当前位置:文档之家› 数字信号处理自测6概论

数字信号处理自测6概论

数字信号处理自测6概论
数字信号处理自测6概论

《数字信号处理》期末自测6

一、填空题 1、

一个线性时不变系统,输入为x(n)时,输出为y(n),则输入为2x(n)

时,输出为

输入为x(n-3)

(分数:4分; 难度:较易)

参考答案:[1]2y(n)y(n-3)

2、知一个长度为N 的序列x(n),它的傅里叶变换为,它的N 点离散傅里叶变换X(k)

是关于的点等间隔。N取样

(分数:4分; 难度:易)

参考答案:[1]N 取样

3、已知因果序列x(n)的Z 变换

,则x(0)=。

1

(分数:4分; 难度:中等)

参考答案:[1]1

4、

DFT和DTS有密切关系,

而周

(分数:4分;难度:易)

参考答案:[1]主周期序列周期延拓5、

对长度为N的序列x(n)进行圆周移位m后得到的序列可以用x m(n)表示,其数学

(分数:4分;难度:易)

参考答案:[1]x(n-m)周期

二、单项选择题

1、的z变换为:()

(分数:3分;难度:较易)

A、

1 B、C、

D、

答错了 参考答案:A 你的解答:

2、

从奈奎斯特采样定理可知,要使实信号采样后能够不失真的还原,采样频率f 与信号最高频率fh 的关系: ( ) (分数:3分; 难度:易)

A 、

B 、

C 、

D 、

答错了 参考答案:A 你的解答:

3、

数列x1(n)的长度为4,数列x2(n)的长度为3,则它们的线性的卷积和的长度和5点圆周卷积和的长度分别为:( ) (分数:3分; 难度:易)

A 、5,5

B 、6,5

C 、6,6

D 、7,5

答错了参考答案:B你的解答:4、

无限长单位冲击响应(IIR)滤波器的结构是( )型的。

(分数:3分;难度:较易)

A、非递归

B、反馈

C、递归

D、不确定

答错了参考答案:C你的解答:5、

对序列的傅里叶变换而言,其信号的特点是()

(分数:3分;难度:易)

A、时域连续非周期,频域连续非周期;

B、时域离散周期,频域连续非周期;

C、时域离散非周期,频域连续非周期;

D、时域离散非周期,频域连续周期。

D

6、

设系统的单位抽样响应为h(n),则系统因果的充要条件是( )

(分数:3分;难度:较易)

A、当n>0时,h(n)=0;

B、当n>0时,h(n)不等于0;

C、当n<0时,h(n)=0;

D、当n<0时,h(n)不等于0。

已知序列的Z变换的收敛域为|z|<1,则该系统为()

(分数:3分;难度:易)

A、有限长序列;

B、右边序列;

C、左边序列;

D、双边序列。

8、已知x(n)的DTFT为,则x(1-n)的DTFT是()

(分数:3分;难度:易)

A 、

B 、

C 、

D 、

答错了 参考答案:A 你的解答: 9、

设系统的单位抽样响应

,其频率响应为( )

(分数:3分; 难度:中等)

A 、

B 、

C 、

D 、

答错了 参考答案:A 你的解答:

10、

若正弦序列

是周期的,则其周期N=( )

(分数:3分; 难度:较易)

A 、

B 、

C、

2

D、8

答错了参考答案:D你的解答:三、计算题

1、

(分数:10分;难度:易)

参考答

案:

2、

(1)试求线性卷积;

(2)试求6

(分数:10分;难度:易)

参考答案:(1)y(n)={1,2,3,4,5,6,7}

(2){6,1,2,3,4,5}

3、

有一频谱分析用的FFT处理器,其抽样点数必须是2的整数幂,假定没有采用任

何特殊的数据处理措施,已给条件为频率分辨力小于等于10Hz,信号最高频率

等于4kHz。

试确定以下参数:

(1)最小记录长度T0;

(2)抽样点间的最大时间间隔T(即最小抽样频率);

(3)在一个记录中最小点数N

(分数:15分;难度:中等)

参考答案:(1)T0=20

(2)T=10Hz

(3)N=40 4、

设滤波器差分方程为:

(1)、用典范型结构实现此差分方程;

(2

(分数:15分;难度:难)

参考答案:(1)H(z)=(1+z-1)/(1-z-1/3-z-2/4)

(2)H(e-jw)=(1+e-jw)/(1-e-jw/3-e-2jw/4)

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理复习资料01

2、对一个带限为3f kHz ≤的连续时间信号采样构成一离散信号,为了保证从此离散信号中能恢复出原信号,每秒钟理论上的最小采样数为多少?如将此离散信号恢复为原信号,则所用的增益为1,延迟为0的理想低通滤波器的截止频率该为多少? 答:由奈奎斯特采样定理,采样频率必须大于两倍的信号最高频率,236s f kHz kHz >?=每秒钟理论上得最小采样数为6000。如将此离散信号恢复为原信号,为避免混淆,理想低通滤波器的截止频率为采样频率的一半,即 32 s kHz Ω=。 3、有限频带信号11()52cos(2)cos(4)f t f t f t ππ=++,式中,11f kHz =。用5s f kHz =的冲激函数序列()T t δ进行 取样。 (1)画出()f t 及采样信号()s f t 在频率区间(10,10)kHz kHz -的频谱图。 (2)若由()s f t 恢复原信号,理想低通滤波器的截止频率c f 。 解:(1)()f t 在频率区间(10,10)kHz kHz -的频谱图 /kHz -10 0 1 2 10 ()s f t 在频率区间(10,10)kHz kHz -的频0谱图 (2)25002 s c f f Hz ≥ = 4、有一连续正弦信号cos(2)ft π?+,其中20f Hz =,6 π ?=。 (1)求其周期0T ; (2)在t nT =时刻对其采样,0.02T s =,写出采样序列()x n 的表达式; (3)求()x n 的周期N 。 解:(1)011 0.0520 T s f = == (2)在t nT =时刻,4()cos(2)cos(2200.02)cos()6 5 6 x n f nT n n π π π?ππ=+=?+=+ (3) 25 425 ππ=,所以5N =。

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理实验4-6

实验4 离散系统的变换域分析 一、实验目的 1、熟悉对离散系统的频率响应分析方法; 2、加深对零、极点分布的概念理解。 二、实验原理 离散系统的时域方程为 其变换域分析方法如下: 频域: 系统的频率响应为: Z域: 系统的转移函数为:

分解因式: , 其中和称为零、极点。 三、预习要求 1.在MATLAB中,熟悉函数tf2zp、zplane、freqz、residuez、zp2sos的使用,其中:[z, p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点;zplane(z,p)绘制零、极点分布图;h=freqz(num,den,w)求系统的单位频率响应;[r,p,k]=residuez (num,den)完成部分分式展开计算;sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 2.阅读扩展练习中的实例,学习频率分析法在MATLAB中的实现; 3.编程实现系统参数输入,绘出幅度频率响应和相位响应曲线和零、极点分布图。 四、实验内容 求系统 的零、极点和幅度频率响应和相位响应。 解析: 【代码】 num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); figure(1) zplane(num,den)

figure(2) freqz(num,den,128) 【图形】 -2 -1.5 -1 -0.500.5 1 1.5 -1.5 -1 -0.5 0.51 1.5 Real Part I m a g i n a r y P a r t 0.1 0.2 0.30.40.50.60.70.80.9 1 -800 -600-400-2000 Normalized Frequency (?π rad/sample) P h a s e (d e g r e e s ) 0.1 0.2 0.30.40.50.60.70.80.9 1 -40-2002040Normalized Frequency (?π rad/sample) M a g n i t u d e (d B ) 【结果】 零点 -1.5870 + 1.4470i

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

数字信号处理实验六-时域采样与信号的重建

实验目的: 1.了解用MATLAB语言进行时域抽样与信号重建的方法 2.进一步加深对时域信号抽样与恢复的基本原理的理解 3.掌握采样频率的确定方法和内插公式的编程方法。 二.实验内容 1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。. 2.已知一个连续时间信号f(t)=sinc(t)。取最高有限带宽频率fm=1Hz。(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。 实验程序: dt=0.1; f0=1; T0=1/f0; fm=f0; Tm=1/fm; t=-2:dt:2; f=sinc(t); subplot(4,1,1),plot(t,f,'k'); axis([min(t) max(t) 1.1*min(f) 1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm; Ts=1/fs;

n=-2:Ts:2; f=sinc(n); subplot(4,1,i+1),stem(n,f,'filled','k'); axis([min(n) max(n) 1.1*min(f) 1.1*max(f)]); end 实验截图: (2)求解原连续信号波形和抽样信号所对应的幅度谱。实验程序: dt=0.1;t=-4:dt:4;

N=length(t);f=sinc(t);Tm=1;fm=1/Tm; wm=2*pi*fm;k=1:N; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt; subplot(4,1,1),plot(w1/(2*pi),abs(F1));grid axis([0 max(4*fm) 1.1*min(F1) 1.1*max(F1)]); for i=1:3; if i<= 2 c=0 ,else c=0.2,end fs=(4-i+c)*fm; Ts=1/fs; n=-4:Ts:4; f=sinc(n); N=length(n); wm=2*pi*fs; k=1:N; w=k*wm/N; F=f*exp(-j*n'*w)*Ts; subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([0 max(4*fm) 1.1*min(F) 1.1*max(F)]); end 实验截图:

实验设计:多采样率数字信号处理

实验名称:多采样率数字信号处理 一.实验目的:1. 掌握信号抽取和插值的基本原理和实现; 2.掌握信号的有理数倍率转换。 二.实验原理: 多采样率数字信号处理共分为3方面的问题:信号的整数倍抽取、信号的整数倍插值和信号的有理数倍速率转换。 Matlab 信号处理工具箱提供了抽取函数decimate 用于信号整数倍抽取,其调用格式为: y=decimate(x,M) y=decimate(x,M,n) y=decimate(x,M,’fir’) y=decimate(x,M,n,’fir’) 其中y=decimate(x,M)将信号x 的采样率降低为原来的 M 1,抽取前缺省地采用8阶Chebyshev Ⅰ型低通滤波器压缩频带。 y=decimate(x,M,n)指定所采用Chebyshev Ⅰ型低通滤波器的阶数,通常13 n 。 y=decimate(x,M,’fir’)指定用FIR 滤波器来压缩频带。 y=decimate(x,M,n,’fir’) 指定所用FIR 滤波器的阶数。 Matlab 信号处理工具箱提供了插值函数interp 用于信号整数倍插值,其调用格式为: y=interp(x,L) y=interp(x,L,n,alpha) [y,b]=interp(x,L,n,alpha) 其中y=interp(x,L)将信号的采样率提高到原来的L 倍。 y=interp(x,L,n,alpha)指定反混叠滤波器的长度n 和截止频率alpha ,缺省值为4和0.5。 [y,b]=interp(x,L,n,alpha)在插值的同时,返回反混叠滤波器的系数向量。 信号的有理数倍速率转换是使信号的采样率经由一个有理因子M L 来改变,可以通过插值和抽取的级联来实现。Matlab 信号处理工具箱提供了重采样函数resample 用于有理倍数速率转换,其调用格式为: y=resample(x,L,M);

数字信号处理实验1概论

数字信号处理实验2 ——离散系统频率响应和零极点分布姓名:李倩 学号:13081403 班级:通信四班 指导教师:周争

一.实验原理 离散时间系统的常系数线性差分方程: ∑ak*y(n-k)=∑br*x(n-r) 求一个系统的频率响应: H(e^jw)=(∑br*e^(-jwr))/( ∑ak*e^(-jwk)) 其中的r和k都是从零开始的。H(e^jw)是以2pi为周期的连续周期复函数,将其表示成模和相位的形式: H(e^jw)=|H(e^jw)|*e^(jarg[H(e^jw)]) 其中|H(e^jw)|叫做振幅响应(幅度响应),频率响应的相位arg[H(e^jw)]叫做系统的相位响应。 将常系数线性差分方程的等式两边求FT,可以得到系统的频率响应与输入输出的频域关系式: H(e^jw)=Y(e^jw)/X(e^jw) 将上式中的e^jw用z代替,即可得系统的系统函数: H(z)=Y(z)/X(z) H(z)=∑h(n)*z^(-n)(n的取值从负无穷到正无穷) H(z)=( ∑br*z^(-r))/( ∑ak*z^(-k)) 将上式的分子、分母分别作因式分解,可得到LTI系统的零极点增益表达式为: H(z)=g∏(1-zr*z^(-1))/∏(1-pk*z^(-1)) 其中g为系统的增益因子,pk(k=1,2,3,…,N)为系统的极点,zr(r=1,2,3,…,M)为系统的零点。通过系统的零极点增益表达式,可

以判断一个系统的稳定性,对于一个因果的离散时间系统,若所有的极点都在单位圆内,则系统是稳定的。 二.实验内容 一个LTI离散时间系统的输入输出差分方程为 y(n)- 三.程序与运行结果 (1)编程求上述两个系统的输出,并分别画出系统的输入和输出波形 程序:

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理实验报告 六

程序P6.1 % 程序 P6_1 % 将一个有理数传输函数 % 转换为因式形式 num = input('分子系数向量 = '); den = input('分母系数向量 = '); [z,p,k] = tf2zp(num,den); sos = zp2sos(z,p,k) Q6.1 使用程序p6.1,生成如下有限冲激响应传输函数的一个级联实现:H1(Z)=2+10Z^-1+23Z^-2+34Z^-3+31Z^-4+16Z^-5+4Z^-6 画出级联实现的框图。H1(Z)是一个线性相位传输函数吗? 分子系数向量 = [2,10,23,34,31,16,4] 分母系数向量 = [1,0,0,0,0,0,0] sos = 2.0000 6.0000 4.0000 1.0000 0 0 1.0000 1.0000 2.0000 1.0000 0 0 1.0000 1.0000 0.5000 1.0000 0 0 Y[k] 2 11 X[k] Q6.2 使用程序p6.1,生成如下有限冲激响应传输函数的一个级联实现:H2(Z)=6+31Z^-1+74Z^-2+102Z^-3+74Z^-4+31Z^-5+6Z^-6 画出级联实现的框图。H2(Z )是一个线性相位传输函数吗?只用4个乘法器生成H2(Z)的一个级联实现。显示新的级联结构的框图。 分子系数向量 = [6,31,74,102,74,31,6] 分母系数向量 = [1,0,0,0,0,0,0] sos =

6.0000 15.0000 6.0000 1.0000 0 0 1.0000 2.0000 3.0000 1.0000 0 0 1.0000 0.6667 0.3333 1.0000 0 0 Y[k] 6 11 X[k] Q6.3 使用程序 6.1生成如下因果无限冲激响应传输函数的级联实现: H1(Z)=(3+8Z^-1+12Z^-2+7Z^-3+2Z^-4-2Z^-5)/(16+24Z^-1+24Z^-2+14Z^-3+5Z^-4+Z^-5),画出级联实现的框图。 分子系数向量 = [3,8,12,7,2,-2] 分母系数向量 = [16,24,24,14,5,1] sos = 0.1875 -0.0625 0 1.0000 0.5000 0 1.0000 2.0000 2.0000 1.0000 0.5000 0.2500 1.0000 1.0000 1.0000 1.0000 0.5000 0.5000 Y [k ] 0.1875 11 11X [k ] Q6.4使用程序6.1生成如下因果无限冲激响应传输函数的级联实现:

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

数字信号处理实验

数字信号处理实验

实验一 自适应滤波器 一、实验目的 1、掌握功率谱估计方法 2、会用matlab 对功率谱进行仿真 二、实验原理 功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。相应公式如下所示: ||1 *0 1 ?()()()(11) ??()(12) N m xx n jwn BT xx m r m x n x n m N P r m e --=∞ -=-∞ =+-=-∑ ∑ 周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示: 21 1? ()()01 (13)N jw jwn xx n P e x n e n N N --== ≤≤--∑ 其计算框图如下所示: 观测数据x(n) FFT 取模的平方 1/N ) (jw xx e ∧ 图1.1周期图法计算用功率谱框图

由于观测数据有限,所以周期图法估计分辨率低,估计误差大。针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。 三、实验要求 信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。 四、实验程序与实验结果 (1)用周期图法进行谱估计 A、实验程序: %用周期法进行谱估计 clear all; N1=128;%数据长度 N2=256; N3=512; N4=1024; f=2;%正弦波频率,单位为kHZ fs=100;%抽样频率,单位为kHZ n1=0:N1-1; n2=0:N2-1; n3=0:N3-1; n4=0:N4-1; a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度

数字信号处理上机实验答案完整版

数字信号处理上机实验 答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第十章上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 functiontstem(xn,yn) %时域序列绘图函数 %xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串) n=0:length(xn)-1; stem(n,xn,'.');boxon xlabel('n');ylabel(yn); axis([0,n(end),min(xn),*max(xn)]) 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可

数字信号处理实验六

实验六 一、实验名称 离散时间滤波器设计 二、实验目的: 1、掌握利用脉冲响应不变法设计IIR 数字滤波器的原理及具体方法。 2、加深理解数字滤波器与连续时间滤波器之间的技术转化。 3、掌握脉冲响应不变法设计IIR 数字滤波器的优缺点及使用范围。 4、掌握利用双线性变换法设计IIR 数字滤波器的原理及具体方法。 5、深入理解利用双线性变换法设计IIR 数字滤波器的优缺点及使用范围。 三、实验原理: 1、脉冲响应不变法变换原理 脉冲响应不变法将模拟滤波器的s 平面变换成数字滤波器的z 平面,从而将模拟滤波器映射成数字滤波器。 IIR 滤波器的系数函数为1 -z (或z )的有理分式,即 ∑∑=-=--= N k k k M k k k z a z b z H 1 01)( 一般满足N M ≤。 ⑴转换思路: )(H )()(h )(h )(z n h nT t s H z a a ??→?=???→?????→?变换 时域采样拉普拉斯逆变换 若模拟滤波器的系统函数H (s )只有单阶极点,且假定分母的阶次大于分子的阶次,表达式: ∑ =--=N k T s k z e TA z H k 111)( ⑵s 平面与z 平面之间的映射关系。 Ω +==j s re z j σω→ =→=→ΩT j T jw sT e e re e z σT e r T Ω==ωσ IIR 数字滤波器设计的重要环节式模拟低通滤波器的设计,典型的模拟低通滤波器有巴 特沃兹和切比雪夫等滤波器。由模拟低通滤波器经过相应的复频率转换为H (s ),由H (s )经过脉冲响应不变法就得到所需要的IIR 数字滤波器H (z )。 Matlab 信号处理工具箱中提供了IIR 滤波器设计的函数,常用的函数: IIR 滤波器阶数选择 Buttord--巴特沃兹滤波器阶数选择。 Cheb1ord--切比雪夫I 型滤波器阶数选择。 Cheb2ord--切比雪夫II 型滤波器阶数选择。 IIR 滤波器设计 Butter--巴特沃兹滤波器设计。

数字信号处理实验二

实验二: 用FFT 作谱分析 实验目的 (1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。 (2) 熟悉FFT 算法原理和FFT 子程序的应用。 (3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法, 了解可能出现的分析误差及其原因, 以便在实际中正确应用FFT 。 ● 实验步骤 (1) 复习DFT 的定义、 性质和用DFT 作谱分析的有关内容。 (2) 复习FFT 算法原理与编程思想, 并对照DIT-FFT 运算流图和程序框图, 读懂本实验提供的FFT 子程序。 (3) 编制信号产生子程序, 产生以下典型信号供谱分析用: (4) 编写主程序。 下图给出了主程序框图, 供参考。 本实验提供FFT 子程序和通用绘图子程序。 (5) 按实验内容要求, 上机实验, 并写出实验报告。 1423()()1,03()8470403()3470 x n R n n n x n n n n n x n n n =?+≤≤? =-≤≤?? ?-≤≤?? =-≤≤???456()cos 4 ()sin 8 ()cos8cos16cos20x n n x n n x n t t t π π πππ===++

●实验内容 (1) 对2 中所给出的信号逐个进行谱分析。 (2) 令x(n)=x4(n)+x5(n),用FFT计算8 点和16 点离散傅里叶变换, X(k)=DFT[x(n)] (3) 令x(n)=x4(n)+jx5(n),重复(2)。 ●实验报告要求 (1) 简述实验原理及目的。 (2) 结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。 (3) 总结实验所得主要结论。 (4) 简要回答思考题。 Matlab代码: 对六个所给信号进行谱分析的主程序(对信号进行64点的FFT变换): clc;clear all; N=64; x1=Signal_x1(N);

数字信号处理实验答案

第十章上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用 FFT 对信号作频谱分析。 实验四 IIR 数字滤波器设计及软件实现。 实验五 FIR 数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四 IIR 数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 10.1 实验一 : 系统响应及系统稳定性 1.实验目的 (1 )掌握求系统响应的方法。 (2 )掌握时域离散系统的时域特性。 (3 )分析、观察及检验系统的稳定性。

在频域可以用系统函数描述系 2.实验原理与方法 在时域中, 描写系统特性的方法是差分方程和单位脉冲响应, 统特性。 已知输入信号可以由差分方程、 单位脉冲响应或系统函数 求出系统对于该输入信号 的响应, 本实验仅在时域求解。 在计算机上适合用递推法求差分方程的解, 最简单的方法是 采用 MATLAB 语言的工具箱函数 filter 函数。也可以用 MATLAB 语言的工具箱函数 conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、 因果性和稳定性。 重点分析实验系统的稳定 性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号, 系统都能得到有界的系统响应。 或者系统的单位 脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定, 不可能检查系统对所有有界的输入信号, 输出是否都是有界输出, 或者检查系统的单位脉冲响应满足绝对可和的条件。 可行的方法是在系统的输入端加入单位 阶跃序列,如果系统的输出趋近一个常数(包括零) ,就可以断定系统是稳定的 [19] 。系统 的稳态输出是指当 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随 n 的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1 )编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用 filter 函数或 conv 函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。 (2 )给定一个低通滤波器的差分方程为 输入信号 a ) 分别求出系统对 和 的响应序列,并画出其波形。 b ) 求出系统的单位冲响应,画出其波形。 (3 )给定系统的单位脉冲响应为

华北电力大学数字信号处理实验六共29页

实验六 IIR数字滤波器设计及应用 一:实验目的 加深理解IIR数字滤波器的特性,掌握IIR数字滤波器的设计原理与设计方法,以及IIR数字滤波器的应用。 二:实验原理 N阶IIR数字滤波器的系统函数为: IIR数字滤波器的设计主要通过成熟的模拟滤波器设计方法来实现:将数字滤波器设计指标转换为模拟滤波器设计指标,设计出相应的模拟滤波器H(s),再经过脉冲响应不变法或双线性变换法得到所需的IIR数字滤波器H(z)。 IIR数字滤波器设计的重要环节是模拟原型低通滤波器的设计,主要包括Butterworth、Chebyshev和椭圆等滤波器。 MATLAB 信号处理工具箱中提供了IIR滤波器设计的函数。 IIR 滤波器阶数选择 buttord -巴特沃斯(Butterworth)滤波器阶数选择。 cheb1ord -切比雪夫(Chebyshev)I 型滤波器阶数选择。 cheb2ord -切比雪夫(Chebyshev)II 型滤波器阶数选择。 ellipord -椭圆(Elliptic)滤波器阶数选择。 IIR 滤波器设计 butter -巴特沃斯(Butterworth)滤波器设计 cheby1 -切比雪夫(Chebyshev)I 型滤波器设计 cheby2 -切比雪夫(Chebyshev)II 型滤波器设计

ellip -椭圆(Elliptic)滤波器设计 maxflat -通用的巴特沃斯(Butterworth)低通滤波器设计 yulewalk -Yule-Walker 滤波器设计(直接数字滤波器设计法) 1. Butterworth滤波器设计 Butterworth滤波器是通带、阻带都单调衰减的滤波器。 (1)调用buttord函数确定巴特沃斯滤波器的阶数,格式为 [N,Wc] = buttord(Wp,Ws,Ap,As) 输入参数:Ap,As为通带最大衰减和阻带最小衰减,以dB为单位。 Wp,Ws为归一化通带截频和阻带截频,0

相关主题
文本预览
相关文档 最新文档