100⨯-WiWp Wi 式中:W f -存水率,%;Wi —累积注水量,m 3;W p —累积产水量,m 3。
注水开发油田的三大矛盾非均质多油层油田注水开发时,由于油层性质存在层间、平面、层内三大差异,导致注入水在各油层各方向不均匀推进,使油水关系复杂化,影响油田开发效果,这就是所说的注水开发油田的三大矛盾——层间矛盾、平面矛盾及层内矛盾.解决三大矛盾的关键是认识油水运动的客观规律,因势利导,采取不均匀开采,接替稳产,以及不断进行调整挖潜等方法,使各类油层充分发挥作用。
层间矛盾指非均质多油层油田,由于各油层岩性、物性和储层流体性质不同,造成各油层在吸水能力、水线推进速度、地层压力、出油状况、水淹程度等方面的差异,形成相互制约和干扰,影响各油层、尤其是中低渗透率油层发挥作用,这就是所说的层间矛盾。
层间矛盾是影响油田开发效果的主要矛盾。
大庆油田在开发实践中创造的分层开采技术、油层压裂改造技术、层系及注采系统调整等,就是解决这个矛盾的有效方法。
平面矛盾由于油层性质在平面上的差异,引起注水后同一油层的各井之间地层压力有高有低,见水时间有早有晚,含水上升速度有快有慢,因而相互制约和干扰,影响油井生产能力的发挥,这就是平面矛盾。
解决平面矛盾除采用分层开采工艺技术外,打加密调整井进行注采系统调整,采取堵水、压裂等措施都是行之有效的方法。
《油藏工程》第一章油藏工程设计基础v注水开发的背景临盘油田构造图辛34块油藏剖面图v问题弹性驱动油藏开采特征曲线一、油田注水时间与时机溶解气驱油藏开采特征曲线1.早期注水;;溶解气驱油藏开采特征曲线动;3.中期注水,力以上,溶解气驱油藏开采特征曲线3.中期注水;开采方式;二、油田注水方式1.边缘注水边外注水边上注水边内注水1.边缘注水1.边缘注水水采收率高。
1.边缘注水边外注水+点状注水边外注水+环状注水1.边缘注水环状注水2.切割注水2.切割注水2.切割注水3.面积注水3.面积注水3.面积注水3.面积注水1)正方形井网直线排状井网示意图生产井注水井大庆油田三厂直线排状井网示意图五点法井网示意图4-P1828注水井大庆嘛甸油田北西块井位图注水井大庆油田三厂反五点法井网示意图注水井大庆油田三厂反五点法井网示意图反九点井网示意图绥中36-1油田反九点井网示意图中一区Ng3-4层系Ng42水淹分布图(1982年6月)中一区Ng3-4层系Ng44水淹分布图(1982年6月)孤岛中一区井网部署图正九点井网示意图反方七点井网示意图方七点井网示意图注水井生产井2)三角形井网反七点井网示意图注水井大庆油田三厂某区块a. 四点法注水井网七点井网示意图35-1537-15交错排状井网示意图生产注水井萨北过渡带形井网:方形井网:。