6个步骤轻松计算隔离驱动变压器!
- 格式:docx
- 大小:16.79 KB
- 文档页数:6
变压器变压原理与计算变压器是一种常用的电力设备,主要用于改变交流电的电压。
它利用电磁感应的原理,通过绕组的匝数比来实现电压的转换。
本文将介绍变压器的工作原理以及如何进行变压器的计算。
变压器的工作原理基于法拉第电磁感应定律,即当一个线圈中的磁通量发生变化时,会在另一个线圈中产生感应电动势。
变压器由两个或多个线圈组成,主要包括一个输入线圈(即初级线圈)和一个输出线圈(即次级线圈)。
通过改变输入线圈的匝数,可以改变输入电源的电压,而输出线圈的匝数则决定了输出电压的大小。
变压器的工作过程可以分为两个阶段:磁场建立阶段和磁场消失阶段。
在磁场建立阶段,当输入线圈接通交流电源时,电流会在输入线圈中产生磁场,同时也会在输出线圈中产生感应电动势。
根据法拉第电磁感应定律,输出线圈中的感应电动势会引起输出线圈中的电流流动。
由于输出线圈的匝数不同于输入线圈,所以输出线圈的电流与输入线圈的电流不同。
在磁场消失阶段,当输入电源断开时,输入线圈中的磁场会逐渐消失,同时也会在输出线圈中产生感应电动势。
根据电动势的方向,输出线圈中的电流会产生反向流动。
这样,变压器就实现了电压的转换。
在进行变压器的计算时,需要考虑输入电压、输出电压、输入线圈的匝数和输出线圈的匝数之间的关系。
根据变压器的理想变压比公式:变压比 = 输出电压 / 输入电压 = 输出线圈匝数 / 输入线圈匝数通过变压比的计算,可以确定变压器的匝数比例,从而实现电压的转换。
此外,还需要考虑变压器的效率和负载情况。
变压器的效率可通过以下公式计算:效率 = 输出功率 / 输入功率 = 输出电压× 输出电流 / 输入电压× 输入电流负载情况是指变压器所连接的电路中的负载阻抗。
当负载发生变化时,变压器的输出电压也会发生相应的变化。
因此,在计算变压器时,需要根据负载情况调整变压器的参数,以确保输出电压的稳定性。
除了理想变压器的计算,还需要考虑实际变压器的损耗。
变压器的设计计算方法变压器是电力系统中常用的电气设备,用来实现电能的传输和变换。
设计一个变压器需要考虑多种因素,包括预期的功率大小、电流密度、电压比、损耗和效率等。
下面将详细介绍变压器的设计计算方法。
1.确定设计参数:在设计变压器之前,需要明确需要满足的设计参数。
这包括输入和输出的电压、额定功率、频率等。
同时还需要了解电力系统的电压等级和标准,以确保变压器的设计符合系统要求。
2.计算变压器的额定功率:变压器的额定功率是指变压器能够输送的最大功率。
一般来说,额定功率可以通过下式计算得到:额定功率=输出电压×额定电流其中,额定电流可以通过下式计算得到:额定电流=额定功率/输入电压3.计算变压器的线圈匝数:线圈匝数的选择是决定变压器变比的重要因素。
通常情况下,变压器的线圈匝数比根据输入和输出电压的比例确定。
可以使用下式计算线圈匝数比:线圈匝数比=输入电压/输出电压4.确定变压器铁芯尺寸:变压器的铁芯尺寸是变压器的一个关键参数,直接影响变压器的功率和损耗。
选择合适的铁芯尺寸需要考虑到磁通密度、饱和磁感应强度和铁芯截面积等因素。
一般来说,可以使用下式计算铁芯截面积:铁芯截面积=额定功率/(线圈匝数×磁通密度×频率×磁通波动系数)5.计算变压器的损耗和效率:变压器的损耗和效率是设计中需要重点考虑的因素。
变压器的总损耗可以分为载流损耗和空载损耗两部分。
载流损耗是指变压器在额定电流下的功率损耗,可以通过下式计算得到:载流损耗=额定电流²×电阻总和空载损耗是指变压器在没有负载时的功率损耗,可以通过下式计算得到:空载损耗=铁芯损耗+线圈损耗其中,铁芯损耗可以通过下式计算得到:铁芯损耗=铁芯重量×铁芯材料的比热损耗系数线圈损耗可以通过下式计算得到:线圈损耗=线圈总重量×线圈材料的比热损耗系数变压器的效率可以通过下式计算得到:效率=(额定功率-损耗)/额定功率6.进一步优化设计:在上述基本设计计算完成之后,可以根据需要对变压器的设计进行进一步优化。
变压器计算方法小型变压器的计算方法变压器的制作涉及到一些计算问题,很多书上虽然有严谨的计算公式,但实际运用时显得比较复杂,不甚方便,本文介绍利用经验公式计算,制作实用变压器举例(下文中的蓝色字体为举例),供大家参考。
一、变压器简易制作涉及以下几个主要基本物理量:1.变压器功率P,单位:瓦(W);2.铁芯的截面积S,单位:平方厘米(cm2);3.线圈的每伏圈数N,单位:圈/伏(T/V);4.使用电流I,单位:安培(A);5.导线直径d,单位:毫米(mm)。
二、变压器简易的制作方法:以【制作一只“初级电压U1=220V,次级电压U2=24V,次级额定输出电流I2=5A”】来说明计算的方法和步骤。
1.铁芯的选择选择变压器的铁芯,首先要确定变压器的功率,变压器功率与铁心面积关系有经验公式为:(P单位W,S单位cm2)K为经验系数,通常取1.0~1.5,一般地,变压器次级功率P2为0~10W,经验系数K选1.5以下~1.4;P2为10W以上~50W,经验系数K选1.4以下~1.3;P2为50W以上~100W,经验系数K选1.3以下~1.2;P2为100W以上~500W,经验系数K选1.2以下~1.1;P2为500W以上~1000W,经验系数K选1.1以下~1.0,P2为1000W 以上,经验系数K选1.0。
硅钢片质量越好常数越小。
常用经验公式为或P=0.64S2或。
如果铁芯(硅钢片)选用过大,将导致变压器体积增大,成本升高,但铁芯过小,会增大变压器的损耗,同时带负载能力变差。
为了确定铁芯尺寸,首先要算出变压器次级的实际消耗功率,它等于变压器次级各绕组电压与对应负载电流的乘积之和。
如果是全波整流变压器,应以变压器次级电压的1/2计算。
次级绕组消耗功率加入变压器本身损耗功率,即为变压器初级视在功率。
一般次级绕组功率在0~10W的变压器,其本身损耗可达次级实际消耗功率的30~40%,10W以上~30W损耗约20~30%,30W以上~50W损耗约15~20%,50W以上~100W损耗约10~15%,100W以上损耗约10%以下,上述损耗参数是关于普通插片式变压器的。
MAX13256变压器计算方法MAX13256是MAXIM公司为方便终端客户灵活设计低功率隔离电源而推出的一款桥式整流模式控制器。
设计理念基于将DC电压全桥整流为AC,再通过变压器偶合到副边,再通过桥式整流成DC。
整个电路拓扑简洁,效率高(90%以上),可使能,可同步,隔离耐压级别灵活设计。
由于是定电压输出(变压器匝比决定输入输出关系,在高精度应用场合,需要在终端加一级LDO)可以将MAX13256的整体电路等效为如下电路:1.计算变压器匝比如果不考虑整流管压降,以及半波过程中电压上升和下降的斜率,理想状态下:V1/V2= Ø; 其中Ø=变压器匝比。
但是由于存在整流管压降,以及整流过程中电压上升和下降的斜率,导致即使1:1的变压器匝比,常规应用的输出也会比输入低1V左右(评估板实验数据是1.2V)。
这里的误差因素如下(设为ɑ):1)整流管导通压降--- 查整流管手册2)整流过程中电压上升和下降存在斜率(对应每个周期的电压建立时间),导致电压会偏低--- 需要根据面积算一下。
3)变压器饶制时,圈数无法严格保证是整圈(所以在变压器的效率和体积允许的前提下,圈数越多,匝比精度越好)。
典型高精度应用匝比计算(如上所述,V1/(V2+ɑ)= Ø)。
24V转3.3V需要考虑预留1.5V的压降给LDO,也就是考虑V2=3.3V+1.5V = 4.8V。
ɑ取1.2。
Ø = V1/(V2+ɑ) = 4:124V转12V需要考虑预留3V的压降给LDO(电压越高,LDO需要的压降越大),也就是考虑V2=12V+3V = 15V。
ɑ取1.2。
Ø = V1/(V2+ɑ) = 1.48 ≈1.5 ; 也就是3:224V转5V需要考虑预留2V的压降给LDO(电压越高,LDO需要的压降越大),也就是考虑V2=5V+2V = 15V。
ɑ取1.2。
Ø = V1/(V2+ɑ) = 2.92 ≈3 ; 也就是3:12.计算变压器线径:3. 变压器圈数(不用留气隙,电感量不是强制指标)全桥式变压器开关电源的工作原理与推挽式变压器开关电源的工作原理是非常接近的,只是变压器的激励方式与工作电源的接入方式有点不同;因此,用于计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的数学表达式,同样可以用于全桥式变压器开关电源变压器初级线圈N1绕组匝数的计算。
变压器最简单的计算方法变压器是工业电气的重要组成部分,它是将交流电力从一个级到另一个级的重要设备。
变压器最简单计算方法是基于极限理论的变压器,它包括变压器电源和负载,通过计算来保证变压器的最佳性能。
变压器最简单的计算方法还可以帮助提高变压器的效率。
变压器最简单计算方法是基于极限理论来计算变压器参数,它主要有三个基本参数:额定容量、额定电压和额定频率。
其中容量是变压器的工作能力,有几千瓦的额定容量,变压器的最大负载能力也就越大;而额定电压和频率是变压器的工作标准,要根据不同的国家和环境的要求,对变压器的额定电压和频率有不同的规定。
变压器的计算方法也应该以额定电压和频率为基础来计算变压器的参数。
在变压器最简单计算方法中,还需要考虑变压器的额定噪声、电磁干扰、散热性能、绝缘损耗和变压器饱和特性等关键性能参数,这些参数它们影响变压器的性能,和变压器的额定容量、额定电压和频率是不同的,因此应该单独进行计算来保证变压器的最佳性。
另外,变压器的计算方法还应考虑变压器的温升,变压器的最大温度应低于变压器额定值,因此变压器的温升计算应考虑变压器的使用环境、负载角度、冷却方式等因素影响。
变压器温升一旦达到额定值,将导致变压器早期失效,所以在变压器最简单计算方法中,还需要考虑变压器的温升性能,以便获得最佳的变压器性能。
在进行变压器最简单计算方法之前,应先了解变压器的负载特性,如果变压器的负载不正常,有可能导致变压器的损坏,因此在根据变压器最简单计算方法时,应了解变压器的负载特性,以确保变压器正常工作。
有了上述基本参数,便可以根据变压器最简单计算方法开始计算变压器的参数,首先确定变压器的容量,根据变压器的使用环境、负载角度和冷却方式等因素,来确定变压器的容量;其次,确定变压器的额定电压和频率,根据不同的国家要求,确定变压器额定电压和频率;最后,确定变压器的温升,考虑变压器的使用环境、负载角度等因素,以确定变压器的温升范围及变压器的最大温度等参数。
要在单片机系统中驱动隔离变压器,可以采用以下基本电路和步骤:
1. 使用驱动芯片:选择一款适合的驱动芯片,例如典型的光耦驱动器(opto-coupler driver)或者专门设计用于隔离变压器驱动的集成电路。
这些驱动芯片通常包括输入端和输出端的隔离,以及能够提供足够输出功率的驱动电路。
2. 接入输入端:将单片机的输出信号连接到驱动芯片的输入端,通常是通过一个适当的电阻进行连接以限制电流。
3. 隔离部分:驱动芯片内部会通过光耦等方式实现输入和输出之间的隔离,从而确保输入信号不会影响输出端。
4. 连接输出端到隔离变压器:驱动芯片的输出端连接到隔离变压器的输入端,通常需要经过一个驱动变压器或者放大器来提供足够的驱动电流。
5. 隔离变压器工作:隔离变压器将接收到的信号隔离地传递到输出端,从而实现输入和输出电路的隔离。
6. 安全考虑:在设计中需要考虑到隔离变压器两侧的电气安全和绝缘要求,确保信号隔离的有效性和可靠性。
总的来说,驱动隔离变压器的关键在于选择合适的驱动芯片,并严格按照规范连接各部分,确保隔离效果和电路稳定性。
门极驱动变压器设计计算一、驱动电流的计算计算门极所需电流——I gI g = CV/tC ——开关管输入电容Ciss(F)V ——驱动电压(V)t ——导通时间(S)例:驱动一个结电容为15nF的IGBT ,驱动电压为正负15V,频率为100KHz, 占空比为 0.5,所需电流为多少?Ig = ( 0.000000015* 30) / (1/100000*0.5)= 0.09A =90mA二、确定磁芯材料以及工作磁通密度磁通密度也叫磁感应强度,用符号B来表示。
单位 T。
首先,先查数据表得出饱和磁通密度——B s , 以及剩余磁感应强度——B r 代入公式算出最大工作磁通密度——B maxB max= (1/3~1/2) B s根据驱动拓扑的不同,工作磁通密度有以下两条公式双象限工作—— B w = 2B max单象限工作—— B w = B max — B r例:一个T50-2磁芯,双象限工作,工作磁通取值为多少?通过查datasheet得知,饱和磁通密度B s=0.5TB max = 1/3 B s ≈ 0.17TB w = 2B max = 0.34T三、磁芯尺寸的选择A p = A w A e = 2T on P o /B w K c K u jA p ——磁芯尺寸(cm^4)A w ——磁芯窗口面积(cm^2)A e ——磁芯截面积(cm^2)T on ——导通时间(S)P o ——输出功率(W)K c ——填充系数 K u——窗口利用系数 K c K u一般取0.3j ——导线电流密度(A/cm^2)j 取值过小,导线没能充分利用。
取值过大,温升严重,铜损大。
j 一般取300~500A/cm^2。
四、绕组匝数计算原边绕组:N1 = UT / BA e副边绕组:U1/U2 = N1/N2例:一个T50-2 磁芯,Bw 取0.34T,原边绕组驱动电压正负15V,驱动频率500KHz,最小不饱和匝数为多少?T50-2 磁芯的的Ae为0.12cm^2N = 30* (1 / 500000) / 0.34* 0.000012= 14.7 turns五、导线截面积计算计算原边电感——LL = AL* N^2 AL ——电感与匝数平方的比(H / N^2)计算励磁电流——ImagImag= 0.577Imag(pk)=0.577 UTD/L计算驱动总电流——II = NwIg + Imag Nw ——绕组数量计算导线截面积——XSAXSA = I / j例:一个驱动变压器,4个副边绕组,每个副边绕组所需电流为100mA,原边励磁电流为50mA, 电流密度取400A/cm^2, 导线截面积至少为多少?XSA = 0.45 / 400= 0.0011cm^2 = 0.11mm^2。
变压器计算公式变压器是一种输送电能的非常重要的设备,它将低电压电源转换成高电压的输出以实现电力传输的目的。
在设计变压器的时候,必须用到一些计算公式,以帮助工程师和技术人员确定变压器的最佳参数。
本文将详细介绍变压器计算公式,并给出一些实例来进一步阐明其使用方法。
首先,要正确计算变压器的参数,就必须先确定变压器的输入电压、输入频率和负载电流。
这些数据可以从变压器的规格来获取。
例如,一台220V,50Hz的变压器,负载电流为20A,这表示输入电压是220V,输入频率是50Hz,负载电流是20A。
接下来,要计算变压器的电流和功率,需要用到电流计算公式I=V/R和功率计算公式P=VI。
其中,V表示变压器的输入电压,R表示变压器的线路电阻,I表示变压器的电流,P表示变压器的功率。
例如,如果输入电压为220V,线路电阻为20Ω,则电流I=220V/20Ω=11A,功率P=220V*11A=2420W。
还有一个重要的变压器计算公式是转移率(T)的计算公式,T=(Vout/Vin)N,其中,Vout表示变压器的输出电压,Vin表示变压器的输入电压,N表示变压器的绕组比。
例如,如果变压器的输入电压为220V,输出电压为380V,绕组比为N=2,则转移率T=(380V/220V)*2=4.36。
另外,还有一个重要的变压器计算公式是变比(K)的计算公式,K=(Vout/Vin)^2,其中,Vout表示变压器的输出电压,Vin表示变压器的输入电压。
例如,如果变压器的输入电压为220V,输出电压为380V,则变比K=(380V/220V)^2=2.89。
最后,要正确计算变压器的容量,就要用到变压器容量计算公式KVA=V*I=V^2/R,其中,KVA表示变压器的容量,V表示变压器的输入电压,I表示变压器的电流,R表示变压器的线路电阻。
例如,如果输入电压为220V,电流为11A,线路电阻为20Ω,则变压器的容量KVA=220V*11A=2420VA=2420W。
变压器计算公式
变压器作为一种电力设备,在电力工程中,它的应用非常广泛。
为了精确地计算变压器的参数以及设计其各个部分,我们需要使用一定的计算公式。
本文将从传统的变压器计算公式出发,介绍变压器的计算过程。
首先,我们需要确定变压器的参考电压、最大额定容量、最大效率和有功发电量。
参考电压是变压器的常量,即它可以使电压稳定在一个区间内,如220V或380V。
最大额定容量是变压器发电容量的标准,即变压器可以发放多少功率。
最大效率是变压器在一定情况下所能够发放的最大功率,一般为90-95%。
最后,有功发电量是变压器发放有效功率的衡量标准,一般情况下都较低。
接下来,要计算变压器利用率。
变压器利用率可以通过以下简单公式来计算:
用率 =大额定容量/有功发电量
以上就是最基本的变压器计算公式,它可以帮助我们准确地计算变压器的性能。
接下来,让我们来看看线圈电阻和电感的计算。
一个变压器有两种类型的线圈高压线圈和低压线圈,分别由两个端子连接。
变压器的线圈电阻就是从两个端子测量出来的电阻值,它是以欧姆为单位的。
另一个参数就是电感,通过实验测量得出的变压器的磁感应强度。
最后,让我们来看看变压器的耐压计算。
一般情况下,耐压是指变压器在正常工作条件下的耐受电压。
耐压可以通过以下公式计算:
压 =考电压×增强因子
计算出变压器耐压后,可以将其与线圈电阻和电感结合起来,来进行变压器性能的全面评估。
从以上可以看出,变压器计算公式虽然简单,但是却可以很好地反映变压器性能,从而更好地保证电力工程的设计与施工。
最实用的开关电源变压器计算方法与步骤
一、计算步骤
1.输入电压等级、额定功率
首先,计算开关电源变压器需要的额定功率,一般选择为负载额定功率的115%到125%的范围,以适应负载的变化,计算出额定电压等级,并明确负载类型和开关电源变压器的工作模式(单相,两相,三相)。
2.明确变压器的分布系统
根据用户的负载性质,及时的调整负载的分布,改变和优化负载的分布,减少开关电源变压器的变压率,并考虑开关电源变压器的效率。
3.变压器的台数计算
根据负载的分布,计算每个变压器的台数,通常认为,变压器的负载总量应该是用额定负载的100%至115%范围内,以满足用户要求的负载状态,选择合适的开关电源变压器,以满足用户的要求。
4.确定电压比
根据计算的变压器台数,以及电压等级,确定电压变比,理想的情况下,电压变比应尽量小于或等于6:1
5.确定绕组接线结构
根据计算出来的电压变比以及绕组参数,确定绕组的接线结构,一般情况下,开关电源变压器的绕组的接线结构主要有双Y结构、三Y结构、U结构和T结构,选择最合适的绕组接线结构。
小型变压器的计算公式首先,根据输入电压和输出电压的大小关系可以确定变压器的变比。
变比是指变压器的输出电压与输入电压的比值。
对于小型变压器,往往是通过变压器的绕组比例来实现变比的。
变压器的变比等于输出电压除以输入电压,即:变比=输出电压/输入电压其次,功率是指变压器输入电流和输出电流的乘积,即:功率=输入电流×输入电压=输出电流×输出电压由于变压器是一个能量转换设备,根据能量守恒定律,我们可以得到:输入功率=输出功率×变压器效率变压器的效率是指变压器的输出功率与输入功率的比值。
效率通常是以百分比表示的。
变压器的效率主要由变压器的损耗决定,损耗包括铁损耗和铜损耗。
铁损耗是指变压器主磁路中的磁滞损耗和涡流损耗。
磁滞损耗是由于铁芯的磁化和去磁化过程中产生的能量损耗,通常用功率因素进行表示;涡流损耗是由于铁芯中的感应电流在铁芯上形成环流而产生的能量损耗,通常用电阻值进行表示。
铜损耗是指变压器绕组中电流通过导线时产生的电阻损耗。
铜损耗通常用功率因素和电阻值的平方进行表示。
综上所述,小型变压器的计算公式如下:1.变压器的变比计算公式:变比=输出电压/输入电压2.功率计算公式:功率=输入电流×输入电压=输出电流×输出电压3.输入功率与输出功率之间的关系:输入功率=输出功率×变压器效率4.变压器效率计算公式:变压器效率=输出功率/输入功率×100%5.铁损耗计算公式:铁损耗=磁滞损耗+涡流损耗6.铜损耗计算公式:铜损耗=电流的平方×电阻值根据上述公式,可以进行小型变压器的计算。
需要注意的是,变压器的计算过程中还需要考虑到其它因素,如变压器的冷却方式、温升限制等。
因此,在实际应用中,还需要根据具体情况进行合理选择和调整。
变压器的主要计算公式变压器是电能的转换装置,主要用于将电压从一种程度转变为另一种程度,同时保持电力的功率和能量不变。
在设计和计算变压器时,需要考虑转换的电压比、功率损耗、效率等因素。
以下是变压器的主要计算公式:1.变比:变压器的变比是指输入侧电压和输出侧电压之间的比率。
变压器的变比可以表示为:N=V2/V1=I1/I2其中,N为变比,V1和V2分别为输入和输出的电压;I1和I2分别为输入和输出的电流。
2.功率:变压器的功率可以表示为:P=VI=V1I1=V2I2其中,P为功率,V和I分别为电压和电流。
3.反应电压:变压器的反应电压是指变压器的自感电流所产生的电磁感应电压。
反应电压可以表示为:Er=4.44fN1Φm其中,Er是反应电压,f是变压器的工作频率,N1是一次侧匝数,Φm是磁链最大值。
4.感应电动势:变压器的感应电动势是指由于变压器的自感电流变化而产生的电动势。
感应电动势可以表示为:E1=4.44fN1Φm其中,E1是感应电动势。
5.电流密度:变压器的电流密度是指变压器导线的电流通过的单位横截面积内的电流值。
电流密度可以表示为:J=I/A其中,J是电流密度,I是电流,A是横截面积。
6.电感:变压器的电感是指在变压器中由于变压器的绕组所产生的电感。
电感可以表示为:L=N^2/R其中,L是电感,N是匝数,R是绕组的电阻。
7.电压降:变压器的电压降是指变压器中从输入端到输出端的电压损失量。
电压降可以表示为:Vp=V1-V2其中,Vp是电压降,V1和V2分别为输入和输出的电压。
8.转换效率:变压器的转换效率是指变压器将输入电能转换为输出电能的比率。
转换效率可以表示为:η=(P2/P1)×100%其中,η是转换效率,P1是输入功率,P2是输出功率。
变压器计算公式已知变压器容量,求其各电压等级侧额定电流口诀a :容量除以电压值,其商乘六除以十。
说明:适用于任何电压等级。
在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。
将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b :配变高压熔断体,容量电压相比求。
配变低压熔断体,容量乘9除以5。
说明:正确选用熔断体对变压器的安全运行关系极大。
当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。
这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。
由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。
若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
(2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。
(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。
功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。
这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
最佳答案
小型变压器的简易计算:
1,求每伏匝数
每伏匝数=55/铁心截面
例如,铁心截面=3.5╳1.6=5.6平方厘米
故,每伏匝数=55/5.6=9.8匝
2,求线圈匝数
初级线圈n1=220╳9.8=2156匝
次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝
次级线圈匝数计算中的1.05是考虑有负荷时的压降
3,求导线直径
要求输出8伏的电流是多少安?这里我假定为2安。
变压器的输出容量=8╳2=16伏安
变压器的输入容量=变压器的输出容量/0.8=20伏安
初级线圈电流I1=20/220=0.09安
导线直径d=0.8√I
初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米
次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米
横截面积(CM):S=1.25×根号P
经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。
我告诉你一个电工常用的“经验公式”,那就是:每平方毫米的铜芯线可以安全通过4--5A的电流;那么,在单相220V电路中,每1KW约是4.5A的电流,在三相380V平衡负载(比如电动机)电路中,每1KW的电流约为2A;这样就可以“计算出”:单相电路中,每1平方毫米的铜线可以承载约1KW的负荷,三相电路中,约可以承载约2.5KW的负荷。
这个“经验算法”和实际用公式计算所得的结果是很接近的,又好记,所以很多电工在工作中都这样来配线。
不用到处问别人了,关于变压器的相关计算公式,都在这里!收藏好(1)变压器容量计算P=√3×U×I×COS¢在你的问题中,630KVA变压器一次侧:I=630000÷10000÷1.732=36.37A(你看变压器铭牌验证)二次侧:I=630000÷380÷1.732÷COS¢≈1064A(COS¢按0.9计算)二次侧:I=630000÷400÷1.732÷COS¢≈1010.39A(COS¢按0.9计算)那么,二次侧也就是低压侧的可容纳负载为1000多一点,按一般推算,大约可以带动500KW的负载!由上面的计算可以看出,630的变压器可以带500KW的负载.就是说:变压器容量×80%得出的数字,就是它较为理想的负载量!(2)一次侧额定电流I=630000÷10000÷1.732=36.37A二次侧额定电流:I=630000÷400÷1.732=909A最大输出功率P=630*0.95=599KW(COS¢按0.95)最大输出功率P=630*0.9=567KW(COS¢按0.9(3)变压器的额定容量① 变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率;② 这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率;③ 变压器额定运行时,变压器的输出视在功率等于额定容量;④ 变压器额定运行时,变压器的输入视在功率大于额定容量;⑤ 由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的;⑥ 所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时);⑦ 有人认为变压器有损耗,必须在额定容量90%以下运行是错误的!⑧ 变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的:(4)在功率因数等于一时1KVA就是1KW.所以630KVA的变压器在功率因数等于1时可以带630KW的负荷.功率如小于1,就乘以这个数值,是用变压器的额定容量乘以功率因数,所得的数值就是可以带的KW数.如何计算变压器容量_变压器容量计算公式-变压器的功率变压器的功率是决定于负载的,既:P2=U2II2I+U2III2II+......+U2nI2In(VA)P1=P2/η(VA)式中:P2变压器次级功率计算值。
小型变压器计算方法1.确定变压器的额定功率和额定电压:首先需要明确变压器的使用条件和要求,确定变压器的额定功率和额定电压。
额定功率是指变压器可以持续输出的最大功率,额定电压是指变压器的输入和输出电压。
2.计算一次侧和二次侧电流:一次侧电流和二次侧电流可以通过功率和电压的关系计算得到。
根据功率公式P=IV,可以得到一次侧电流I1=P/U1,二次侧电流I2=P/U2,其中P为额定功率,U1为一次侧电压,U2为二次侧电压。
3.确定变压器的变比:变比可以通过一次侧和二次侧电压的比值来确定。
变比K=U2/U14.计算一次侧和二次侧线圈的匝数:根据变比关系,可以得到一次侧和二次侧线圈匝数的比值为N1/N2=U2/U1、根据电流的守恒定律,有I1*N1=I2*N2、根据这两个关系可以解得一次侧和二次侧的线圈匝数。
5.计算变压器的磁密:根据变压器的额定功率和频率,可以通过经验公式得到变压器的磁密值。
常用的经验公式为B=0.25*(P/f)^0.4,其中P为额定功率,f为频率。
6.计算变压器的铜损和铁损:变压器的铜损可以通过功率公式P=I^2*R计算得到,其中I为变压器的额定电流,R为绕组的电阻。
变压器的铁损可以通过经验公式P=V^2/R 计算得到,其中V为变压器的额定电压,R为铁心的电阻。
7.确定变压器的绕组材料和尺寸:根据变压器的额定功率和电流,可以确定绕组的导线截面积和长度。
变压器的绕组一般采用漆包线或铜箔,根据需求选择合适的绝缘材料和绕组方式。
8.计算变压器的效率和温升:变压器的效率可以通过功率损耗的比值计算得到,即效率=额定功率/(额定功率+铜损+铁损)。
变压器的温升可以通过温升公式ΔT=(I^2*Rt+I2^2*Rc)/(Kt+K c)计算得到,其中ΔT为温升,I为额定电流,Rt为线圈的电阻温升系数,Rc为铁心的温升系数,Kt为线圈的散热系数,Kc为铁心的散热系数。
以上为小型变压器计算的一般步骤和方法,根据具体情况和要求,还可以考虑其他因素和参数。
6 个步骤轻松计算隔离驱动变压器!
一、引言
因为电子设备的电路变得更为复杂,故要求成熟的电气工程设计参数具有更加临界的数值。
在设计电路的每一个阶段,精确的工程计算是基本的要求。
同时,在其零部件设计时,这一点也是同样重要的。
所以,必须精心地设计开关电源(SMPS)中门脉冲驱动变压器的每一个零部件。
门脉冲驱动变压器在开关电源中被要求用来控制电路之间的同步动作。
这些器件用来为开头电源半导件元器件如高压功率MOSFETs 或IGBTs 提供电脉冲。
这种变压器也用作电压隔离和阻抗匹配。
门脉冲驱动变压器是用来驱动电子开关器件门电路的基本脉冲变压器。
设计这类变压器时,是假定其脉冲的上升、下降和上冲时间都是最佳的值。
使用中要辨别它们是门脉冲驱动变压器还是其它变压器。
在基础门脉冲驱动变压器设计中,存在一系列设计变数,其中的每个变数由其专项应用决定。
它们的一些通用简图及其相应的转换关系见图1 所示。
典型的门脉冲驱动变压器是用铁氧体磁心设计制造的,这样可以降低成本。
常用磁心的外形大多数是EE、EER、ETD 型。
它们都是由“E”型磁心和相应的骨架组成。
这些骨架可以采用表面安装法或通孔安装法装配。
在有些情况下,也采用环形磁心设计制作门脉冲驱动变压器。
典型的脉冲变压器设计所要求的参数列于表1。
如果有安全标准(如UL、VDE、CUL、IEC 或TUV)的要求,那幺,在变压器设计中必定会涉及可靠的漏电流及其清除方法问题。
对于漏电流及其。